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Causal loops, e.g., in time travel, come with two main problems. Most prominently, the grandfather
antinomy describes the potentiality to inconsistencies; a problem of logical nature. The other prob-
lem is called information antinomy and is lesser known. Yet, it describes a variant of the former:
There are not too few consistent solutions—namely none—, but too many. At a first glance, the
information antinomy does not seem as problematic as the grandfather antinomy, because there is
no apparent logical contradiction. In this work we show that, however, both problems are equivalent
under interventions: If parties can intervene in such a way that the information antinomy arises, then
they can also intervene to generate a contradiction, and vice versa.

1 Historical background, motivation, and result

Causal loops are loops in cause-effect relations such that some event Q not only is an effect of an-
other event P—its cause—, but also is the cause of P. The discussion on causal loops entered the
realm of physics more than a century ago. Einstein [18], while developing the theory of general rela-
tivity, expressed his doubt that in general relativity time travel might be possible: Every world line in
special relativity is not closed, the same cannot be said about general relativity. After Einstein asked
Carathéodory [19, 20] to resolve this question, Lanczos [23], others (see, e.g., Ref. [32]), and most no-
tably Gödel [22] found solutions to the equations of general relativity that describe causal loops. In
Gödel’s words: “[I]f P,Q are any two points on a world line of matter, and P precedes Q on this line,
there exists a time-like line connecting P and Q on which Q precedes P; i.e., it is theoretically possible in
these worlds to travel into the past, or otherwise influence the past” [22]. In the ’90s, researchers around
Thorne and Novikov started to investigate such causal loops and asked whether causal loops might lead
to inconsistencies. E.g., is it possible that a time travelling billiard ball kicks its younger self off course
in such a way that the younger self does not time travel? [21, 17] Towards answering this question,
Novikov formulated the self-consistency principle [26, 21] which states that only self-consistent solu-
tions to the dynamics on a causal loop occur and that locally, physics is kept unchanged. This means that
the physical laws must be invariant under the absence or presence of a causal loops.1 At the same time,

1Note that the self-consistency principle without this addendum is trivial: In case of inconsistent dynamics, we simply
change the description of the physical world, e.g., by allowing for parallel universes, such that every inconsistent solution
becomes a consistent one.
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2 Equivalence of grandfather and information antinomy

(a) Grandfather antinomy: If, before the NOT
gate, the bit takes value a, then it takes
value ¬a after. Then again, ¬a is looped
back, which means that before the NOT gate,
it takes value ¬a: a logical contradiction.

(b) Information antinomy: If, before the iden-
tity gate, the bit takes value a, then it takes
value a after. Both values a = 0 as well
as a = 1 are consistent solutions. Yet, what
is the value of a?

Figure 1: Schematic representations of the grandfather and of the information antinomy.

by approaching causal loops from a circuit diagrammatic point of view, Deutsch [16] argued that with
the help of quantum theory inconsistencies can be overcome. A later developed model for time travel
based on circuits incorporates quantum theory to overcome this issue as well, yet in a different way (see,
e.g., Refs. [13, 29, 33, 34, 24, 2]).

Within the last decade, causal loops became a topic of research again. During the studies of higher-
order quantum maps, i.e., quantum maps of quantum maps, and among other frameworks [15, 30], the
process-matrix framework was developed [27]. A key feature of that latter framework is that it allows
for correlations among distant parties that cannot be simulated causally. Causal inequalities [9, 14, 1, 8]
limit the space of possible correlations where the parties cannot communicate through causal loops. That
framework, however, leads to violations of such Bell-like causal inequalities. Moreover, the classical
special case of that quantum framework violates causal inequalities as well [11]; the framework allows
for causal loops [6, 5].

Most of preceding work tries to exclude inconsistencies from causal loops. This problem of incon-
sistencies is famously known as the grandfather antinomy. The story to illustrate that problem is the
following, where we divert from the usual homicide plot to a technicide plot. Imagine a robot is pro-
grammed in such a way to travel to the past to encounter its younger self. Once the robot meets its
younger self, it disassembles it. So, if the robot time travels, the robot does not time travel. But now,
since the robot does not time travel, it will time travel, etc.: a logical contradiction. A simple instance
of this problem is obtained with a NOT gate, where a bit is flipped and then looped back (see Fig. 1a).
Note that throughout this article, a loop is not a feedback loop where a map is repeatedly applied, one
application after the other, but of logical nature instead (the loop introduces constraints between the input
and the output).

Another problem, albeit lesser known, arises if too many consistent solutions occur. This problem
is known as the information antinomy and also carries different names2 such as bootstrapping paradox,
uniqueness ambiguity [2, 12], or ontological paradox [31]. This problem is often illustrated with the
following story. Imagine a person wakes up one morning and finds, next to the bed, a book that contains
a proof of a longstanding mathematical problem. Later, this person travels to the past and places the
book she or he found next to her or his bed. If we analyze this story, we see that the book is given
to that person by her/himself. Yet, this story is problematic for two reasons. Firstly, where does this
proof come from? We have complex information that arises out of nowhere.3 Secondly, why is the proof
written in that way as it is written? It could have been written in any other language, or, more drastically,
the book might contain a proof for another longstanding mathematical problem. Both problems we just

2Already the multitude of names given to that problem suggests its inferiority when compared to the grandfather antinomy.
3Deutsch considers this problem as more severe compared to the grandfather antinomy and rejects it as creationism [16].
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discussed, however, are the same. Given the boundary conditions multiple consistent outcomes might
occur (see Fig. 1b). A theory suffering from the information antinomy thus fails to provide predictions,
even probabilistically [2].

However, one might consider the information antinomy as less severe when compared to the grand-
father antinomy. The reason for such a judgement is often that the grandfather antinomy embodies a
logical contradiction, while the information antinomy seems to be unproblematic from a logical point of
view. In this work we put light on this dichotomy and show that both problems are equivalent: They form
two sides of the same coin. This equivalence holds if the dynamics allow for intervention, i.e., parties
that are free to apply local transformations. We show this equivalence in the deterministic setting without
referring to probability theory or quantum theory. The core in showing this equivalence is a theorem that
is complementary to what is shown in Ref. [7]. In Ref. [7] it is shown that, if for any choice of inter-
ventions parties can make, consistent solutions always exist, then the solution to the dynamics is unique.
Phrased differently, that result states that if no grandfather antinomy arises, then only a single consistent
solution to the dynamics exists. From this follows that the information antinomy does not arise either. In
this article we show that, if for any choice of interventions parties can make, no information antinomy
arises (i.e., not more than one consistent solution exists), then, just as in the previous case, the solution to
the dynamics is unique. From this, again, it follows that the absence of the information antinomy implies
the absence of the grandfather antinomy.

Before we present the outline of this article, we reflect on how the information antinomy arises in pre-
vious articles. In the mathematical experiments where billiard balls are thrown into a time machine, con-
sistent dynamics were always found. Yet, surprisingly, the authors discovered that “dangerous” boundary
conditions lead to an infinity of consistent dynamics [17]. In Deutsch’s model [16], then again, the infor-
mation antinomy is mitigated by defining that the unique solution is the uniform mixture of all consistent
solutions. In contrast, the process-matrix framework [27] seems not to suffer from this antinomy. That
is the case at least in the classical special case thereof [11]: The grandfather as well as the information
antinomy never arises [10].

In the next section we describe causal models and provide the necessary definitions. After that we
show the above stated uniqueness results, from which the equivalence follows. Finally, we conclude.

2 Causal structure and interventions

The reader interested on causal models is referred to the book by Pearl [28] and to the recent articles,
e.g., to Refs. [3, 4, 5]. We need some notation before we can define the relevant mathematical objects.
Let G = (V,E) be a directed graph, where V ⊆ N denotes the set of vertices and where E is a rela-
tion describing the edges: (u,v) ∈ E if and only if there is an edge from u to v. For a vertex v, the
set Pa(v) := {u ∈V | (u,v) ∈ E} is the set of all parents of v. A vertex u is called an ancestor of v if there
exists a directed path from u to v. The set of ancestors of v is defined as An(v). Since we are dealing
with deterministic dynamics, we define a causal structure as follows:

Definition 1 (Causal structure). A causal structure is a tuple (G,X ,µ) where G = (V,E) is a directed
graph, X is a family of sets {Xv | |Xv| ≥ 2}v∈V , and µ is a family of functions {µv :×u∈Pa(v) Xu→ Xv}v∈V .

The parents of a vertex v are the causes of the effect v. The value every vertex takes is computed
from a function of all its parents. The condition that every vertex can take at least two values, i.e., the
condition |Xv| ≥ 2 for all v ∈V , is natural: A vertex v that can take only one value cannot be considered
a cause nor an effect. For a vertex v with zero in degree, µv is a trivial function, i.e., a constant. Note that



4 Equivalence of grandfather and information antinomy

(a) An example of a causal structure with in-
terventions. Here, the vertexes 4 and 7 repre-
sent the parties. Thus, party 4 can intervene
on the function along the edge from 3 to 4,
and party 7 can intervene by specifying the
function f7 : X2×X6→ X7.
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(b) A pictorial depiction of the objects of the
framework. Here, the parties’ interventions fi
are drawn as boxes. The directed acyclic
graph (V,E \ {(u,v) ∈ E | v ∈ P}) is hidden
in the box labeled by ω .

Figure 2: Causal structure and the induced function.

the sets associated to the vertexes do not have to be finite or discrete; they could, e.g., contain all real
numbers.

To allow for interventions, and similarly to the classical interventional model of Ref. [3] or the
classical split nodes of Ref. [4], we augment a causal structure with parties.4 The main idea is that every
party is a vertex i and can freely choose5 the function µi. Furthermore, if we remove all incoming edges
to the parties, then the graph has no directed cycles.6

Definition 2 (Causal structure with interventions and induced function). A causal structure with inter-
ventions is a tuple (G,X ,µ \ {µv}v∈P,P) where (G,X ,µ) is a causal structure, P ⊆ V is a non-empty
set of parties, and (V,E \ {(u,v) ∈ E | v ∈ P}) is a directed acyclic graph. For every party i ∈ P we
define the input space as Ii :=×j∈Pa(i) X j, and the output space as Oi := Xi, the intervention as a func-
tion fi : Ii → Oi of his or her choice, and the induced function as ωi :×j∈P O j → Ii, as the function
described by the causal structure. The |P|-party induced function ω is defined as the list ω = (ωi)i∈P

and has signature×i∈P Oi →×i∈P Ii. Upon intervention { fi}i∈P, consistent assignment of values to
the vertexes exists if and only if there exists a family ∃{xv}v∈V such that for every party i the value xi

equals fi applied to the corresponding values, and for every vertex v ∈ V \P the value xv is equal to µx

applied to the corresponding values.

An example of such a causal structure is shown in Fig. 2a. Note that the induced function for a party i
depends only on the values of the vertexes in An(i)∩P: For party i, the domain of the induced function
is×j∈P O j, yet if some j ∈ P is not in the “past” of i, then the value at j has no effect on that party’s
induced function. Still, we define the domain of ωi as the Cartesian product of all sets X j with j ∈ P.
This is helpful because it allows us to treat all induced functions for all parties on an equal footing, and

4We divert from the definitions in the mentioned articles in order to be more general; for split nodes the “input” and “output”
of a party are elements from the same set. Any causal structure with split nodes can be transformed into a causal structure as
we define it here.

5By this local physics does not depend on whether the causal structure is cyclic or acyclic (see Section 1). What we mean
by “freely choose” is that every intervention is possible.

6The reason for this condition is that otherwise interventions might have no influence on whether the grandfather or infor-
mation antinomy arises. E.g., imagine a causal structure with a detached loop free of any party such that the loop will always
lead to an inconsistency. Our result can be read in the following way: If the parties can generate the grandfather antinomy, then
they can also generate the information antinomy and vice versa.
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by that, to define the function ω . Having this, and by using the labels 1 to n for the parties, we can move
all the vertexes and edges from the graph into a box and draw a diagram as shown in Fig. 2b. Now, a
consistent assignment of values to the vertexes exists if and only if the function ω ◦ ( f1, . . . , fn) has a
fixed point, i.e., ∃i1, . . . , in : (i1, . . . , in) = ω( f1(i1), . . . , fn(in)).

3 The grandfather and the information antinomy

To present the information and the grandfather antinomy in this framework, let us first fix some notation,
following that of Ref. [7]. We define the objects baring no index as the collection of objects, e.g., the
inputs i = (i1, i2, · · · , in) ∈ I = I1×I2×·· ·×In, the outputs o = (o1,o2, · · · ,on) ∈ O = O1×O2×
·· ·×On, and the interventions f = ( f1, f2, . . . , fn). If we wish to remove a component k, then we use the
notation I\k =I1×I2×·· ·Ik−1×Ik+1×·· ·×In etc. We will make abuse of notation for simplicity
whenever we write ω(o\k,ok) or similarly. This expression reads as ω(o1,o2, . . . ,ok−1,ok,ok+1, . . . ,on).
Also, we will make use of the expression ωk(o\k,ok) = ωk(o\k), which is a short-hand expression to
denote the independence of ωk from the argument ok: ∀a,b,∈ Ok,o\k ∈ O\k : ωk(o\k,a) = ωk(o\k,b).

The grandfather antinomy arises if there exists a choice of interventions for the parties such that no
consistent assignment of values to the vertexes exist (see Fig. 3a). Formally, this is defined as follows.

(a) If the function ω is the identity and the
operation of the party is to flip the inputs, then
there is no fixed point (grandfather antinomy).

(b) If both f and ω are the identity channel,
then every possible input is a fixed point. If
the input variable i is binary then there are two
fixed points (information antinomy).

Figure 3: Examples of antinomies

Definition 3 (Grandfather antinomy and process function). An n-party induced function ω suffers from
the grandfather antinomy if and only if ∃ f : |{i | i = ω( f (i))}| = 0. If an n-party induced function ω

does not suffer from the grandfather antinomy, then we call ω an n-party process function.
This means that in the cases where no grandfather antinomy arises, we are guaranteed to have at

least one fixed point for every intervention. The name process function is adequate because, as is seen
at the end of this article, these functions form the set of classical and deterministic process-matrices [27,
10]. The situation where the information antinomy arises is described by an induced function ω where
multiple consistent assignments of values to the vertexes exist (see Fig. 3b).
Definition 4 (Information antinomy and pseudo process function). An n-party induced function ω suffers
from the information antinomy if and only if ∃ f : |{i | i = ω( f (i))}| ≥ 2. If an n-party induced function ω

does not suffer from the information antinomy, then we call ω an n-party pseudo process function.
When there is no information antinomy, that means that the function describing such scenarios has at

most one fixed point for every choice of intervention. It was shown in Ref. [7] that every process function
always has a unique fixed point for every choice of intervention f . Here we extend that result to pseudo
process functions:
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Theorem 1. Given an n-party (pseudo) process function ω , there always exists a unique fixed point for
every choice of intervention f = ( f1, ..., fn).

We prove this theorem in the next section. A corollary of that theorem is our main message:

Corollary 1. The grandfather antinomy is equivalent to the information antinomy under intervention.
More precisely, let ω be an induced function, then ω suffers from the grandfather antinomy ⇐⇒ ω

suffers from the information antinomy.

This means that, if there exists an intervention f such we can produce the grandfather antinomy in ω ,
then there also exists some intervention f ′ to produce the information antinomy, and vice versa.

4 Properties of (pseudo) process functions

Here, we derive the properties of pseudo process functions and restate some results from Ref. [7] that
hold for both process as well as pseudo process functions. Recently, some process functions have been
characterized [35].

Lemma 1. For an n-party (pseudo) process function ω , each component ωk : O→Ik must be constant
over Ok, i.e., ∀a,b ∈ Ok,o\k ∈ O\k : ωk(o\k,) = ωk(o\k,b).

Proof. Let ω be a (pseudo) process function, and let õ\k ∈ O\k be some fixed input to ω for all parties
except for party k. This allows us to define the function h : Ok→Ik as h : x 7→ωk(x, õ\k). Showing that ω

is constant now boils down in showing that h is constant for all õ\k. Assume towards a contradiction that,
for the given õ\k, h is not a constant, i.e., there exist two values x 6= y such that a := h(x) 6= h(y) =: b.
Now, we design the interventions such that, in the case where ω is a process function, ω ◦ f has no fixed
point, and in the other case, ω ◦ f has at least two fixed points. In both cases, the intervention of every
party ` 6= k is f`(z) := õ`. This intervention is a constant function and generates the input õ\k. For party k,
in the former case (ω is assumed to be a process function), the intervention is

fk : z 7→

{
y if z = a
x otherwise.

(1)

Indeed, in this case, ω ◦ f has no fixed point: ∀i\k : ω ◦ f (a, i\k) = ω( fk(a), õ\k) = ω(y, õ\k) = (b, ĩ\k),
and ∀i\k,z 6= a : ω ◦ f (z, i\k) = ω( fk(z), õ\k) = ω(x, õ\k) = (a, ĩ\k), where we do not need to further
specify ĩ\k; that ω ◦ f has no fixed point is evident by looking at the k-th component only.

In the latter case (ω is assumed to be a pseudo process function), the intervention of party k is

fk : z 7→

{
x if z = a
y otherwise.

(2)

Now, we define

α` := ω`

(
fk(a), õ\k

)
, β` := ω`

(
fk(b), õ\k

)
, (3)

and we observe that (a,α\k) as well as (b,β\k) are two distinct fixed points of ω ◦ f :

(a,α\k) = ω
(

fk(a), f\k(α\k)
)
, (b,β\k) = ω

(
fk(b), f\k(β\k)

)
. (4)

This holds for every k and for every õ\k.



Ä. Baumeler & E. Tselentis 7

This result, being true for both process and pseudo process functions, has a clear physical interpre-
tation: A party cannot signal back to her or himself. Furthermore, it has an implication on single-party
(pseudo) process functions:

Corollary 2. A single-party function ω : O → I is a (pseudo) process function if and only if ω is a
constant.

Proof. The “only if” case is a direct consequence of the previous lemma. For the “if” case, let ω be a
constant. Then it clearly has a unique fixed point from which it follows that ω is a single-party (pseudo)
process function.

Note that this is a direct implication of the definitions of process function (at least one fixed point)
and pseudo process function (at most one fixed point) combined with the requirement of consistency
with arbitrary interventions. If we were interested, for example, in at least or at most two fixed points,
Corollary 2 would not be necessarily true.

In further discussions, we will make use of reduced functions (see Fig. 4):

𝑓! 𝑓" 𝑓#… 𝑓#$!

𝑖! 𝑖" 𝑖#$! 𝑖#

𝑜! 𝑜" 𝑜#$! 𝑜#

𝜔 𝜔!!

Figure 4: The reduced function ω fn is obtained by plugging in the intervention fn for party n.

Definition 5 (Reduced function). Consider an n-party function ω : O → I , with O = O1× ·· · ×On

and I = I1×·· ·× In, such that for every party k, ωk(o) = ωk(o\k), i.e., ωk is constant over Ok. For a fixed
intervention fk : Ik → Ok of party k, we define the reduced function ω fk where the k-th party has been
“swallowed,” as ω fk : O\k → I\k with ω fk = (ω fk

1 , · · · ,ω fk
k−1,ω

fk
k+1, · · · ,ω

fk
n ). Each component ` 6= k is

given by the composition of ω with fk:

ω
fk
` : O\k→I` (5)

o\k 7→ ω`

(
o\k, fk(ωk(o\k))

)
. (6)

Since, according to Lemma 1, each component of a (pseudo) process function is constant over the
same party’s input, we can use the just stated definition and show that fixed points are preserved for
reduced functions and vice versa:

Lemma 2. Let an (2 ≤ n)-party function ω : O → I be such that for every party k, ωk(o) = ωk(o\k),
then

1. if i ∈I is a fixed point of ω ◦ f for some f , then, for every k, i\k is a fixed point of ω fk ◦ f\k,
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2. if i\k ∈ I\k is a fixed point of ω fk ◦ f\k for some f and for some k, then, (ik, i\k) is a fixed point
of ω ◦ f with ik = ωk( f\k(i\k)).

Proof. We start with the first statement. The idea is to express part k of the fixed point as a function of ωk,
and then we plug it into the expression of the reduced function. So, we have the identity ik =ωk( f\k(i\k)).
Now, for every ` 6= k, the previous definition implies

ω
fk
` ◦ f\k(i\k) = ω`

(
f\k(i\k), fk(ik)

)
= w` ◦ f (i) = i` . (7)

For the second statement, we extend the fixed point i\k with ωk( f\k(i\k)) for the k-th component, and
then show that this extended fixed point i is a fixed point of ω ◦ f . For the k-th component, this follows
from the definition on how we have defined ik: ik = ωk ◦ f (i). For every component ` 6= k, we have,
from the premise, that i` = ω

fk
` ◦ f\k(i\k). This, by definition of the reduced function, is equal to ω` ◦(

f\k(i\k), fk(ωk( f\k(i\k)))
)
. Now, by definition of ik, this expression is equal to ω` ◦

(
f\k(i\k), fk(ik)

)
=

ω` ◦ f (i).

We can relax that lemma to arrive at the following convenient form:

Corollary 3. Let an (2≤ n)-party function ω : O→I be such that for every party k, ωk(o) = ωk(o\k),
then

1. if for some f the function ω ◦ f has two ore more fixed points, then there exists a party k such that
the function ω fk ◦ f\k has two or more fixed points.

2. if for some f the function ω ◦ f has no fixed point, then for all parties k the function ω fk ◦ f\k has
no fixed point.

Proof. For the first statement, let i, i′ be two fixed points of ω ◦ f that differ at position `. The proof is
concluded by using the first part of the previous lemma and by choosing k 6= `.

The second statement follows from the contrapositive of the second part of the previous lemma.

Having the previous lemma at hand, we prove that the property of a function in being a (pseudo)
process function transfers to less parties.

Theorem 2. If ω is an (2≤ n)-party process function, then ∀k, fk : ω fk is an n−1-party process function.
The same holds for pseudo process functions.

Proof. Let ω be a process function. This means that ∀ f : ω ◦ f has at least one fixed point. By using the
first part of Lemma 2, we get that for all k, f : ω fk ◦ f\k has at least one fixed point as well.

Let ω be a pseudo process function. In this case, we have that ∀ f : ω ◦ f has at most one fixed point.
Assume towards a contradiction that there exists some k and some f , such that ω fk ◦ f\k has two or more
fixed points. Then, by the second part of Lemma 2, ω ◦ f has two or more fixed points as well, which,
by definition, cannot be the case.

4.1 Existence of unique fixed point

We can now use the results from the previous section in order to prove Theorem 1.
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Proof. We prove this theorem for (pseudo) process functions via the n-dependent propositions

P[n] : ω is an n-party process function =⇒∀ f : ω ◦ f has a unique fixed point,

Q[n] : ω is an n-party pseudo process function =⇒∀ f : ω ◦ f has a unique fixed point,

and by induction over the number of parties, i.e., we prove P[n] =⇒ P[n+1] as well as Q[n] =⇒Q[n+1].
Process functions. Towards a contradiction assume that P[n+1] is false. The negation of P[n+1] is

ω is an (n+1)-party process function ∧ ∃ f : ω ◦ f has two or more fixed points.

Let f be such that ω ◦ f has two or more fixed points. Now, by Theorem 2, for any choice of k, ω fk

is an n-party process function. Furthermore, by the first part of Corollary 3, there exists some k such
that ω fk ◦ f\k has two or more fixed points as well: P[n] is false.

Pseudo process function. Again, assume that Q[n+ 1] is false, and let f be such that ω ◦ f has no
fixed point. By Theorem 2, we also have that for any choice of k, ω fk is an n-party pseudo process
function. Now, we use the second part of Corollary 3 and we see that for any k the function ω fk ◦ f\k has
no fixed point: Q[n] is false as well.

Both cases, however, stand in contrast to Corollary 2 (the base case): Single-party (pseudo) process
functions have a unique fixed point.

By this theorem we also observe that the set of process function (which equals the set of pseudo pro-
cess functions) is the set of classical and deterministic process-matrices [27, 10]. Note, that by Ref. [10],
these (pseudo) process functions can always be embedded into reversible functions as well. Finally,
examples of cyclic causal structures with interventions are known that produce dynamics incompatible
with any acyclic causal structure [11, 10, 5].

5 Equivalence of grandfather and information antinomy

We prove our main statement, namely that the grandfather and the information antinomy are equivalent
under intervention (see Corollary 1).

Proof. Let our causal structure be such that no grandfather antinomy arises, and let ω be the induced
function. This means, by definition, that if we perform any intervention f , then ω ◦ f always has at least
one fixed point. By Theorem 1, for every f , the fixed point is unique. This again implies the absence of
the information antinomy for ω . The same holds in the other direction. Suppose the causal structure to
be such that its induced function ω does not suffer from the information antinomy. By definition again,
this means that for every choice of intervention f , the function ω ◦ f has at most one fixed point. Then,
by the same theorem, it follows that ω ◦ f always has one fixed point: The grandfather antinomy never
arises.

6 Conclusion and outlook

Following an intervention-based approach to causality, we have shown that the grandfather antinomy
is equivalent to the information antinomy—in the classical case. These antinomies might only arise in
cyclic causal structures. Cyclic causal structures have recently become a topic of research again (see,
e.g., Refs. [27, 5] and related work). Cyclic causal structures, however, have a longer history: Since it
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is known that general relativity allows for time travel, people have been concerned about their conse-
quences and looked for arguments against such a behavior. The strongest argument is the grandfather
antinomy, i.e., dynamics that lead to a logical contradiction. Another argument, yet often neglected, is the
information antinomy, where too many consistent solutions to the dynamics exist. Here, we have shown
that both problems are the same: If it were possible to generate a logical contradiction, then it would also
be possible to generate a multitude of consistent solutions, and vice versa. By showing this equivalence,
we are confronted with taking the information antinomy as seriously as the grandfather antinomy. This
also motivates to exclude the information antinomy from other models [12]. However, both antinomies
cannot be used as arguments to rule out cyclic causal structures [6].

Note that the present result does not depend on the process-matrix framework [27]. On the contrary,
while the process-matrix framework surely motivates this research, our result can be understood as a
derivation of the classical and deterministic limit [8, 10] of the process-matrix framework. These classical
deterministic processes are precisely the (pseudo) process functions described here.

Open questions are to what extent we can maintain this equivalence for probabilistic as well as for
quantum causal models. As for probabilistic models, we could augment every vertex v in the graph by
a vertex v′ with zero in degree and an edge from v′ to v, such that the “noise” is transferred from v′

to v [4, 5]. If “fine-tuning” were forbidden, i.e., if the properties of an induced function being a (pseudo)
process function does not change under the probabilities injected at the augmented vertexes, then we
suspect the same result to hold as well.7 The quantum case is more problematic. The reason for this
is that it is not obvious on how to define both antinomies: What does it mean that the grandfather
antinomy arises in a cyclic quantum causal structure? The approach—as we did here—via fixed points
does not seem to go through: Entanglement poses a problem. Imagine that for two distinct interventions
distinct quantum fixed points exist. What happens if the parties intervene with a “superposition” of both
interventions? It looks like the fixed points would get entangled with the interventions, and hence, the
fixed point for that “superposition” of interventions cannot be described separately. Moreover, another
problem with entanglement can be illustrated in a time-traveling context: If a quantum state time travels
to the past, then it might still be entangled to a system in the future—temporal entanglement enters the
picture and contrasts with monogamy of entanglement [25].
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Schrödinger Center for Quantum Science & Technology (ESQ), and the Austrian Science Found (FWF):
F71. We thank anonymous reviewers for their helpful comments.

References

[1] Alastair A. Abbott, Christina Giarmatzi, Fabio Costa & Cyril Branciard (2016): Multipartite causal correla-
tions: Polytopes and inequalities. Physical Review A 94(3), p. 032131, doi:10.1103/PhysRevA.94.032131.

[2] John-Mark A. Allen (2014): Treating time travel quantum mechanically. Physical Review A 90(4), p.
042107, doi:10.1103/PhysRevA.90.042107.

7Note that the classical and probabilistic limit of the process-matrix framework [27] describes stochastic processes that can-
not be expressed as a convex mixture of process functions [11]. These stochastic processes, however, have a severe limitation:
They cannot be derandomized.

http://dx.doi.org/10.1103/PhysRevA.94.032131
http://dx.doi.org/10.1103/PhysRevA.90.042107
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