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Kochen and Specker’s seminal work on contextuality used the formalism of partial Boolean algebras.
Unlike quantum logic in the sense of Birkhoff–von Neumann, partial Boolean algebras only admit
physically meaningful operations. We describe a refinement of current approaches to contextual-
ity, in particular the sheaf-theoretic and graph-theoretic approaches, to incorporate partial Boolean
algebras. We introduce a new axiom for partial Boolean algebras, the Logical Exclusivity Axiom,
and show that all probability models based on partial Boolean algebras satisfying this axiom obey
Specker’s Probabilistic Exclusivity Principle. We also use this principle to give a logical presentation
of tensor product which captures some of its salient quantum features.

1 Introduction

Kochen and Specker’s seminal work on contextuality used the formalism of partial Boolean algebras
[17]. Unlike quantum logic in the sense of Birkhoff and von Neumann [6], partial Boolean algebras
only admit physically meaningful operations. In the key example of P(H ), the projectors on a Hilbert
space H , the operation of conjunction, i.e. product of projectors, becomes a partial one, only defined
on commuting projectors. In [16], it is shown that a large part of the foundations of quantum theory can
be developed in terms of partial Boolean algebras. In [5], every partial Boolean algebra is shown to be
the colimit of its (total) Boolean subalgebras. Thus the topos approach to quantum theory [15] can be
seen as a refinement, in explicitly categorical language, of the partial Boolean algebra approach.

In this paper, we relate partial Boolean algebras to current approaches to contextuality, in particular
the sheaf-theoretic [3] and graph-theoretic [8] approaches. A major role in our technical development is
played by a general result on a universal construction for partial Boolean algebras, which freely generates
a new partial Boolean algebra from a given one and extra commeasurability constraints. This result is
proved constructively, using an inductive presentation by generators and relations. It provides a flexible
tool, subsuming a number of other constructions: some previously known, and some new.

We describe a construction of partial Boolean algebras from graphical measurement scenarios, i.e.
measurement scenarios whose measurement compatibility structure is given by a binary compatibility
relation, such that empirical models on the scenarios correspond bijectively to probability valuations (or
states) on the corresponding partial Boolean algebras.

We discuss how probabilistic contextuality can be formulated in the setting of partial Boolean algeb-
ras, and show that the strong state-independent form of contextuality considered by Kochen and Specker
can be neatly captured using the universal construction mentioned above.

We also consider to what extent the tensor product operation on Hilbert spaces can be “tracked”
by a corresponding operation on partial Boolean algebras. It is easily seen that the construction de-
scribed in [16] fails to capture all the relations holding in the partial Boolean algebra of projectors on
the Hilbert space tensor product. This motivates us to propose a new principle, the Logical Exclusivity
Principle, which is always satisfied in partial Boolean algebras of the form P(H ). We show that there
is a reflection between partial Boolean algebras and those satisfying the Logical Exclusivity Principle.
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Our main results relate this Logical Exclusivity Principle to Specker’s Exclusivity Principle for prob-
abilistic models [7]. We show that if a partial Boolean algebra satisfies the Logical Exclusivity Principle,
then all its states satisfy the Probabilistic Exclusivity Principle. Moreover, we show that a state on a par-
tial Boolean algebra satisfies the Probabilistic Exclusivity Principle if it extends to one on its reflection,
i.e. the freely generated partial Boolean algebra satisfying the Logical Exclusivity Principle.

We also show that there is a natural monoidal structure on partial Boolean algebras satisfying Logical
Exclusivity. This contrasts with the situation for standard contextuality models satisfying Specker’s
Exclusivity Principle, which are not closed under tensor product.

We then consider the problem of fully capturing the Hilbert space tensor product in logical form, in
terms of partial Boolean algebras. We conclude with a discussion of some natural questions which arise
from our results.

2 Partial Boolean algebras

2.1 Basic definitions

A partial Boolean algebra A is given by a set (also written A), constants 0, 1, a reflexive, symmetric
binary relation � on A, read as “commeasurability” or “compatibility”, a total unary operation ¬, and
partial binary operations ∧, ∨ with domain �.

These must satisfy the following property: every set S of pairwise-commeasurable elements must be
contained in a set T of pairwise-commeasurable elements which forms a (total) Boolean algebra1under
the restrictions of the given operations.

Morphisms of partial Boolean operations are maps preserving commeasurability, and the operations
wherever defined. This gives a category pBA.

In [5, Theorem 4], it is shown that every partial Boolean algebra is the colimit, in pBA, of the
diagram C (A) consisting of its Boolean subalgebras and the inclusions between them.

2.2 Colimits and free extensions of commeasurability

In [5], it is shown that pBA is cocomplete. Coproducts have a simple direct description. The coproduct
A⊕B of partial Boolean algebras A, B is their disjoint union with 0A identified with 0B, and 1A iden-
tified with 1B. Other than these identifications, no commeasurability holds between elements of A and
elements of B. By contrast, coequalisers, and general colimits, are shown to exist in [5] by an appeal to
the Adjoint Functor Theorem. One of our technical contributions is to give a direct construction of the
needed colimits, by an inductive presentation.

More generally, we use this approach to prove the following result, which freely generates from
a given partial Boolean algebra a new one where prescribed additional commeasurability relations are
enforced between its elements.

Theorem 1. Given a partial Boolean algebra A and a binary relation} on A, there is a partial Boolean
algebra A[}] such that:

• There is a pBA-morphism η : A−→ A[}] such that a}b ⇒ η(a)�A[}] η(b).

• For every partial Boolean algebra B and pBA-morphism h : A−→ B such that a}b ⇒ h(a)�B

1From now on, whenever we say just “Boolean algebra”, we mean total Boolean algebra.
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Table 1: Rules for free partial Boolean algebra with extended compatibility relation

a ∈ A
ı(a)↓

a�A b
ı(a)� ı(b)

a}b
ı(a)� ı(b)

0≡ ı(0A), 1≡ ı(1A)

a�A b
ı(a)∧ ı(b)≡ ı(a∧A b), ı(a)∨ ı(b)≡ ı(a∨A b) ¬ı(a)≡ ı(¬Aa)

0↓, 1↓
t�u

t ∧u↓, t ∨u↓
t↓
¬t↓

t↓
t� t, t�0, t�1

t�u
u� t

t�u, t� v, u� v
t ∧u� v, t ∨u� v

t�u
¬t�u

t↓
t ≡ t

t ≡ u
u≡ t

t ≡ u, u≡ v
t ≡ v

t ≡ u, u� v
t� v

t(~x)≡Bool u(~x),
∧

i, j vi� v j

t(~v)≡ u(~v)
t ≡ t ′, u≡ u′, t�u

t ∧u≡ t ′∧u′, t ∨u≡ t ′∨u′
t ≡ u
¬t ≡ ¬u

h(b), there is a unique pBA-morphism ĥ : A[}]−→ B such that

A A[}]

B
h

η

ĥ

We do not require that the relation } include the commeasurability relation �A already defined on
A. Of course, it is the case that A[}] ∼= A[�A ∪}] for any }, but it will be notationally convenient to
allow an arbitrary relation } in this construction. In particular, note that A[∅]∼= A[�A]∼= A.

As already mentioned, this result is proved constructively, by giving proof rules for commeasurabil-
ity and equivalence relations over a set of syntactic terms generated from A. In fact, we start with a set
of “pre-terms” and also give rules for definedness.

First, we define the set of pre-terms P inductively, to be the closure of the set of generators

G := {ı(a) | a ∈ A}

under the Boolean operations and constants. The standard theory of Boolean algebras gives us an equa-
tional theory≡Bool for terms in the Boolean signature {0,1,∧,∨,¬} over the set of generators G together
with variables x,y, . . .. Pre-terms are simply the ground terms in this theory. We have the usual notion
of substitution of terms for variables: if t(~x) is a term in the variables x1, . . . ,xn, and if u1, . . . ,un are
pre-terms, then t(~u) is the pre-term which results from replacing xi by ui for all i ∈ {1, . . . ,n}.

We now define a predicate ↓ (definedness or existence), and binary relations �, ≡ on P, by the set
of rules in Table 1.

One can show by rule induction that if t�u or t ≡ u can be derived, then t↓ and u↓ can be derived;
and if t ≡ u can be derived, then t�u can be derived. To illustrate the first rule on the last line, consider
the distributivity axiom: x∧ (y∨ z)≡Bool (x∧ y)∨ (x∧ z). Under the assumptions t�u, u� v, t� v, we
can infer t ∧ (u∨ v)≡ (t ∧u)∨ (t ∧ v).

We define the set of terms T := {t ∈ P | t↓}. The relation ≡ is an equivalence relation on T , by the
rules on the fifth line. We define a structure A[}] as follows. The carrier is T/≡. The relation � is
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defined by: [t]� [u] :⇔ ` t�u, where ` means derivability of an assertion from the rules. This is well
defined due to the last rule on the fifth line. The operations are defined by representatives: if [t]� [u],
then [t]∧ [u] := [t ∧ u], etc. These are shown to be well defined using the congruence rules on the last
line.
Proposition 2. A[}] is a partial Boolean algebra.

There is a map η : A −→ A[}] which sends a to [ı(a)]. This is a pBA-morphism which moreover
satisfies a}b ⇒ η(a)�η(b), by the rules on the first two lines.

Now given a partial Boolean algebra B, and a morphism h : A−→ B such that a}b ⇒ h(a)�B h(b),
we shall show that there is a unique partial Boolean algebra morphism ĥ : A[}]−→ B such that

A A[}]

B
h

η

ĥ

Let α be one of the assertions t↓, t�u, t ≡ u. If Π is a proof of α by the rules in Table 1 with last
rule α1,...αn

α
, where αi has proof Πi, we define the height of Π by ht(Π) := 1+maxi ht(Πi). For n≥ 0,

we define `n α to mean that there is a proof of α of height at most n. We write `<n α to mean that `m α

for some m < n.
Lemma 3. For all pre-terms t, u:

1. `n t�u implies `<n t↓ and `<n u↓.
2. `n t ≡ u implies `<n t↓ and `<n u↓ and `<n t�u.
We define a partial map ϕ : P ⇀ B by structural recursion on pre-terms:

ϕ(ı(a)) := h(a)

ϕ(t ∧u) := ϕ(t)∧B ϕ(u)

ϕ(t ∨u) := ϕ(t)∨B ϕ(u)

ϕ(¬t) := ¬Bϕ(t)

Note that this map is partial because the operations ∧B, ∨B are.
Proposition 4. For all n≥ 0 and pre-terms t, u, the following conditions hold:

1. `n t↓ ⇒ ϕ(t) is defined

2. `n t�u ⇒ ϕ(t)�B ϕ(u)

3. `n t ≡ u ⇒ ϕ(t) = ϕ(u).

Proof. Let Φ(n) be the conjunction of the above three properties. We shall prove ∀n.Φ(n) by complete
induction on n. Given a proof witnessing `n α , we look at the last rule. The assumptions αi of the rule
will have proofs witnessing `<n αi, to which the induction hypothesis applies. It now suffices to verify
that each rule is a valid statement about the partial Boolean algebra B when t, u are replaced by ϕ(t),
ϕ(u).

For example, consider the third rule on the fourth line (transitivity of ≡). This translates to

ϕ(t) = ϕ(u), ϕ(u) = ϕ(v)
ϕ(t) = ϕ(v)

Using Lemma 3, we have that ϕ(t) = b, ϕ(u) = c, ϕ(v) = d, for well-defined elements b,c,d ∈ B. Then
the rule simply expresses transitivity of equality:

(b = c) ∧ (c = d) ⇒ (b = d).

The other cases are similar.
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Proof of Theorem 1

Proof. We can now establish the required universal property. We define ĥ([t]) := ϕ(t), and it follows
straightforwardly from the definition of ϕ together with the previous proposition that this has the re-
quired properties.

This result will prove to be very useful in what follows.

Coequalisers and colimits

A variation of this construction is also useful, where instead of just forcing commeasurability, one forces
equality. Given a partial Boolean algebra A and a relation } as before, we write A[},≡] for the algebra
generated by the above inductive construction, with one additional rule:

a}a′

ı(a)≡ ı(a′)

We can define a pBA-morphism η : A −→ A[},≡] by η(a) := [ı(a)]. Clearly this satisfies a} a′ ⇒
η(a) = η(a′). A simple adaptation of the proof of Theorem 1 establishes the following universal prop-
erty of this construction.

Theorem 5. Let h : A −→ B be a pBA-morphism such that a} a′ ⇒ h(a) = h(a′). Then there is a
unique pBA-morphism ĥ : A[},≡]−→ B such that h = ĥ◦η .

This result can be used to give an explicit construction of coequalisers, and hence general colimits,
in pBA. Given a diagram

A B
f

g

in pBA, we define a relation } on B by b}b′ := ∃a ∈ A. f (a) = b ∧ g(a) = b′. Then, η : B−→ B[},≡]
is the coequaliser of f and g.

2.3 States

Definition 6. A state or probability valuation on a partial Boolean algebra A is a map ν : A−→ [0,1]
such that:

1. ν(0) = 0;

2. ν(¬x) = 1−ν(x);

3. for all x,y ∈ A with x� y, ν(x∨ y)+ν(x∧ y) = ν(x)+ν(y).

Proposition 7. States can be characterised as the maps ν : A −→ [0,1] such that, for every Boolean
subalgebra B of A, the restriction of ν to B is a finitely additive probability measure on B.

Lemma 8. Let A be a partial Boolean algebra. There is a one-to-one correspondence between:

• states on A;

• families (νS)S∈C (A) indexed by the Boolean subalgebras S of A, where νS is a finitely additive
probability measure on S and νS = νT ◦ ιS,T whenever S⊆ T .

Lemma 9. Let A be a finite Boolean algebra. There is a one-to-one correspondence between states on
A and probability distributions on its set of atoms.
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Proof. Write X for the set of atoms of A. Let ν : A−→ [0,1] be a state on A. Then,

∑
x∈X

ν(x) = ν(
∨

X)

can be shown by induction on the size of X by using Definition 6–1 for the base case, and Definition 6–
1&3 and the fact that x∧y= 0 when x and y are atoms for the induction step. Since

∨
X = 1, we conclude

that ∑x∈X ν(x) = 1 and so ν |X : X −→ [0,1] is a probability distribution on X .
Conversely, if d : X −→ [0,1] is a probability distribution, we can extend it to the whole Boolean

algebra, using the fact that any element of the algebra can be written as a join of atoms, as follows: for
any S⊆ X ,

ν(
∨

S) = ∑
x∈S

d(x) .

3 Graphical measurement scenarios and partial Boolean algebras

3.1 Measurement scenarios and (no-signalling) empirical models

We consider the basic framework of the sheaf-theoretic approach introduced in [3] to provide a uni-
fied perspective on non-locality and contextuality. Our main focus here will not be on the question of
contextuality, but rather on principles that approximate the set of quantum-realisable behaviours.

Measurement scenarios provide an abstract notion of an experimental setup. They model a situation
where there is a set of measurements, or queries, one can perform on a system, but not all of which may
be performed simultaneously.

In this paper, we focus on what we term ‘graphical’ scenarios, where a subset of measurements is
compatible (i.e. can be performed together) if its elements are pairwise compatible. Hence, compatibility
is specified simply by a binary relation. A paradigmatic example is quantum theory, where compatibility
is given by commutativity: a set of measurements (observables) can be performed together if and only
if its elements commute pairwise.

Note that, in contrast to [3], we do not require that the set of measurements be finite. We do, however,
consider only measurements with a finite set of outcomes. This allows us to include within the scope of
our discussion the scenario formed by all the quantum-mechanical measurements on a system described
by a finite-dimensional Hilbert space.

Definition 10. A graphical measurement scenario is a triple 〈X ,_,O〉 consisting of:

• a set X of measurements,

• a reflexive, symmetric relation _ on X , indicating compatibility of measurements.

• a family (Ox)x ∈ X assigning a finite set Ox of outcomes to each measurement x ∈ X .

A context is a subset of measurements, σ ⊂ X , which are pairwise compatible, i.e. a clique of the
relation _. We write Kl(_) for the set of contexts.

A particular case of interest is that of measurement scenarios where every measurement is dicho-
tomic, i.e. has two possible outcomes.

Given a measurement scenario, an empirical model specifies particular probabilistic observable be-
haviour that may be displayed by a physical system.
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Definition 11. Let 〈X ,_,O〉 be a measurement scenario. A (no-signalling) empirical model is a family
(eσ )σ∈Kl(_) where for each context σ ∈ Kl(_), eσ is a probability distribution on the set E (σ) :=
∏x∈σ Ox of joint assignments of outcomes to the measurements in σ , and such that eσ = eτ |σ whenever
σ ,τ ∈ Kl(_) with σ ⊆ τ , where eτ |σ is marginalisation of distributions given by: for any s ∈ E (σ),

eτ |σ (s) := ∑
t∈E (τ),t|σ=s

eτ(t) .

Moreover, such an empirical model is said to be non-contextual if there is a (global) probability dis-
tribution d on the set E (X) = ∏x∈X Ox which marginalises to the empirical probabilities, i.e. such that
d|σ = eσ for all contexts σ ∈ Kl(_).

The marginalisation condition in the definition of empirical models (eσ = eτ |σ for contexts σ ,τ)
ensures that the probabilistic outcome of a compatible subset of measurements is independent of which
other compatible measurements are performed alongside these. This is sometimes referred to as the no-
disturbance condition [20], or no-signalling condition [19] in the special case of Bell scenarios. This
is a local compatibility condition, whereas non-contextuality can be seen as global compatibility: this
justifies the slogan that contextuality arises from empirical data which is locally consistent but globally
inconsistent.

No-disturbance is satisfied by any empirical probabilities that can be realised in quantum mechanics
[3]. However, this condition is much weaker than quantum realisability. Empirical models allow for
behaviours that may be considered super-quantum, exemplified by the PR box [19]. A lot of effort has
gone into trying to characterise the set of quantum behaviours by imposing some additional, physic-
ally motivated conditions on empirical models, leading to various approximations from above to this
quantum set.

3.2 Exclusivity principle on empirical models

One candidate for a property which is distinctive for the quantum case has appeared in various formu-
lations as Local Orthogonality [9], Consistent Exclusivity [13], or Specker’s Exclusivity Principle [7].
We shall refer to it as the Probabilistic Exclusivity Principle (PEP), since it is expressed as a constraint
on probability assignments.

Informally, it says that if we have a family of pairwise exclusive events, the sum of their probab-
ilities must sum to ≤ 1. Of course, if all the events live on a single sample space, this would just be
a basic property of probability measures. What gives the condition its force is that these events live,
in general, over different, incompatible contexts. Thus it reaches beyond the usual view of contexts
as different classical “windows” on a quantum system, in which incompatible contexts are regarded as
incommensurable.

We can give a precise formulation of PEP in terms of empirical models as follows. First, we say that
events s ∈ E (σ), t ∈ E (τ) are exclusive if for some x ∈ σ ∩ τ , s(x) 6= t(x). Now the principle holds for
an empirical model (eσ )σ

if, whenever we have a family {si ∈ E (σi)}i∈I of pairwise-exclusive events,
then

∑
i

eσi(si) ≤ 1.

This principle is valid in quantum-realisable empirical models, in which measurements correspond to
observables, because incompatible (non-commuting) observables can share projectors, and exclusivity
of outcomes with respect to common projectors implies orthogonality.
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Although we know that PEP does not fully characterise the quantum-realisable empirical models, it
stands as an important and fruitful principle [13, 4]. We wish to study this principle from the perspective
of partial Boolean algebras.

3.3 From graphical measurement scenarios to partial Boolean algebras

To any graphical measurement scenario, we can associate a partial Boolean algebra whose states corres-
pond to empirical models.

Definition 12. Let X = 〈X ,_,O〉 be a graphical measurement scenario. We define its associated partial
Boolean algebra AX as follows:

1. For each measurement x ∈ X , we write Bx for the atomic Boolean algebra with atoms correspond-
ing to Ox. We write [x = o] for the atom of Bx corresponding to the outcome o ∈ Ox.

2. We consider the partial Boolean algebra A :=
⊕

x∈X Bx, the coproduct of all the Boolean algebras
Bx taken in the category pBA. Note that all its elements are of the form ıx(a) for a unique x ∈ X
and a ∈ Bx, except for the constants 0 and 1.

3. We define the following relation } on the elements of A:

ıx(a)} ıy(b) iff x_y or a ∈ {0,1} or b ∈ {0,1}

4. Take AX := A[}], the extension of A by the relation }, as given by Theorem 1.

We can give an alternative description using colimits.

Definition 13. Let X = 〈X ,_,O〉 be a graphical measurement scenario. We define an associated partial
Boolean algebra BX as follows:

• for each measurement x ∈ X , we write Bx for the atomic Boolean algebra with atoms correspond-
ing to Ox. We write [x = o] for the atom of Bx corresponding to the outcome o ∈ Ox.

• for each context σ ∈ Kl(_), we write Bσ := ∑x∈σ Bx, the coproduct of all the Bx with x ∈ σ in
the category BA of Boolean algebras.2

• given contexts σ ,τ ∈Kl(_) with σ ⊆ τ , there is a Boolean algebra homomorphism ιτ
σ : Bσ −→Bτ

given by the obvious injection.

• the partial Boolean algebra BX is the colimit in pBA of the diagram consisting of the Boolean
algebras (Bσ )σ∈Kl(_) and the inclusions (ιτ

σ )σ⊆τ∈Kl(_).

Note that the colimit in this instance can be given very explicitly. The carrier set of BX is the union
of all the Bσ where σ is a maximal clique of _, and the Boolean subalgebras of BX are exactly those in
the family (Bσ )σ∈Kl(_).

Proposition 14. The two descriptions coincide: AX ∼= BX.

Proposition 15. There is a one-to-one correspondence between states on AX and empirical models on
X.

Proof. This follows from the fact that the Boolean subalgebras of AX are the family (Bσ )σ∈Kl(_), by
applying Lemmas 8 and 9, and noting that the condition νS = νT ◦ ιS,T when S ⊆ T on states on total
Boolean subalgebras translates under the correspondence in Lemma 9 to marginalisation of probability
distributions.

2Note that the set of atoms of this coproduct Boolean algebra is the cartesian product of the sets of atoms of each of the
summands. Hence an atom of Bσ corresponds to an assignment of an outcome in Ox to each measurement x ∈ σ .
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4 Partial Boolean algebras and contextuality

We consider some aspects of contextuality formulated in the framework of partial Boolean algebras, and
relate them to the free construction from Theorem 1.

4.1 The Kochen–Specker property

The Kochen–Specker theorem, as originally stated [17], is that there are partial Boolean algebras of
Hilbert space projectors with no pBA-morphisms to 2. Since every (non-trivial3) Boolean algebra has a
homomorphism to 2, this implies that such a partial Boolean algebra A has no morphism to any (non-
trivial) Boolean algebra.

Now, BA is a full subcategory of pBA. We know from [5] that A is the colimit in pBA of the diagram
C (A) consisting of its Boolean subalgebras and inclusions between them. Let B be the colimit in BA
of the same diagram C (A). Then, the cone from C (A) to B is also a cone in pBA, hence there is a
mediating morphism from A to B.

To resolve the apparent contradiction, note that BA is an equational variety of algebras over Set.
As such, it is complete and cocomplete, but it also admits the one-element Boolean algebra 1, in which
0 = 1. Note that this trivial Boolean algebra 1 does not have a homomorphism to 2.

We can conclude from the discussion above that a partial Boolean algebra satisfies the Kochen–
Specker property of not having a morphism to 2 if and only if the colimit of its diagram of Boolean
subalgebras is 1. In fact, we could formulate this property directly for diagrams of Boolean algebras,
without referring to partial Boolean algebras at all: a diagram in BA is K–S if its colimit in BA is 1. We
could say that such a diagram is “implicitly contradictory”, since in trying to combine all the information
in a colimit we obtain the manifestly contradictory 1.

Finally, this property admits a neat formulation in terms of the free extension of partial Boolean
algebras by a relation, reminiscent of the definition of a perfect group.

Theorem 16. Let A be a partial Boolean algebra. The following are equivalent:

1. A has the K-S property, i.e. it has no morphism to 2.

2. The colimit in BA of the diagram C (A) of Boolean subalgebras of A is 1.

3. A[A2] = 1.

Proof. The equivalence between the first two statements follows from the discussion above. Now, all
elements are commeasurable in A[A2], so it is a Boolean algebra. There is a morphism A −→ 2 if and
only if there is a morphism A[A2] −→ 2, by the universal property of A[A2] (in the ⇒ direction) or
composition with η : A −→ A[A2] (in the ⇐ direction). Since A[A2] is a Boolean algebra, this is in
turn equivalent to A[A2] being non-trivial. In other words, there is no morphism A −→ 2 if and only if
A[A2] = 1.

4.2 Probabilistic contextuality

The notion of contextuality for state also admits a formulation in this setting.

Definition 17. A state ν : A −→ [0,1] on a partial Boolean algebra A is said to be non-contextual if it
extends to A[A2], i.e. there is a state ν̂ : A[A2]−→ [0,1] sich that ν = ν̂ ◦η .

3See the following discussion.
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By the universal property of A[A2], this is equivalent to asking that there is some Boolean algebra B,
a morphism h : A−→ B, and state ν̂ : B−→ [0,1] such that ν = ν̂ ◦η .

Proposition 18. Let X be a graphical measurement scenario. A state on AX is contextual in the sense
of Definition 17 if and only if the corresponding empirical model under the correspondence of Proposi-
tion 15 is contextual in the sense of Definition 11.

Note that if A has the Kochen–Specker property, we have A[A2] = 1, and since there is no state on 1,
every state of A is contextual. An advantage of partial Boolean algebras is that the K-S property provides
an intrinsic, logical approach to defining state-independent contextuality.

5 Exclusivity principles for partial Boolean algebras

We now consider exclusivity principles from the perspective of partial Boolean algebras. This will
subsume the previous discussion on PEP for empirical models in graphical measurement scenarios.

We introduce two exclusivity principles: one acts at the ‘logical’ level, i.e. the level of events or
elements of a partial Boolean algebra, whereas the other acts at the ‘probabilistic’ level, applying to
states of a partial Boolean algebra.

5.1 Logical exclusivity principle

The basic ingredient is a notion of exclusivity between events (or elements) of a partial Boolean algebra.
Given a partial Boolean algebra A and a,b ∈ A, we write a ≤ b to mean that a�b and a∧b = a. Note
that the restriction of this relation ≤ to any Boolean subalgebra of A coincides with the partial order
underlying that Boolean algebra.

Definition 19. Let A be a partial Boolean algebra. Two elements a,b ∈ A are said to be exclusive,
written a⊥ b, if there is a c ∈ A such that a≤ c and b≤ ¬c.

Note that a ⊥ b is a weaker requirement than a∧ b = 0, although the two would be equivalent in a
Boolean algebra. The point is that, in a general partial Boolean algebra, one might have exclusive events
that are not commeasurable (and for which, therefore, the ∧ operation is not defined).

Definition 20. A partial Boolean algebra is said to satisfy the logical exclusivity principle (LEP) if any
two elements that are logically exclusive are also commeasurable, i.e. if ⊥⊆ �.

We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras satisfying
LEP.

Logical exclusivity and transitivity

The logical exclusivity principle turns out be equivalent to the following notion of transitivity [18, 14].

Definition 21. A partial Boolean algebra is said to be transitive if whenever a≤ b and b≤ c holds, then
a≤ c holds.

Transitivity can fail in general in a partial Boolean algebra, since we need not have a� c under the
stated hypotheses. Note that the relation ≤ on a partial Boolean algebra is always reflexive and anti-
symmetric, so this condition is equivalent to ≤ being a partial order (globally) on A. Note that a partial
Boolean algebra of the form P(H ) is always transitive.

Proposition 22. Let A be a partial Boolean algebra. Then A satisfies LEP if and only if it is transitive.
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Proof. Suppose that A satisfies LEP, a ≤ b, and b ≤ c. Then ¬c ≤ ¬b. Hence, by LEP, a�¬c, and so
a�¬¬c = c. Now, a∧ c = a∧b∧ c = a∧b = a, showing that a≤ c.

Conversely, suppose that A is transitive, a≤ c, and b≤ ¬c. Then, c = ¬¬c≤ ¬b, hence a≤ ¬b by
transitivity. In particular, a�¬b, and so a�¬¬b = b.

It is shown in [12] that a partial Boolean algebra is transitive if and only if it is an orthomodular
poset.

5.2 Probabilistic exclusivity principle

We now consider an analogous principle applying at the probabilistic level, i.e. at the level of states of a
partial Boolean algebra.

Definition 23. Let A be a partial Boolean algebra. A state ν : A −→ [0,1] on A is said to satisfy the
probabilistic exclusivity principle (PEP) if for any set S ⊆ A of pairwise exclusive elements, i.e. such
that ∀a,b ∈ S. (a = b ∨ a⊥ b), then ∑a∈S ν(a) ≤ 1.

A partial Boolean algebra is said to satisfy PEP if all of its states satisfy PEP.

Note that the condition ∑a∈S ν(a)≤ 1 is true of any set S of elements in a Boolean algebra satisfying
∀a,b ∈ S. a∧b = 0

Note that this subsumes the discussion of the PEP at the level of empirical models. If X is a meas-
urement scenario, the correspondence in Proposition 15 between empirical models on X and states of
AX restricts to a bijection between empirical models and states satisfying the probabilistic exclusivity
principle.

5.3 LEP vs PEP

The following result follows immediately from the definitions of partial Boolean algebras and states.

Proposition 24. Let A be a partial Boolean algebra satisfying the logical exclusivity principle. Then,
any state on A satisfies the probabilistic exclusivity principle.

In a general partial Boolean algebra A, however, not all states need satisfy the PEP. A well-known
example is the state on the partial Boolean algebra corresponding to a (4,2,2) Bell scenario4 which
corresponds to two (independent) copies of the PR box [9].

However, using the construction from Theorem 1, we can construct from A a new partial Boolean
algebra, namely A[⊥], whose states yield states of A that satisfy PEP.

Theorem 25. Let A be a partial Boolean algebra. Then a state ν : A −→ [0,1] satisfies PEP if there is
a state ν̂ of A[⊥] such that

A A[⊥]

[0,1]

ν

η

ν̂

commutes.

4This stands for a scenario in which there are 4 parties, each of which can choose to perform one of 2 measurements with
2 possible outcomes.
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Proof. Let ν : A −→ [0,1] be a state. Suppose it factorises through a state ν̂ of A[⊥]. Let S ⊆ A be a
set of pairwise exclusive events in A. Then {η(a) | a ∈ S} is a commeasurable subset of A[⊥], hence it
is contained in a Boolean subalgebra B of A[⊥]. Since ν̂ must restrict to a finitely-additive probability
measure on B, and since ∀a,b ∈ S. η(a)∧A[⊥] η(b) = 0, we have that

∑
a∈S

ν(a) = ∑
a∈S

ν̂(η(a))≤ 1 .

5.4 A reflective adjunction for logical exclusivity

It is not clear whether the partial Boolean algebra A[⊥] necessarily satisfies LEP. While the principle
holds for all its elements in the image of η : A−→ A[⊥], it may fail to hold for other elements in A[⊥].

However, we can adapt the construction of Theorem 1 to show that one can freely generate, from
any given partial Boolean algebra, a new partial Boolean algebra satisfying LEP. This LEP-isation is
analogous to e.g. the way one can ‘abelianise’ any group, or use Stone–Čech compactification to form a
compact Hausdorff space from any topological space.
Theorem 26. The category epBA is a reflective subcategory of pBA, i.e. the inclusion functor I : epBA−→
pBA has a left adjoint X : pBA−→ epBA. Concretely, to any partial Boolean algebra A, we can asso-
ciate a partial Boolean algebra X(A) = A[⊥]∗ which satisfies LEP such that:
• there is a homomorphism η : A−→ A[⊥]∗;
• for any homomorphism h : A −→ B where B is a partial Boolean algebra B satisfying LEP, there

is a unique homomorphism ĥ : A[⊥]∗ −→ B such that:

A A[⊥]∗

B
h

η

ĥ

The proof of this result follows from a simple adaptation of the proof of Theorem 1, namely adding
the following rule to the inductive system presented in Table 1:

u∧ t ≡ u, v∧¬t ≡ v
u� v

This rule will enforce the logical exclusivity principle, and the universal property is proved in a
manner similar to the proof of Theorem 1.

6 Tensor products of partial Boolean algebras

6.1 A (first) tensor product by generators and relations

In [5], it is shown that pBA has a monoidal structure, with A⊗B given by the colimit of the family of
C+D, as C ranges over Boolean subalgebras of A, D ranges over Boolean subalgebras of B, and C+D
is the coproduct of Boolean algebras.

The tensor product in [5] is not constructed explicitly: it relies on the existence of coequalisers in
pBA, which is proved by an appeal to the Adjoint Functor Theorem.

Our Theorem 1 allows us to give an explicit description of this construction using generators and
relations.
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Proposition 27. Let A and B be partial Boolean algebras. Then

A⊗B ∼= (A⊕B)[:]

where : is the relation on the carrier set of A⊕B given by ı(a): (b) for all a ∈ A and b ∈ B.

This can be verified by comparing the universal property from Theorem 1 with [5, Proposition 30].

6.2 A more expressive tensor product

There is a lax monoidal functor P : Hilb−→ pBA, which takes a Hilbert space to its projectors, viewed
as a partial Boolean algebra, with a morphism P(H )⊗P(K )−→ P(H ⊗K ) induced by the evident
embeddings of P(H ) and P(K ) into P(H ⊗K )), given by p 7−→ p⊗1, q 7−→ 1⊗q.

It is easy to see that this morphism is far from being an isomorphism. For example, if we take H =
K = C2, then there are (many) two-valued homomorphisms on A = P(C2), which lift to two-valued
homomorphisms on A⊗A. However, by the Kochen–Specker theorem, there is no such homomorphism
on P(C4) = P(C2⊗C2).

Interestingly, in [16] it is shown that the images of P(H ) and P(K ), for any finite-dimensional
H and K , generate P(H ⊗K ). This is used in [16] to justify the claim contradicted by the previous
paragraph. The gap in the argument is that more relations hold in P(H ⊗K ) than in P(H )⊗P(K ).
Nevertheless, this result is very suggestive. In standard Boolean algebra theory, these images would
satisfy the criteria for being an “internal direct sum” of P(H ) and P(K ) [10]. Evidently, for partial
Boolean algebras, these criteria are no longer sufficient. This poses the challenge of finding stronger
criteria, and a stronger notion of tensor product to match.

An important property satisfied by the rules in Table 1 as applied in constructing A⊗B is that, if t↓
can be derived, then u↓ can be derived for every subterm u of t. This appears to be too strong a constraint
to capture the full logic of the Hilbert space tensor product.

To see why this is an issue, consider projectors p1⊗ p2 and q1⊗q2. To ensure in general that they
commute, we need the conjunctive requirement that p1 commutes with q1, and p2 commutes with q2.
However, to show that they are orthogonal, we have a disjunctive requirement: p1⊥q1 or p2⊥q2. If we
establish orthogonality in this way, we are entitled to conclude that p1⊗ p2 and q1⊗q2 are commeasur-
able, even though (say) p2 and q2 are not. Indeed, the idea that propositions can be defined on quantum
systems even though subexpressions are not is emphasized in [16].

This leads us to define a stronger tensor product by forcing logical exclusivity to hold in the tensor
product from [5]. This amounts to composing with the reflection to epBA; � := X ◦ ⊗. Explicitly, we
define the logical exclusivity tensor product by

A�B = (A⊗B)[⊥]∗ = (A⊕B)[:][⊥]∗.

This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor with
respect to this tensor product. It remains to be seen how close it gets us to the full Hilbert space tensor
product.

6.3 Commeasurability extensions, Kochen–Specker, and Hilbert space tensor product

We can ask generally if extending commeasurability by some relation R can induce the Kochen–Specker
property in A[R] when it did not hold in A. In fact, it is easily seen that this can never happen.

Theorem 28 (K-S faithfulness of extensions). Let A be a partial Boolean algebra, and R⊆ A2 a relation
on A. Then A has the K-S property if and only if A[R] does.
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Proof. If A does not have the K-S property, it has a homomorphism to a non-trivial Boolean algebra B.
By the universal property of A[R], there is a homomorphism ĥ : A[R] −→ B. Thus, A[R] does not have
the K-S property. Conversely, if there is a morphism k : A[R] −→ B to a non-trivial Boolean algebra B,
then k ◦η : A−→ B, so A does have the K-S property.

We can apply this in particular to the tensor product.

Corollary 29. If A and B do not have the K-S property, then neither does A⊗B[⊥]k.

Proof. If A and B do not satisfy the K-S property, they have homomorphisms to 2, and hence so does
A⊕B. Applying Theorem 28 inductively k+1 times, so does A⊗B[⊥]k = A⊕B[:][⊥]k.

Under the conjecture that A[⊥]∗ coincides with iterating A[⊥] to a fixpoint, this would show that the
logical exclusivity tensor product A�B never induces a Kochen–Specker paradox if none was already
present in A or B.

This can be seen as a limitative result, in the following sense. One of the key points at which non-
classicality emerges in quantum theory is the passage from P(C2), which does not have the K-S property,
to P(C4) = P(C2⊗C2), which does.5 By contrast, it follows from the Corollary that P(C2)�P(C2)
does not have the K-S property. Therefore, we need a stronger tensor product to track this emergent
complexity in the quantum case.

7 Discussion

There are a number of questions arising from the ideas developed in this paper.

• First, we have shown that LEP implies PEP; that is, if a partial Boolean algebra satisfies Logical
Exclusivity, then all its states satisfy Probabilistic Exclusivity. We conjecture that the converse
holds.

Conjecture 30. PEP ⇒ LEP.

• Similarly, we conjecture the converse to Theorem 25.

Conjecture 31. If state ν of a partial Boolean algebra A satisfies PEP, then there is a state ν̂ of
A[⊥] such that ν = ν̂ ◦η .

This would amount to generalising the universality of A[⊥] from pBA-homomorphisms to states.
It would yield a one-to-one correspondence between states of A satisfying PEP and states of A[⊥].

• Proving the conjecture above would involve extending a state on a partial Boolean algebra A
to a state on A[}]. A similar operation was achieved for partial Boolean algebras arising from
measurement scenarios in Proposition 15, because in that case Definition 13 provided a simple
description of the Boolean subalgebras of A[}]. Is an analogous description possible for the
general case considered in Theorem 1, or at least for the particular case of A[⊥]?

• A classic result by Greechie [11] constructs a class of orthomodular lattices which admit no states.
Since orthomodular lattices are transitive partial Boolean algebras (see e.g. [21]), this means there
are examples of partial Boolean algebras satisfying LEP which admit no states. Is there a par-
tial Boolean algebra not satisfying LEP which admits no states? This would provide a counter-
example to Conjecture 30.

5Note that P(C2)∼=
⊕

i∈I 4i, where I is a set of the power of the continuum, and each 4i is the four-element Boolean algebra.
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• There are some technical questions relating to the A[⊥]∗ construction:
– Is it a completion (i.e. is the reflector a faithful functor)?
– Is it the same as iterating the A[⊥] construction to a fixpoint?
– Is the relation of A[⊥]∗ to A[⊥] an instance of a more general relationship between iterating

an inductive construction, and adding a rule to the inductive construction itself?

• Our discussion of tensor products led us to introduce a strong tensor product of partial Boolean
algebras, A�B. This brings us closer to an answer to the following particularly interesting ques-
tion:
Question 32. Is there a monoidal structure ~ on pBA such that the functor P : Hilb −→ pBA is
strong monoidal with respect to this structure, i.e. such that P(H )~P(K )∼= P(H ⊗K )?

A positive answer to this question would offer a complete logical characterization of the Hil-
bert space tensor product, and provide an important step towards giving logical foundations for
quantum theory in a form useful for quantum information and computation.

• We recall the following quotation from Ernst Specker given in [7]:
Do you know what, according to me, is the fundamental theorem of quantum mechan-
ics? . . . That is, if you have several questions and you can answer any two of them,
then you can also answer all three of them. This seems to me very fundamental.

This refers to the binarity of compatibility in quantum mechanics. A set of observables is com-
patible if they are pairwise so. This is built in to the definition of partial Boolean algebras, and is
why we only considered graphical measurement scenarios in this paper. However, in the general
theory of contextuality, as developed e.g. in [3], more general forms of compatibility are con-
sidered, represented by simplicial complexes. Can partial Boolean algebras be adapted to this
more general format, and how much of the theory carries over?

• Partial Boolean algebras capture logical structure. We have seen how this logical structure can
be used to enforce strong constraints on the probabilistic behaviour of states. This is somewhat
analogous to the role of possibilistic empirical models in [3]. Can we lift the concepts and results
relating to possibilistic empirical models in [3, 2, 1] to the level of partial Boolean algebras?

• There is much more to be said regarding contextuality in this setting. In current work in progress,
we are considering the following questions:

– A hierarchy of logical contextuality properties generalising those studied in [3].
– A systematic treatment of “Kochen-Specker paradoxes”, i.e. contradictory statements which

can be validated in partial Boolean algebras.
– The role played by non-free Boolean subalgebras in constructing such paradoxes.
– Constructions which transform state-dependent to state-independent forms of contextuality.
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