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Abstract. We introduce flow-based methods for continuous variables graph states, which we dub CV-
flow. These are inspired by, but not equivalent to, the notions of flow and g-flow for discrete variables
measurement-based quantum computing (MBQC). We show that if an MBQC with CV-flow has the same
number of inputs as outputs, then it implements a unitary in a suitable sense. Like for discrete variables,
these constructions are useful for determining when an arbitrary CV graph state can be used for a practical
computation and investigating the trade-off between classical and quantum depth, which has led to depth
complexity separation between MBQC and circuit based quantum computing. In developing our proofs,
we also provide a method for converting a CV-MBQC computation into a circuit form, analagous to the
circuit extraction techniques of Miyazaki et al. Our results and techniques naturally cover the cases of
MBQC for quantum computation with qudits of prime local dimension.
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Causal flow is a graph-theoretical tool for characteris-
ing the quantum states used in measurement-based quan-
tum computation (MBQC) and closely related to the
measurement calculus [1–4]. Its original purpose was to
identify a class of states that can be used to perform
a deterministic MBQC despite inherent randomness in
the outcomes of measurements, but it has since found
applications to a wide variety of problems in quantum
information theory.

Along with its generalisation g-flow [5], it has been
used to parallelize quantum circuits by translating them
to MBQC [6], to construct schemes for the verifica-
tion of blind quantum computation [7, 8], to extract
bounds on the classical simulatability of MBQC [9]
and to prove depth complexity separations between the
circuit and measurement-based models of computation
[6, 10]. A relaxation of these notions was also used in
[11] to further classify which graph states can be used
for MBQC. g-flow can also be viewed as a method for
turning protocols with post-selection on the outcomes of
measurements into deterministic protocols without post-
selection. This perspective has been used for the verifica-
tion of measurement-based quantum computations [12],
as well as state of the art quantum circuit optimisation
techniques [13] and even to design new models of quan-
tum computation [14].

Concurrently, it has become apparent that quantum
computing paradigms other than qubit based models
might offer viable alternatives for constructing a quan-
tum computer. Continuous variables (CV) quantum
computation, which has a physical interpretation as in-
teracting modes of the quantum electromagnetic field,
is such a non-standard model for quantum computation
that has recently been gaining traction [15, 16]. The
MBQC framework has been extended to the CV case,
with a surprisingly similar semantics [17, 18]. Accord-
ingly, some structures transfer naturally from DV to CV,
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and it is of interest to investigate if it is possible to de-
fine notions of flow for CV-MBQC. However, CV-MBQC
comes with an additional complication: convergence in
the limit of infinite squeezing. These limits are implicit
in CV teleportation protocols, but the convergence of an
MBQC with arbitrary entanglement topologies is not as-
sured.

In this paper, we define such a notion, converting the
results on flow and g-flow from [5] to continuous variables.
Furthermore, we construct examples to compare our CV
flow conditions to the original DV conditions. On the
way, we develop a method for circuit extraction, similar
to that for DV by Miyazaki et al [10]. Finally, we see
that all our results follow naturally for the qudit case
when the local dimension is prime.

1 CV-MBQC

1.1 Continuous variables

In CV quantum computation, the basic building block
is the qumode1, an infinite-dimensional Hilbert space
L2(R) of square-integrable functions along with a pair of
unbounded linear position and momentum operators Q
and P, which are defined on the subspace S(R) ⊆ L2(R)
of Schwartz functions. From these, we can define the
corresponding translation operators:

X(s) := exp(−isP) and Z(s) := exp(isQ), (1)

These are further related by the Fourier transform oper-
ator F : S(R)→ S(R):

FQF† = P and FPF† = −Q. (2)

The quantum state of a set of qumodes can be used
to encode information and perform computations just as

1This terminology comes from quantum optics, where we can
identify each quantisation mode of the quantum electromagnetic
field with a space L2(R).



one would with a set of qubits, using operations from the
set

{Fj , exp(isQj), exp
(
isQ2

j

)
, exp

(
isQ3

j

)
, exp(iQjQk)}, (3)

for any s ∈ R (the indices j, k indicate on which qumodes
the unitary acts). These form a gate set that is universal
for the unitary group whose Lie algebra is the set of poly-
nomials in {Qj ,Pj} with real coefficients. Put otherwise,
it is possible to generate the evolution corresponding to
any Hamiltonian which can be written as a polynomial
in {Qj ,Pj} [15]. For brevity and by analogy with DV,
we write:

Zj(s) := exp(isQj), (4)

Xj(s) := exp(isQj) = FkZj(s) F
†
k, (5)

CZj,k(s) := exp(isQjQk), (6)

CXj,k(s) := exp(isQjPk) = Fk CZj,k(s) F†k, (7)

Uk(α, β, γ) := exp(iαQk) exp
(
iβQ2

k

)
exp
(
iγQ3

k

)
. (8)

1.2 Gate teleportation

The workhorse of MBQC (in DV and CV) is gate tele-
portation, which makes it possible to apply a unitary op-
eration from a specific set on a qumode by entangling it
with another qumode and measuring. Using the analogue
of the controlled-Z gate we can generate entanglement
between two qumodes in CV. Informally, the quantum
circuit for teleportation in CV is:

|φ〉 • U P m

|0 : P〉 • X(m)FU |φ〉

Here, the two qumode interaction is CZ12, U is any uni-
tary gate that commutes with CZ12, and we measure the
first qumode in the P basis. The auxiliary state |0 : P〉
is a momentum “eigenstate” with eigenvalue 0 and cor-
responds to a Dirac delta distribution center at 0 in the
function representation. If we view U as a change of basis
for the measurement, this “gadget” allows us to perform
universal computation using only entanglement and mea-
surements, in the sense of Braustein and Lloyd [15, 18].
In particular, it is possible to embed DV quantum com-
puting into this model using the GKP encoding [19–21].

Measurement error There is an extra gate X(m) on
the output of the computation, which depends on the re-
sult of the measurement. We dub this the “measurement
error”, and, loosely speaking, correcting for this error is
the goal of this article. More generically, the question
is: given a highly entangled state, obtained by apply-
ing gates of the type CZ between an arbitrary but finite
number of qumodes, is it possible to measure the qubits
such that we can always correct for the resulting mea-
surement errors? In such a scheme, the error spreads to
more than one adjacent node and correcting it requires a
more subtle strategy.

Squeezing Formally, because Dirac deltas are not
square-integrable functions, it is necessary to use an ap-
proximation to the momentum “eigenstate” |0 : P〉. We
use the squeezed state parametrized by a positive real
squeezing parameter η:

S(η) |0〉 := exp
(
i
η

2
(QP + PQ)

)
|0〉 ∈ S(R), (9)

where |0〉 is the vacuum state (not to be confused with
the zero vector). In the momentum representation , this
is a Gaussian distribution in the momentum variable p,
centered at the origin p = 0 and with width e−2η. It is
well known that in the limit η → ∞, these states give a
representation of Dirac deltas.

1.3 Graph states

A (CV) open graph is an undirected R-edge-weighted
graph2 G, along with two subsets of nodes I and O, which
correspond to the inputs and outputs of a computation.
To this abstract graph, we associate a physical resource
state, the graph state, to be used in a computation:
each node j of the graph corresponds to a single qumode
and thus to a single pair (Qj ,Pj).

For a given input state |ψ〉 on |I| modes, the graph
state associated to the open graph (G, I,O) can be con-
structed as follows:

1. Initialise each non-input qumode, j ∈ Ic, in the
squeezed state |η〉, resulting in a separable state of

the form |η〉⊗|I
c| ⊗ |ψ〉.

2. For each edge in the graph between nodes j and k
with weight w(j, k) ∈ R, apply the entangling op-
eration CZj,k

(
w(j, k)

)
between the corresponding

qumodes.

See figure 1 for an example. Since our results will be de-
pendant on the squeezing η used to construct the graph
state but not on the input |ψ〉 (in that the unitary imple-
mented by the MBQC is inpedendant of |ψ〉), we denote
|G(η)〉 the resulting graph state.

2 Results

2.1 CV-flow and MBQC procedure

Now, our aim, given an arbitrary open graph, is to
find an order ≺ in which we can measure the non-output
modes in such a way that we can always perform a cor-
rection like for gate teleporation (in a more general sense,
we allow corrections to be applied on multiple nodes). In
order to be able to implement more than a single compu-
tation, we further require that this order be independant
both of the input state, and of the choice of measure-
ments which are performed.

This leads to a technical definition but which is more
general than the qubit case:

2An R-edge-weighted graph is a pair (V,w) consisting of a set V
of vertices (or nodes) and a function w : V ×V → R which identifies
the weight of each edge. Furthermore: if w(j, k) = 0 then there is
no edge between j and k; for any j, k ∈ V , w(j, k) = w(k, j) and
w(j, j) = 0.



CZ1,2(a)CZ1,3(b)CZ1,4(c)CZ3,4(d)︸ ︷︷ ︸
G

|η〉 |η〉 |η〉 |φ4〉

Figure 1: Example of an open graph and the associated graph state. Black nodes are to be measured, white nodes
are outputs, and the square node represents an input.
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Figure 2: Example of a correction procedure based on a
CV flow. We perform measurements on the black nodes
of a graph state with measurement outcomes m1,m2,m3,
the white nodes are unmeasured (top left). The linear
equations for the correction matrix of the graph (top
right) is solvable for all measurement ouctomes (bottom
left), which gives a corresponding correction procedure
(bottom right).

Definition 1 Given an open graph (G, I,O) with a par-
tial order ≺ over Oc, the maximal correction sub-
graph of node i is the directed bipartite graph (Mi, Ci, )
where:

1. Ci ⊆ Ic is the set of unmeasured non-input nodes
j � i connected to i. These are the nodes that can
be used to correct a measurement on i.

2. Mi ⊆ Oc is the set of previously measured nodes
j � i that are connected to Ci. These are the nodes
on which corrections applied to Ci will have a back-
action.

3. Ci ⊆ Ic is the set of unmeasured non-input nodes
j � i connected to {i}∪Mi. These additional nodes
can be used to compensate for unwanted backactions
to Mi.

4. We direct every edge in G between nodes in
(Mi, Ci, ) in the direction Mi  Ci.

The correction matrix Ai of node i is the |Mi|×
∣∣Ci∣∣

bi-adjacency matrix corresponding to its maximal correc-
tion subgraph and given by (Ai)jk := w(j, k) (the weight
of the edge from j to k).

The correction matrix encodes what back-action a cor-
rection applied to the measured nodes will have on the
previously measured nodes. It allows us to determine

how to apply a correction on a specific node by control-
ling this back-action.

Definition 2 An open graph (G, I,O) has a CV-flow if
there exists a partial order ≺ on the nodes of G such that
for every non-output node i ∈ Oc and all m ∈ R the
linear equation

Ai~ci =


m
0
...
0

 has solutions ~ci ∈ Rn, (10)

where Ai is the bi-adjacency matrix of the maximal cor-
rection subgraph of node i, and n the number of unmea-
sured nodes connected to i.

If a graph has a CV-flow, we can use the following flow
measurement procedure to implement the MBQC:

1. Prepare the squeezed graph state |G(η)〉.

2. Successively measure the non-output nodes in the
graph, in any order which is a linear extension of
≺, in the basis corresponding to U(α, β, γ)—for ex-
ample, by applying U(α, β, γ) and measuring P.

3. At each step, correct for the measurement result
mi by applying the correction

Cj(mj) := Xf(j)(−mj)
∏

k∈N(f(j))\{j}

Zk(−mj). (11)

where we apply the translation operators on every
as-of-yet unmeasured node.

See figure 2 for a simple example. We call Oη(~α, ~β,~γ) the
operator resulting from this finitely squeezed procedure.

Then our first result is that there is never a contradic-
tion in running this MBQC procedure:

Theorem 3 The CV-flow MBQC procedure is runnable,
in that at no step does a correction depend on the outcome
of measurements that have yet to be performed.

2.2 Circuit extraction and convergence

Our second set of results concern the convergence of
the MBQC procedure in the infinite squeezing limit. This
convergence proof is obtained via an explicit circuit ex-
traction scheme that is of independant interest for depth
complexity analysis. Since circuit extraction methods are
well known for open graphs with causal flow, our method
for graphs with CV-flow uses a “peeling” technique: 1.
we identify part of the graph with an equivalent graph
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Figure 3: An example of the reduction of CV-flow to
causal flow. Starting from a graph with CV flow (see fig-
ure 2), an upper triangularisation of the correction ma-
trix gives a graph with causal flow (bottom right), up
to additional weighted CX gates acting on the outputs
(directed edges).

with causal flow; 2. we then extract this part of the cir-
cuit and remove the subgraph, repeating until the whole
circuit has been extracted, as was done in [10] for qubits.

That this is possible comes down to the existence of
decompositions of the open graph into subgraphs that
respect the CV-flow order ≺:

Definition 4 Let (G, I,O) be a graph with CV-flow
(c,≺). A corresponding layer decomposition of
(G, I,O) is a partition {Vk}Nk=1 of Oc such that if i ∈ Vm,
j ∈ Vn and i ≺ j then n < m.

Proposition 5 If (G, I,O) is an open graph with CV-
flow, and V is the first layer in a corresponding layer
decomposition, then (G, I,O) is approximately equivalent
to a graph with a causal flow from V to O, up to weighted
CX gates acting in O, and reordering the nodes in V .

This result is obtained by noting that linear operations
on the column space of the correction matrix correspond
to controlled corrections of the form

CXj,k(s)
∏

`∈N(k)

CZj,l(s). (12)

The additional CZ operations can be interpreted as edges
in a new open graph whose associated state is obtained
from the original graph state by adding s to the weight
of every edge j → `, so that this operation can be viewed
as a local complementation for R-edge-weighted graphs.
Then, there is an additional CX(s) gate in this new repre-
sentation for the two open graphs to represent the same
graph state. This gate is represented in the graphical as
a directed edge, see figure 3.

The fact that the additional controlled gates act only
on the outputs is crucial: it allows us reduce Oη to a
sequence of single-gate teleportation operations. Since
the CX gates never appear in between a measurement
and the corresponding CZ gate for the teleportation, nor
do they act on the auxiliary squeezed states before they

are consumed in the teleportation, the projections can
be brought forward and the squeezed inputs delayed to
obtain a single gate teleportation circuit within the larger
circuit of the MBQC procedure. We have:

Theorem 6 Suppose the open graph (G, I,O) has a CV-
flow, and the same number of inputs as outputs. Then,
for any choice of measurements ~α, ~β,~γ ∈ ROc

the mea-
surement procedure converges to a unitary U,

lim
η→+∞

Oη(~α, ~β,~γ) = U(~α, ~β,~γ), (13)

in the strong operator topology.

The circuit extraction scheme is strongly inspired by
[10], and the resulting unitary U written in terms of (3).
In other words, for a given input |φ〉 ∈ S(R) and choice

of measurements ~α, ~β,~γ, it is possible to make the output
Oη |φ〉 arbitrarily close to U |φ〉 by using a strong enough
squeezing. In general, strong operator convergence is the
best we can hope for in CV. However, when the total
energy of the computation is bounded, this result can be
strengthened to uniform convergence [22].

2.3 Comparing CV-flow and g-flow

For qubits, the notion of g-flow is the analogue of CV-
flow. It gives rise to an MBQC procedure entirely anal-
ogous to the CV case, and is defined as:

Definition 7 An open graph (G, I,O) has a gener-
alised flow, or gflow, if there exists a map g : Ic →
P(Oc) and a partial order ≺ over G such that for all
i ∈ Ic:

• if j ∈ g(i) and i 6= j then i ≺ j;

• if j ≺ i then j /∈ Odd(g(i)).

Even when both are well-defined (the open graph is
unweighted or Z2-edge-weighted) it is not immediately
clear if gflow and CV-flow are equivalent properties or
not, or even if one is strictly stronger than the other. We
construct counterexamples to either implication, show-
ing that these are indeed entirely independant properties.
Thus, a graph can have both (as in the case of flow), ei-
ther or neither.

We have:

Proposition 8 CV-flow and g-flow are not equivalent
properties. A given open graph can have both, either or
neither.

For examples, see figure 4.

2.4 Generalised flow for qudits

We also note that our methods work for qudits when-
ever the local dimension d is prime (i.e. whenever Zd is
a field). Then, using the standard generalisation of the
Pauli matrices to d-dimensions, essentially all the same
commutation relations hold. As a consequence, we can
perform gate teleportation using corrections weight by
elements m ∈ Zd.



Figure 4: Examples of graphs states that have either
CV-flow (left) or g-flow (right) but not both. There are
no inputs–all nodes are prepared in an auxiliary state.
The black nodes are to be measured and the white nodes
are outputs which are left unmeasured at the end of the
MBQC.

The correction matrices then have elements in Zd, and
all the linear operations used for CV-flow work identi-
cally. In particular, since our circuit extraction scheme is
purely linear-algebraic, it works immediately in this case,
further generalising the results of [10].

Conclusion

We have defined a notion of flow for continuous vari-
ables and proved that it can be used to obtain a desired
unitary, provided sufficient squeezing resources are avail-
able. We have also obtained a circuit extraction scheme,
which might allow further comparison of depth and size
complexities between circuit models and MBQC, as has
already been obtained in the DV case. We have not con-
sidered the question of convergence rates in terms of the
squeezing resources available nor the precision of mea-
surements. These are highly dependant on the choice of
measurements, auxiliary teleportation states, the topol-
ogy of the graph, as well as the input state itself.

There are further extensions possible to the flow frame-
work. In particular, one might consider Hilbert spaces
over arbitrary locally compact Hausdorff fields and these
come equipped with a different unitary group of trans-
lations. The cases considered in this article correspond
to R, Z2 and Zd. Then, one is interested in general in
the case where the edges of the graph are weighted with
elements of an arbitrary field F, and the correction equa-
tions are solved in the F-linear space Fn.
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