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1 Introduction

General probabilistic theories (GPTs) provide a framework for the study of operational theories
beyond quantum theory. Within this framework quantum theory appears as one non-classical theory
amongst many. Examples of GPTs (excepting classical and quantum theory) include Boxworld [7,
4, 17, 12, 1], quantum theory over the field of real numbers [13, 2, 18] or quaternions [8], theories
based on Euclidean Jordan algebras [3], quartic quantum theory [19], d-balls [5, 15, 14], density
cubes [6] and quantum systems with modified measurements [9].

The aim of this paper is to provide tools to systematically explore the space of non-classical
systems. Rather than generating examples of non-classical systems we show how to give full clas-
sifications of families of non-classical systems which share a common dynamical structure (pure
states and reversible dynamics) but different probabilistic structures (measurements and measure-
ment outcome probabilities).

Using a notion of distance between probabilistic structures we introduce the property of rigidity
of probabilistic structures: a probabilistic structure is rigid if it cannot be continuously deformed.
All previously studied GPTs have rigid probabilistic structures. We find necessary and sufficient
conditions on the dynamical structures for the existence of non-rigid probabilistic structures. We
explore in detail an example of a non-rigid system, and show that by continuously deforming the
probabilistic structure one can change the number of perfectly distinguishable states. We also
introduce new families of non-classical systems and provide a full classification of a family of
systems which includes both quantum theory and quartic quantum theory as special cases.

2 The OPF framework and rigidity of probabilistic structures

We provide a characterisation of single systems within the GPT framework which emphasises the
pure states and reversible dynamics. This will allow us to consider families of systems with the
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same pure states and reversible dynamics, but different measurements. This is a generalisation
of [9, 10, 16] where all systems with the same pure states and reversible dynamics as quantum
theory were classified and their informational properties studied.

The dynamical structure of a system SX is a set X acted on by a group G. We assume the
action to be transitive and hence X ∼= G/H for some subgroup H of G. The probabilistic structure
FX is a set of functions f : X → [0,1] which are closed under mixing and composition with group
elements. For a given dynamical structure X , different choices of probabilistic structures FX will
lead to different equivalence classes of indistinguishable ensembles and hence different sets of
mixed states.

An unrestricted probabilistic structure FX is rigid if any other unrestricted probabilistic struc-
ture F ′

X of the same linear dimension is at a finitely bounded distance.

3 Results

There are two main results in this work. The first is a theorem about the classification of proba-
bilistic structures for a given dynamical structure.

Theorem 1 (Classification theorem). Let D = (G,H) be a transitive dynamical structure, and let
us consider probabilistic structures FG/H such that R[FG/H ] is finite-dimensional. Every system
SG/H = (G,H,FG/H) has an associated representation Γ : G→ GL(R[FG/H ]

∗).

i. Every probabilistic structure FG/H (up to tomographic equivalence) has an associated rep-
resentation Γ of the form:

Γ =
⊕

j

Γ j, (1)

where each term (Γ j,Vj,R) is a real-irreducible representation with least one trivial subrep-
resentation when restricted to H.

ii. Conversely every representation of the form (1) is associated to at least one probabilistic
structure FG/H .

iii. When (G,H) forms a Gelfand pair the correspondence between representations (Γ,V,R) of
the form (1) and probabilistic structures (up to tomographic equivalence) FG/H is one-to-
one.

iv. When (G,H) does not form a Gelfand pair then some representations (Γ,V,R) of the form (1)
have infinitely-many tomographically inequivalent probabilistic structures FG/H associated
to them.

We also identify which dynamical structures allow for non-rigid probabilistic structures.

Theorem 2. Let D = (G,H) be a dynamical structure.

1. If (G,H) is a Gelfand pair, then every unrestricted probabilistic structure FG/H is rigid.
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2. If (G,H) is not a Gelfand pair, then there exist probabilistic structures FG/H which are not
rigid, which are those with associated representations ΓG which admit H-invariant vectors
related by invertible transformations which do not commute with ΓG.

A group/subgroup pair (G,H) form a Gelfand pair if and only if all irreducible representations
of G contain at most one H-invariant subspace.

Following this we explore in depth an example of a non-rigid system as well as provide a full
classification of all systems with pure states given by the manifold of all k-dimensional subspaces of
the complex linear space Cd (k < d). This manifold is known as a Grassmann manifold Gr(k,Cd).
It is a generalisation of the space of pure states of quantum theory which is PCd ∼= Gr(1,Cd)

4 Discussion

  

Figure 1: Map of the space of transitive non-classical systems with compact pure states X = G/H.
‘2 point hom.’ stands for two point homogeneous. For F, GrF is the family of systems with pure
states given by the Grassmann manifold Gr(Fd ,Fk) for all 2 < d < ∞, k < d. PFd is the family
of systems with pure states given by projective space over Fd for all 1 < d < ∞. QTF is quantum
theory over F whilst QuF is quartic quantum theory over F. ‘EJAs’ labels special Euclidean Jordan
Algebras (EJA) and ‘EJAe’ the exceptional EJA. Vd is the d−sphere in the standard embedding in
Rd+1 whilst Sd is the family of systems with pure states given by Sd (hence embeddings of Sd in Rk

where k not necessarily equal to d +1). This map does not capture all the relations, namely there
are ‘coincidences’ like the qubit being both in QTC and Vd .

By making us of representation theoretic tools for the classification of GPT systems we can
further explore the space of non-classical systems. In Figure 1 we provide a summary of the new
families of systems introduced, and where known GPTs figure in this classification.
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