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Constructions in type-driven compositional distributional semantics associate large collections of
matrices of size D to linguistic corpora. We develop the proposal of analysing the statistical char-
acteristics of this data in the framework of permutation invariant matrix models. The observables
in this framework are permutation invariant polynomial functions of the matrix entries, which cor-
respond to directed graphs. Using the general 13-parameter permutation invariant Gaussian matrix
models recently solved, we find, using a dataset of matrices constructed via standard techniques in
distributional semantics, that the expectation values of a large class of cubic and quartic observables
show high gaussianity at levels between 90 to 99 percent. We find evidence that observables with
similar matrix model characteristics of gaussianity also have high degrees of correlation between the
ranked lists of words associated to these observables. 1

1 Permutation invariant Gaussian matrix models and prediction of mo-
ments of matrices from compositional distributional semantics

A research programme “Linguistic Matrix Theory” of understanding the characteristics of randomness
in natural language, specifically in matrix/tensor datasets arising from type-driven compositional distri-
butional semantics [1, 2], using the framework of random matrix/tensor theories was initiated in [3]. This
programme draws on and generalizes the application of random matrix theories to the energy level dis-
tribtions of complex nuclei [4]. The categorical compositional distributional semantics, and specifically
the use of tensors therein, was inspired by the categorical foundations of quantum mechanics[5]. The
setting has also been recasted as a ”quantisation” functor in [6], very similar to that of TQFT, assigning
semantic vector spaces and their tensors to natual language grammatical types, for an overview see [7].

In the Linguistic Matrix Theory (LMT) programme of [3], one of the first steps was to identify the
appropriate type of symmetry. Here it was useful to consider the kinds of mathematical expressions
which are used in distributional semantics to extract the meaning encoded in words. For vector, matrix
and tensor data in D dimensions, some of these expressions are invariant under the orthogonal group of all
rotations in D dimensions, but the generic expressions are only invariant under the smaller symmetry of
all permutations of D objects, the symmetric group SD. This motivated us to consider matrix models with
SD symmetry. The polynomial functions of matrix variables Mi j which are SD invariant have an elegant
classification in terms of polynomials labelled by directed graphs. The degree of the polynomial is the
number of edges in the graph : the number of nodes is unconstrained. There are two graphs at linear order,
each associated with a permutation invariant polynomial. A general permutation invariant linear function
is a sum of these two polynomials with arbitrary coefficients. We restrict these linear coefficients to be
real numbers numbers µ1,µ2. There are eleven independent quadratic functions. As a simple toy model
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we considered three quadratic polynomials with three associated coefficients Λ1,Λ2,Λ3. We defined a
function S(µ1,µ2,Λ1,Λ2,Λ3) and considered a probability distribution defined by the partition function

Z =
∫

dMe−S(µ1,µ2,Λ1,Λ2,Λ3) (1)

Given any permutation invariant polynomial, which we will henceforth refer to as observables and denote
O(M), we can calculate a theoretical expectation value

〈O(M)〉T HEO =
1
Z

∫
dMe−S(µ1,µ2,Λ1,Λ2,Λ3)O(M) (2)

The expectation values of the linear and quadratic observables 〈O〉 are expressible as simple functions
of the µa,Λi. In order to match these probability distributions with experimental data, the experimental
expectation values for these five observables were computed as averages over the words in the dataset

1
Nwords

∑
A

O(MA) (3)

A is a label for the words in the dataset and Nwords is the number of words in the dataset. Equating these to
the theoretical expectation values, we determined the µa,Λi parameters of the model, for a given dataset.

The theoretical model was also used to calculate the expectation values of a number of cubic and
quadratic observables. These theoretical values, using the input of µa,Λi determined as above, give the
predictions of the 5-parameter Gaussian model for these observables. We calculated the ratios of the
theoretical to experimental values, with a ratio close to 1 being good agreement between theory and
experiment. The best ratios were approximately 60 %, but for a number of observables the ratios were
very low, the lowest being around 0.6 % . We argued that a more complete treatment with a general
Gaussian model that includes all the eleven parameters would likely give better ratios.

The theoretical model with all eleven quadratic parameters was solved in [8]. It was useful to employ
a representation theoretic approach to the space of quadratic permutation invariant functions. The eleven
parameters were organised according to four irreducible representations V0,VH ,V2,V3 of SD. ΛV0 is a
symmetric 2×2 matrix with three real parameters, ΛVH is a symmetric 3×3 real matrix with 6 parameters
and ΛV2 ,ΛV3 are each real numbers. We have an action

S(µa,Λ
V0 ,ΛVH ,ΛV2 ,ΛV3)≡ S(µa,Λ

V ) (4)

which defines a probability distribution and associated partition function

Z =
∫

dMe−S(µa,Λ
V ) (5)

Convergence of the measure requires that ΛV0 ,ΛVH are positive semi-definite matrices, and ΛV2 ≥ 0,ΛV3 ≥
0. The first main goal of this paper is to report on the application of this 13-parameter Gaussian model
from [8] to the same dataset constructed in [3], to test its effectiveness at predicting cubic and quartic
expectation values along the lines of the approach in [3].

We find that low order permutation invariant polynomials, and specifically the 13-parameter Gaussian
permutation invariant matrix models, are indeed the right objects to detect strong evidence of Gaussianity.
While the best theory/expt ratios achieved by the 5-parameter model are near 60%, the best ratios now
are near 99% and indeed for a number of cubic and quartic observables, these ratios are above 90%.
The lowest ratio is 16%, so that the Gaussian model still predicts the right order of magnitude of the
expectation value even in the worst case. In all the experiments studied, we find that the linear and
quadratic expectation values lead to theoretical parameters µ,Λ consistent with the convergence criteria.
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1.1 Theory/Experiment comparisons for adjective matrices

In detail, the results for the Cubic and Quartic ratios for 13 parameter model are given below. The first
table is for the matrices associated with adjectives, while the second is for verbs.
Adjectives at D = 2000 :

Graph Expectation value Theoretical val. Experimental val. Ratio
1 ∑i〈(Mii)

3〉 1.44×10−1 2.52×10−1 0.57
2 ∑i, j〈(Mi j)

3〉 8.43×10−1 3.65 0.23
3 ∑i, j,k〈Mi jM jkMki〉 1.68 10.6 0.16
4 ∑i, j,k〈Mi jM j jM jk〉 53.8 80.1 0.67
5 ∑i, j,k,l〈Mi jMkkMll〉 2.94×106 3.03×106 0.97
6 ∑i, j,k,l〈Mi jM jkMll〉 4.83×104 5.04×104 0.96
7 ∑i, j,k,l,m〈Mi jMklMmm〉 5.93×107 6.01×107 0.99
8 ∑i, j,k,l,m,n〈Mi jMklMmn〉 1.38×109 1.40×109 0.98
9 ∑i1...i7〈Mi1i2Mi3i4Mi5i6Mi7i7〉 7.83×1010 8.14×1010 0.96
10 ∑i1...i8〈Mi1i2Mi3i4Mi5i6Mi7i8〉 1.86×1012 1.96×1012 0.95

Our tables of theory/experiment ratios for 〈O(M)〉 show that some pairs of observables have dis-
tinctly similar characteristics whether we are looking at expectation values or standard deviations. Each
observable can also be used to rank the words in the dataset, starting from the word with the lowest O(M)
to the one with the highest. Since ranked lists of words form a standard tool in distributional semantics, it
is natural to ask whether observables which have very similar matrix model characteristics also produce
similar ranked lists. We find evidence for a positive answer. For example, Figure 1 give the correla-
tion plots for the ranked lists coming from graphs G2 and G3. Figure 2 gives the analogous plots for
the pair G3 and G10. The pairs G2,G3 which have very similar ratios in the table above, also produce
very well-correlated rankes word-lists. This behaviour is also seen using the Pearson rank corelation
coefficient.

In the future, we will investigate multi-matrix and tensor generalizations of the work presented here.
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Figure 1: Rank correlation plot corresponding to graph 2 and 3 observables
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Figure 2: Rank correlation plot corresponding to graph 3 and 10 observables
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