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We propose a new algorithm to synthesise quantum circuits for phase polynomials, which takes
into account the qubit connectivity of the quantum computer. We focus on the architectures
of currently available NISQ devices. Our algorithm generates circuits with a smaller CNOT
depth than the algorithms currently used in Staq and t|ket〉, while improving the runtime
with respect the former.

1 Introduction

Many current quantum computing architectures have restricted qubit connectivity, meaning
that interactions between qubits are only possible when the physical qubits are adjacent in a
certain graph, henceforth called the architecture, defined by the design of the quantum hardware.
Traditional compiling techniques for quantum circuits work around this limitation by inserting
additional SWAP gates into the circuit to move the logical qubits into a location where the
desired interaction is physically possible, a process called routing or mapping [6, 16, 19, 17]. This
typically increases the depth and gate count of the circuit by a multiplicative factor between
1.5 and 3 [6]. However, recent work by Kissinger and Meijer-van de Griend [11] has shown that
for pure CNOT circuits it is possible to compile a circuit directly to an architecture without
dramatically increasing the number of CNOT gates. Their approach was to use a higher-level
representation of the desired unitary transform and (re)synthesise the corresponding circuit in
an architecture-aware manner.

In this paper, we consider another class of high-level constructs called phase polynomials,
which give rise to circuits containing only CNOT and RZ(θ) gates. The current state-of-the-art
algorithm for phase polynomial synthesis is the GraySynth algorithm [1]. Unlike other algorithms
for phase polynomial synthesis [3], GraySynth attempts to minimise the number of 2-qubit
gates. Unfortunately, GraySynth assumes unrestricted qubit connectivity. This limitation was
removed by Nash et al. [12], by adding qubit permutation subcircuits whenever a sequence of
CNOTs required by GraySynth is not permitted by the architecture. Nevertheless, the algorithm
still relies on the same recursive strategy as GraySynth, which might be suboptimal for sparse
architectures.
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In this paper we propose a new algorithm for the architecture-aware synthesis of phase
polynomial circuits. The algorithm has been tuned for the relatively sparse connectivity graphs
of current quantum computers.

We compare our algorithm against two compilers that are able to natively synthesise phase
polynomials: t|ket〉 [15] and Staq [2]. We compare the different methods based on the final
CNOT count, final CNOT depth, and their runtime. These figures of merit are appropriate
for noisy-intermediate scale quantum (NISQ) devices [14], since the single-qubit gates of such
devices typically have error rates an order of magnitude less than that of the two qubit gates. By
minimising the CNOT count we are minimising the exposure of our computation to gate error,
including crosstalk; by minimising depth we reduce its exposure to decoherence.

We show that for sufficiently sparse quantum computer architectures and sufficiently large
phase polynomials, our algorithm outperforms the algorithm from Nash et al. [12] that is used in
Staq [2] as well as the decomposition and routing strategies from t|ket〉 [6]. Our algorithm relies
on finding non-cutting vertices in the connectivity graph, and does not require computing any
Steiner trees; we find that in most cases our algorithm has reduced runtime compared to that of
Nash et al.

In section 2, we introduce phase polynomials and existing methods for their synthesis, both
with and without architecture-awareness. Our new algorithm is described in section 3 and our
experimental results can be found in section 4. Throughout the paper we will assume some
familiarity with the zx-calculus [4], which we use as notation. For the uninitiated, Cowtan et
al. [7] give a short introduction to the calculus, including the phase gadget notation; Coecke and
Kissinger provide a complete treatment [5].

Notation We use bold face letters x, y, to denote vectors, and the corresponding regular
weight letters xi, yj to denote their components.

2 Phase polynomial synthesis

Following Amy et al. [1], we define the phase polynomial via the sum-over-paths formalism [8].

Definition 2.1. Let C be a circuit consisting of only CNOT and RZ(θ) gates; then its corre-
sponding unitary matrix UC has a sum-over-paths form,

UC =
∑

x∈Fn2

e2πif(x) |Ax〉〈x| (1)

consisting of a phase polynomial

f(x) =
∑

y∈Fn2

f̂(y) · (x1y1⊕x2y2⊕·· ·⊕xnyn) (2)

with Fourier coefficients f̂(y) ∈R, and a basis transform A ∈GL(n,F2). When no confusion will
arise we refer to the pair (f,A) as the phase polynomial of C.

Note that parity functions – henceforth just called parities – of the form x 7→ (x1y1⊕·· ·⊕xnyn)
as in Equation 2, can be identified with the bit string y; these are the basis of the space of phase
polynomials. Those parities for which f̂(y) 6= 0 are called the support of f .
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Every circuit over {CNOT,RZ(θ)} has a canonical sum-over-paths form, which we now sketch.
First, we associate a parity to each “wire segment” of the circuit as follows: the inputs of the
circuit are labelled x1, . . . ,xn respectively; the output of an RZ gate has the same parity as its
input; and a CNOT gate with parities p1 and p2 on its control and target inputs has output
parities p1 and p1⊕p2, respectively. Second, the coefficients f̂(y) are computed by summing all
the angles θ occurring in RZ gates labelled by the parity y. Finally, the linear transform A is
defined by the mapping x 7→ x′ where x′ are the final labels of circuit outputs. We refer the
reader to Amy et al. [1] for more details.

The task of phase polynomial synthesis is the reverse: given (f,A) we must find the circuit C.
This amounts to constructing a parity labelled CNOT circuit such that every y in the support of
f occurs as a label on some wire, adding an RZ(f̂(y)) gate on that wire, and extending that
circuit so that the desired output parities for A are achieved. Since f(x) is a sum, and addition
is commutative, the order in which the parities are achieved is irrelevant; neither does it matter
on which qubits these parities occur. To obtain the required final parities, additional CNOTs
are added to the circuit. Since the new parity is the sum of the parities of both the control and
the target qubit, applying a CNOT gate can therefore be seen as an elementary row operation
on the matrix x 7→ x′. If the desired parities for each qubit are known, Gaussian elimination
can produce a CNOT sequence to achieve those parities [13, 11, 12]. This method suffices to
synthesise the matrix A of the phase polynomial [3, 1, 12]; note, however, that this second phase
is totally independent of the earlier synthesis of the parities required for f(x).

Architecture agnostic synthesis. Phase polynomials may be synthesised via the phase
gadget construct of the zx-calculus [7]. Since our algorithm can be intuitively described using
phase gadgets, we will briefly explain this method.

Definition 2.2. In zx-calculus notation we denote the RZ gate with phase α and CNOT gate
as:

Z(α) ' α '

In a phase polynomial (f,A), each term in f(x) defines an operator e−i
α
2 Z

⊗n , which we represent
by the phase gadget Φn(α) :

Φn(α) :=
α

...

where α= f̂(y) and the gadget is connected to qubit i iff xiyi = 1.

Lemma 2.3. We have the following law for decomposition of phase gadgets [7].

α

...

=

α

...

(3)
α

...

= α

...

(4)

Lemma 2.3 serves as a recursive definition of the phase gadget, and demonstrates how the
gadget may be realised as two ladders of CNOTs and an RZ gate. Cowtan et al. [7] showed how
to synthesise phase gadgets in reduced depth using a balanced tree of CNOTs, however if the
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gadgets are synthesised singly, and their ordering is not taken into account, the circuit may still
be suboptimal even after local optimisation.

A consequence of Lemma 2.3 is that phase gadgets stabilise CNOT circuits in the following
sense. Let Cij be a CNOT gate with control qubit i and target qubit j; then for all phase gadgets
Φ(α) there exists Φ′(α) such that CijΦ(α) = Φ′(α)Cij . Φ′ is identical to Φ except that Φ′ is
connected qubit i iff Φ is connected to exactly one of i and j.

This observation leads to an improvement in the algorithm. If we view the sequence of phase
gadgets as a binary matrix whose rows are the qubits and whose columns are the corresponding
parities y in the support of f , then commuting Cij through the entire circuit is an elementary
row operation, namely adding row j to row i. Therefore, by conjugating the circuit with CNOTs,
we may obtain a column containing a single 1. At that point, the desired parity (corresponding
to the column in the matrix) is achieved on the qubit corresponding to the row with the 1. The
RZ gate can then be placed, and the column can be removed from the matrix.

For example, the 3 qubit phase polynomial, (f(x), I), specified by f(x) = α1(x2⊕x3) +
α2(x1⊕x2) +α3(x1⊕x3) +α4x3, can be represented in a zx-diagram and corresponding binary
matrix as:

α1 α2 α3 α4

∼

0 1 1 0
1 1 0 0
1 0 1 1


Conjugating the first and second qubits with two CNOTs, and applying Eq. 3 we obtain the
following rewrite sequence and final matrix:

α1 α2 α3 α4

=
α1 α2 α3 α4

=
α1 α2 α3 α4

=
α1 α2 α3 α4

=

α1 α2 α3 α4

=
α1 α2 α3 α4

∼

1 0 1 0
1 1 0 0
1 0 1 1


The second and last columns of the matrix contain only a single 1, so we can use Equation 4 to
place a RZ gate:

α1 α2 α3 α4

=

α1 α3

α2
α4

=

α1 α3

α2
α4

∼

1 1
1 0
1 1


Note the equation relies on the fact that RZ gates commute with phase gadgets.

The matrix representation reduces the task of phase polynomial synthesis to finding the
order in which to reduce the columns, and which qubit should remain a 1 in the matrix for each
column. Amy et al. [1] proposed a heuristic algorithm called GraySynth based on Gray codes.
The main idea is to pick the qubit q participating in most parities and then achieving all parities
containing q in order of Gray codes [9] on qubit q. As a result, many CNOTs will have the
same target qubit. This algorithm has been implemented as part of Staq [2] in combination with
SWAP-based routing.
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Unfortunately, GraySynth does not accommodate qubit connectivity restrictions, making it
less useful for NISQ devices. A naive solution is to apply a generic qubit routing routine to the
synthesised circuit, however this will almost always increase the size of the circuit. Luckily, there
is no need to be so naive.

Architecture-aware synthesis. It is possible to define synthesis algorithms which produce
circuits that immediately satisfy the constraints imposed by the quantum computer. Several
algorithms such architecture-aware synthesis algorithms for CNOT circuits and phase polynomials
have recently been proposed [11, 12]. While SWAP-based methods respect the original structure
of the circuit at the level of individual gates, architecture-aware synthesis preserves only the
overall unitary, and this additional freedom allows the architectural constraints to inform the
choice of which gates to generate. This concept has also been used in the Staq compiler [2],
which uses the algorithms described in this section.

Kissinger et al. [11] and Nash et al. [12] independently modified the Gaussian elimination
algorithm sketched above to synthesise routed CNOT circuits. They used Steiner trees to
determine paths on the connectivity graph across which to simulate one or more CNOT gates.
Nash et al. [12] showed that their method scales well with respect to the size and the density of
the connectivity graph of the quantum computer. Kissinger et al. [11] showed that for circuits
consisting only of CNOT gates their method outperformed current state-of-the-art SWAP-based
methods. Wu et al. [18] have recently improved these methods with an adaptation relying on
Steiner trees and non-cutting vertices.

This constrained version of Gaussian elimination, called Steiner-Gauss, can be used in any
synthesis algorithm by replacing the original Gaussian elimination such that it routes (part
of) the synthesised circuit. In particular, this can be used in the T-par algorithm [3] and in
GraySynth it can be used to synthesise the matrix A.

Nash et al. [12] also proposed an adaptation of the GraySynth algorithm we called Steiner-
GraySynth. They replaced the step in the original GraySynth algorithm that generates a small
sequence of CNOTs with a step that emulates this sequence with routed CNOTs. This emulation
is created using a Steiner tree over the connectivity graph with the phase qubit as root and the
other qubits participating in the sequence of CNOTs as nodes. Then, a CNOT is placed for
every Steiner-node in the tree and one for every edge in the Steiner tree.

For phase polynomial synthesis, this algorithm performs better than naive routing [12].
However, following GraySynth, it will place many CNOT gates with the same target qubit. If this
qubit is poorly connected in the architecture, a large CNOT overhead will result. Furthermore,
it requires the construction of a Steiner tree in order to route the CNOT gates. The minimal
Steiner tree problem is NP-hard[10], so finding the true optimum is not feasible, but it can be
approximated in polynomial time using the all-pairs shortest paths and building a spanning tree
between them.

3 New natively routed heuristic algorithm

In this section, we describe a natively routed algorithm that attempts to take the architecture
into account. It uses a novel heuristic which works well for sparse architecture graphs.

Pseudo-code for the algorithm is shown in Figure 1 and its sub-procedures are listed in
Appendix A. A full worked example is presented in Appendix B; for ease of comparison this
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global variables
G, the architecture graph
Circuit, An initially empty circuit with |G.vertices| qubits
A, The basis transform of the phase polynomial
P , The matrix describing the support of f
ZPhases, The list of Z phases f̂(y) belonging to each parity y in f

end global variables

function BaseRecursionStep(Cols, Qubits)
if Qubits non-empty and Cols non-empty then

H ← InducedSubgraph(G,Qubits)
Rows← NonCuttingVertices(H)
ChosenRow← argmaxr∈Rows maxx∈F2 |{c ∈ Cols where Pr,c = x}|
Cols0,Cols1← SplitColsOnRow(Cols, ChosenRow)
BaseRecursionStep(Cols0, Qubits\{ChosenRow})
OnesRecursionStep(Cols1, Qubits, ChosenRow)

end if
end function

function OnesRecursionStep(Cols, Qubits, ChosenRow)
if Cols non-empty then

Neighbours←{q ∈Qubits where q ∼ ChosenRow in G}
n← argmaxq∈Neighbours |{c ∈ Cols where Pq,c = 1}|
if |{c ∈ Cols where Pn,c = 1}|> 0 then

PlaceCNOT (ChosenRow, n)
Cols← ReduceColumns(Cols)

else
PlaceCNOT (n, ChosenRow)
PlaceCNOT (ChosenRow, n)

end if
Cols0,Cols1← SplitColsOnRow(Cols, ChosenRow)
BaseRecursionStep(Cols0, Qubits\{ChosenRow})
OnesRecursionStep(Cols1, Qubits, ChosenRow)

end if
end function

algorithm RoutedPhasePolySynth
Columns← ReduceColumns({0, . . . , |P.columns|})
BaseRecursionStep(Columns, G.vertices)
Circuit.AddGates(SteinerGauss(A∗P ′−1))

end algorithm

Figure 1: Algorithm for synthesising phase polynomials in an architecture aware manner. The
subroutines not defined here are in listed in Appendix A.
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example is the same one treated by Amy et al. [1] using the GraySynth algorithm.
In the following, the architecture graph – that is, the connectivity map of the physical qubits

– is denoted G. The phase polynomial to be synthesised, (f,A), is represented as two binary
matrices, P and A, where the columns of P are the corresponding parities y in the support of f ,
as explained in Section 2. By construction, the columns in P are unique and no column y has
all values set to 0.

Preprocessing. The algorithm starts by synthesising phase gadgets of the form specified by
Equation 4. This will remove trivial columns in P and placing their corresponding RZ phase
gates. A column y is trivial if it has exactly one index j such that yj = 1. The phase gate RZ is
placed on the qubit corresponding to j and its phase α is equal to f̂(y). This makes sure that
every column y in P contains at least two elements with value 1. Hence, each column requires at
least one CNOT in order to be synthesised by Lemma 2.3.

For example, consider the phase polynomial from Section 2, we can use Equation 4 to remove
the fourth column (corresponding to α4) and synthesise the phase gate RZ(α4) on qubit 3:

0 1 1 0
1 1 0 0
1 0 1 1

∼ α1 α2 α3 α4

=

α1 α2 α3

α4

∼

0 1 1
1 1 0
1 0 1



Base recursion step. Similar to GraySynth, we want to synthesise the phase gadgets in the
phase polynomial in an order that requires the least amount of CNOT gates. However, we do
not want to synthesise the phase gadgets such that many phase gates are placed on the same
qubit. Instead, we pick one qubit and attempt to remove its row from P . However, we cannot
pick just any row to remove from P because it might still be needed to synthesise other phase
gadgets due to the connectivity constraints. Thus, we pick a non-cutting vertex i ∈G such that
row Pi has either the most ones or the most zeroes. A non-cutting vertex is a vertex in G that
can be removed from G without disconnecting the remaining graph. Like GraySynth, we split P
into two matrices, P 0 and P 1, such that column Pj is a column in P 0 iff Pi,j = 0 and Pj is a
column in P 1 otherwise. Since all entries in row P 0

i are equal to 0, we do not need this row any
more and we can remove it from P 0, and because i is non-cutting, its removal leaves the graph
connected. Then, we use the base recursion step on the sub-matrix P 0 (excluding row i) with
the sub-graph of G where vertex i has been removed. The matrix P 1 is treated by a different
recursive procedure using the full graph G, described below.

Continuing the example above, suppose we are targeting the architecture G : x1⇔ x2⇔ x3.
We can pick either x1 or x3 as they are both non-cutting and have the same number of ones and
zeroes; we will make the arbitrary choice of x1. This choice yields our new P 0 and P 1:

P =

0 1 1
1 1 0
1 0 1

 P 0 =
(

1
1

)
P 1 =

1 1
1 0
0 1


Note that P 0 corresponds to the phase gadget α1, and P 1 corresponds to the phase gadgets α2
and α3. Recursing on P 0 will eventually place the CNOT C3,2 and RZ(α1) gate on qubit x2, as
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shown below.0 1 1
1 1 0
1 0 1

∼
α1 α2 α3

α4

=

α1 α2 α3

α4

=

α2 α3

α4

α1

∼

1 1
1 0
1 1


Bear in mind that the recursion on P 0 may add CNOTs to the circuit, performing a row

operation on the global P matrix. For our recursion scheme to be valid we require that the row
P 1
i remains equal to 1. Initially, this holds by the construction of P 1. Since row i has been

removed from P 0, no gate involving qubit i will be added by recursion on P 0, and hence the ith
row of P 1 will be unchanged. Moreover, P 1 does not contain any trivial columns because for
every column j in P 1 there will always be another row k 6= i such that P 1

k,j = 1.

Ones recursion step. The recursion step for P 1 attempts to remove as many ones from row
i as possible such that it can be removed. This can be achieved by placing CNOTs in the circuit,
however we are restricted by the connectivity graph. Therefore, we pick a neighbour vertex n ∈G
such that row P 1

n has most ones. Picking the row P 1
n with most ones will ensure that most ones

are removed. Then, we can conjugate with CNOT Ci,n, and update P by adding row n to row i,
as explained in Section 2. This might introduce trivial columns in P 1 (note that P 0 = ∅ by the
recursion), which are removed like in the preprocessing step. Thus, in the example circuit:1 1

1 0
1 1

∼
α2 α3

α4

α1

=

α2 α3

α4

α1

∼

0 1
1 0
1 1


However, if every entry of row P 1

n is 0, conjugation with Ci,n will have no effect. In this
situation, we first apply the opposite CNOT, Cn,i and then Ci,n as before. This effectively swaps
the rows i and n, so there is no need to reduce the circuit. Nevertheless, this ensures that every
entry in row P 1

i is 0.
After placing the CNOT gate(s), we have modified row P 1

i and we can split P 1 into two
matrices, P 1,0 and P 1,1, and recurse upon these two as in the base recursion step.

In our example P 1,0 ∼ {α2} and P 1,1 ∼ {α3}. We use the base recursion on P 1,0 and pick x3
arbitrarily. Note that we only consider the sub-matrix P 1,0 to count the number of ones and
zeroes. Then, we split P 1,0 into ∅ and {α2}, respectively. In the ones recursion step, we pick
neighbour x2 and place CNOT C3,2 and RZ(α2) on qubit x2.

α2 α3

α4

α1

=

α2 α3

α4

α1

=

α3

α2
α4

α1

∼

1
1
1


Afterwards, we use the ones recursion step twice on the remaining row, placing two CNOTs, C2,1
and C3,2, and placing the final phase gate RZ(α3) on qubit x3

α3

α2
α4

α1

=

α3

α2
α4

α1

= α2
α3α4

α1
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Post-processing. Lastly, we need to synthesise the basis transform A. Because the CNOT
gates in the circuit, obtained by synthesising the phase gadgets, change the parities on each qubit,
we need to undo these changes. Let P ′ be the basis transform corresponding to the final parities
of the synthesised circuit, then we can undo this transform and apply the desired transform A
by synthesising A ·P ′−1 using Steiner-Gauss as explained in Section 2.

In our synthesis example, P ′−1 is equivalent to the CNOTs that were commuted to the end
of the zx-diagram. Incidentally, P ′−1 = A ·P ′−1 because of our choice A= I, thus the desired
linear transformation is already achieved. Moreover, these trailing CNOTs are already routed,
however resynthesising them might remove a few redundant CNOTs for the final circuit.

Termination and correctness. Our algorithm terminates and is correct if the recursion
converges and it synthesises the desired phase polynomial (f,A) while satisfying the connectivity
constraints imposed by the architecture.

At each recursion step, the matrix P is split into P 0 and P 1. In the case of P 0, the base
recursion step will effectively remove a row from P 0. In the case of P 1, the ones recursion step
will place one or two CNOT gates. This will either remove a column from P 1 or, when splitting
P 1 into P 1,0 and P 1,1, make sure that P 1,0 6= ∅. The recursion finishes when P is empty. Hence,
the recursion converges and the algorithm terminates.

By construction, the matrix P describes the remaining phase gadgets to be synthesised
(initially the parities y in the support of f). This remains the case while synthesising because
placing a CNOT updates P with an elementary row addition as explained in Section 2. Moreover,
a column is only removed from P iff the phase gadget is trivial, i.e. it is of the form described by
Equation 4. Consequently, the phase gates are placed at the right parity by Lemma 2.3. Lastly,
the basis transform A is obtained as described in the previous paragraph. Thus, the algorithm
has synthesised the desired phase polynomial once it has terminated.

Additionally, all CNOT gates that are added have the property that the control and target
qubits are neighbours in the connectivity graph G, thus satisfying the connectivity constraints
imposed by the architecture.

Hence, our algorithm terminates and when it does the desired phase polynomial has been
synthesised in an architecture-aware manner.

4 Results and discussion

To verify the quality of our algorithm, we generated random phase polynomials and synthesised
them for two different real quantum computers: Rigetti’s 16 qubit Aspen device and IBM’s 20
qubit Singapore device 1. We compare the average CNOT count, CNOT depth and runtime (in
seconds) of our proposed algorithm with Staq [2] and t|ket〉 [15]. To the best of our knowledge,
t|ket〉 and Staq are the only compilers that can synthesise and route phase polynomials from an
abstract representation2.

For each architecture, we randomly generated phase polynomials until we had 20 distinct
ones with 1, 5, 10, 50, 100, 500, and 1000 phase gadgets in each. The phase gadgets were sampled
uniformly across the parameter space. Figure 2 shows how each algorithm scales with respect to

1Qubit-scaling and gadget-scaling results for synthetic architectures can be found in Appendix C
2The source code to replicate our results, including the raw experimental data, can be found on

https://github.com/CQCL/architecture-aware-phasepoly-synth

https://github.com/CQCL/architecture-aware-phasepoly-synth
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(a) 16 qubit Rigetti Aspen
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(b) 20 qubit IBM Singapore

Figure 2: Plots showing the scaling of the CNOT count, CNOT depth and runtime with respect
to the number of phase gadgets on the 16 qubit Rigetti Aspen architecture and the 20 qubit
IBMQ Singapore device. The exact data can be found in Table 1 in Appendix C.

the number of phase gadgets on the two quantum computer architectures. Each point in the
chart is the average of the 20 phase polynomials of that size.

We used pytket version 0.4.33. We described our phase polynomials in terms of t|ket〉’s
abstract representation for phase gadgets (PauliExpBox) which t|ket〉 synthesises and then routes
using swaps [15]. While routing, we allowed t|ket〉 to also find an optimal qubit placement.

For Staq, we used version 1.0. We chose to use the Steiner tree option because this results
in a much lower CNOT count and depth. Unfortunately, we were unable to use this option in
combination with optimal qubit placement because this took too long for large phase polynomials
(≥ 50 phase gadgets) 4.

Note that both t|ket〉 and Staq are implemented in C++, while our algorithm was written
in python 3.6, putting it at a significant runtime disadvantage. All experiments were run on a
2017 MacBook Pro with an Intel Core i5 2.3 GHz and 8 GB 2133 MHz RAM. We used pytket to

3This pytket version will be released for the general public soon
4Staq results with placement for small phase polynomials can be found in Figure 5 of Appendix C
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calculate the CNOT count and CNOT depth of all circuits (including Staq).
We observe that for very small phase polynomials (1 phase gadget), t|ket〉 is the best method,

but it does not scale well in CNOT count and depth for larger, more realistic phase polynomials
(see Figure 2). This shows that naive synthesis combined with clever routing is not competitive
with architecture-aware synthesis methods.

Between five and 100 phase gadgets, Staq has the lowest average CNOT count. For larger
phase polynomials, Staq’s CNOT count performance is equal to the proposed algorithm. However,
the CNOT depth is consistently better when synthesised with the proposed algorithm for phase
polynomials with more than 10 gadgets. This means that it is better at parallelising CNOT
gates than Staq.

With respect to runtime, we observe that for phase polynomials with 5-1000 phase gadgets,
Staq is the fastest synthesis algorithm. The proposed algorithm is faster at synthesising than
t|ket〉 for phase polynomials 50-1000 gadgets on both architectures. We do note that both Staq
and the proposed algorithm does not scale linearly with respect to the number of phase gadgets,
thus it might not be faster than t|ket〉 for phase polynomials with more phase gadgets than we
have tested.

5 Conclusion and Future Work

In this paper, we introduced one of the first successful algorithms for architecture-aware synthesis
of phase polynomials. We showed that this algorithm performs comparable or better than current
state-of-the-art compilers for current NISQ devices without compromising the runtime of the
algorithm.

Although our algorithm is very promising, it should still be adjusted to better fit the
specification of the device that it is synthesising for. For example, the choice of placing the
qubits affects the size of the synthesised circuit because the connectivity graph of a quantum
computer is generally not regular. Similarly, the current algorithm improves CNOT depth, but
it might do so in a way that increases the crosstalk between parallel gates.

And, lastly, our algorithm can only synthesise phase polynomials. This means that circuits
containing rotations over X and Y need to be split into subcircuits to use our algorithm. It
will be much more beneficial if our algorithm can be extended to also synthesise the generalised
version of phase gadgets, called Pauli exponentials.
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A Subfunctions for the proposed synthesis algorithm

The subfunctions that we used in the pseudocode for our algorithm (Figure 1) are listed below.
function ReduceColumns(Columns)

for all c ∈ Columns do
if |{q ∈ P.rows where Pq,c = 1}|= 1 then

Qubit← argmaxq∈P.rowsPq,c
Circuit.AddGate(RZ(ZPhases[c], Qubit))
Columns← Columns\{c}

end if
end for
return Columns

end function
function PlaceCNOT(Control, Target)

Circuit.AddGate(CNOT (Control, Target))
P [Control]← P [Control] +P [Target]

end function
function SplitColsOnRow(Columns, Row)

Cols0←{c ∈ Columns where PRow,c = 0}
Cols1←{c ∈ Columns where PRow,c = 1}
return Cols0, Cols1

end function

B Example synthesis

To get a better idea of the inner workings of the algorithm, we synthesise the following phase
polynomial:

f(x) = α1(x2⊕x3) +α2(x1) +α3(x1⊕x4) +α4(x1⊕x2⊕x4) +α5(x1⊕x2) +α6(x1⊕x2⊕x3)
A= I

Note that this is the parameterised version of the example phase polynomial given by Amy et al.[1].
The connectivity graph we use for synthesis is a simple line architecture: G : x1⇔ x2⇔ x3⇔ x4.

This phase polynomial corresponds to the following ZX-diagram C and matrix representation
P .

C =

α1 α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

α2

∼


0 1 1 1 1 1
1 0 0 1 1 1
1 0 0 0 0 1
0 0 1 1 0 0

 = P

Note that the matrix P has a column for each phase gadget in the diagram and each row
has a 1 iff the corresponding qubit is participating in the corresponding phase gadget (i.e. it
has a green spider). We have added a red vertical line to the ZX-diagram to represent the
frontier. This indicates the progress of our synthesis. The diagram on the left of the frontier has
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been synthesised, the diagram on the right of the frontier contains the phase polynomial to be
synthesised. Additionally, while synthesising, we will rewrite the diagram C by adding gates to
the frontier without changing the semantics of C.

Preprocessing. The first step in the algorithm is to check if any columns can be removed
from the matrix. This is possible if the column contains exactly a single entry with the value 1.
If this is the case, the phase gadget is only acting on a single qubit and it is equivalent to a Z
phase gate which we can move to the other side of the frontier.

C =

α1 α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

α2

=

α1

α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

=

α1

α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

We describe this process as placing a phase gate.
Once the phase gate RZ(α2) is placed on qubit x1, we have a phase gadget less, so we can

remove the corresponding column from the matrix P .

C =

α1

α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

∼


0 1 1 1 1
1 0 1 1 1
1 0 0 0 1
0 1 1 0 0



Main recursion. Now we can start the main recursion loop. We start with the base recursion
step and calculate all non-cutting vertices of our graph G, which are {x1,x4}. We pick the row in
P with either most ones or most zeroes, which is x1. We split the row in to columns with zeroes
P 0 ∼ {α1}, and columns with ones P 1 ∼ {α3,α4,α5,α6}. We recurse using the base recursion
step on P 0 and the ones recursion step on P 1.

In the base recursion step on P 0, we have subgraph G : x2 ⇔ x3 ⇔ x4, with non-cutting
vertices {x2,x4}. We pick x2 arbitrarily and split the matrix once more into P 0,0 ∼ ∅ and
P 0,1 ∼ {α1}. This time, there are no columns with zeroes, so the base recursion step is trivial.
Then, in the ones recursion step on P 0,1, we pick a neighbour of x2 with the most ones, this is
x3, and we place a CNOT gate, Cx2,x3 , in front of the frontier. To keep the diagram equivalent
to the previous diagrams, we add a second CNOT gate, Cx2,x3 , after the frontier and commute
it through the phase gadgets. By commuting the second CNOT gate through the gadgets,
each control qubit will participate in the phase gadget iff either the control or the target qubit
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(exclusive) was participating before commuting the CNOT through, see Section 2 for a detailed
explanation. This is the same as adding the target row to the control row in the matrix P
(modulo 2). Observe that this also changes the columns in P 1.

C =

α1

α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕x3 x3

=

α1

α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕x3

∼


0 1 1 1 1
0 0 1 1 0
1 0 0 0 1
0 1 1 0 0



As a result, we can place a phase gate, RZ(α1), corresponding to α1 on qubit x3.

C =
α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕x3 α1

∼


1 1 1 1
0 1 1 0
0 0 0 1
1 1 0 0



Note that placing the phase gate causes that P 0 = ∅ so splitting the row X2 and recursing on
P 0,0 ∼ ∅ and P 0,1 ∼ ∅ is trivial.

Now we are finished with the base recursion step on P 0 and continue with the ones recursion
step on P 1 and the full graph G. We had chosen x1 earlier, now we pick a neighbour, x2, and
place the CNOT gate, Cx1,x2 . This allows us to place a phase gate, RZ(α5), on qubit x2.

C =
α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕x3 α1

x1⊕x2 x2 =
α2

α3 α4

α5

α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕x3 α1

x1⊕x2 x2 ∼


1 0 1
0 1 0
0 0 1
1 1 0



Again, we split row x1 into columns with zeroes P 1,0 ∼ {α4} and with ones P 1,1 ∼ {α3,α6}.
We use the base recursion step on P 1,0 with the subgraph G : x2⇔ x3⇔ x4 and we use the ones
recursion step on P 1,1

The subgraph G : x2⇔ x3⇔ x4 has non-cutting vertices x2 and x4. We pick x4 arbitrarily
and split the row into P 1,0,0 ∼ ∅ and P 1,0,1 ∼ {α4}. The base recursion step on P 1,0,0 is trivial.
In the ones recursion step, we pick neighbour x3 and place two CNOT gates, Cx3,x4 , and Cx4,x3 ,
because x3 only has zeroes in P 1,0,1.

C =
α2

α3 α4

α5

α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕x3 α1

x1⊕x2 x2

x4x2⊕x3⊕x4

x4 x2⊕x3

∼


1 0 1
0 1 0
1 1 1
1 1 0
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C =
α2

α3 α4

α5

α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕x3 x3
α1

x1⊕x2 x2

x4x2⊕x3⊕x4

x4 x2⊕x3

∼


1 0 1
0 1 0
1 1 1
0 0 1



Now we split P 1,0,1 on row x4 into P 1,0,1,0 ∼ {α4} and P 1,0,1,1 ∼ ∅ and recurse as before, note
that the latter case in trivial.

In the base recursion step on P 1,0,1,0, we are left with the subgraph G : x2⇔ x3. We pick
row x2 arbitrarily and split it into P 1,0,1,0,0 ∼ ∅ and P 1,0,1,0,1 ∼ {α4}. The base recursion step on
P 1,0,1,0,0 is trivial and in the ones recursion step, we pick neighbour x3. Hence we can place a
CNOT gate, Cx2,x3 , and a phase gate, RZ(α4) on qubit x3.

C =
α2

α3

α5

α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕x3 x3
α1

x1⊕x2 x2

x4x2⊕x3⊕x4

x4 x2⊕x3α4
x4x1⊕x2⊕x4

∼


1 1
1 1
1 1
0 1



This finishes the recursion on P 1,0 and we can continue with the ones recursion step on
P 1,1 ∼ {α3,α6}. Once more, we are back at the original graph G : x1 ⇔ x2 ⇔ x3 ⇔ x4. We
previously picked row x1 and so we now pick neighbour x2. We place a CNOT gate, Cx1,x2 , and
split on row x1 into P 1,1,0 ∼ {α3,α6}, and P 1,1,1 ∼ ∅.

C =
α2

α3

α5

α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕x3 x3
α1

x1⊕x2 x2

x4x2⊕x3⊕x4

x4 x2⊕x3α4
x4x1⊕x2⊕x4

x1⊕x2x2 ∼


0 0
1 1
1 1
0 1



In the base recursion step on P 1,1,0, we pick row x2 and split P 1,1,0 into P 1,1,0,0 ∼ ∅, and
P 1,1,0,1 ∼ {α3,α6}. The base recursion step on P 1,1,0,0 is trivial.

In the ones recursion step on P 1,1,0,1, we pick neighbour x3, and place a CNOT gate, Cx2,x3 ,
and a phase gate, RZ(α3), on qubit x3.

C =
α2

α5

α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕x3 x3
α1

x1⊕x2 x2

x4x2⊕x3⊕x4

x4 x2⊕x3α4 α3
x4x1⊕x2⊕x4

x1⊕x2x2

x1⊕x4 x1⊕x2⊕x4

∼


0
0
1
1
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We split P 1,1,0,1 on row x2, resulting in P 1,1,0,1,0 ∼ {α6}, and P 1,1,0,1,1 ∼ ∅ and we recurse as
before.

In the base recursion on P 1,1,0,1,0, we are left with subgraph G : x3⇔ x4. We pick x3 and
split on it resulting in P 1,1,0,1,0,0 ∼ ∅ and P 1,1,0,1,0,1 ∼ {α6}. The base recursion step is trivial.

Finally, in the ones recursion step on P 1,1,0,1,0,1, we pick neighbour x4 and place a CNOT
gate, Cx3,x4 and a phase gate, RZ(α6), on qubit x4.

C =

α2

α5
x2

x3

x4

x1

x2

x3

x4

x1

x2⊕x3 x3
α1

x1⊕x2 x2

x4x2⊕x3⊕x4

x4 x2⊕x3α4 α3

α6

x4x1⊕x2⊕x4

x1⊕x2x2

x1⊕x4 x1⊕x2⊕x4

x1⊕x2⊕x3 x2⊕x3⊕x4

∼




Now we have synthesised every phase gadget in the support of f .

Post-processing. What remains is synthesising the basis transform A= I. At the frontier,
the basis transform of the qubits is equal to the matrix P ′,

P ′ =


1 0 1 1
0 1 0 1
0 0 0 1
0 0 1 0


as can be seen in the parity annotation of each qubit of the final circuit. This transform needs to
be undone before the basis transform A can be applied.

As explained at the end of Section 3, this is transformation is undone by the trailing CNOTs
on the right of the frontier. I.e. the CNOTs on the right of the frontier apply the basis transform
P ′−1. Although these CNOTs are already mapped, they could be optimised using an architecture-
aware CNOT circuit synthesis technique, such as Steiner-Gauss. In case the matrix A 6= I, we
can calculate the full transformation A′ by undoing the existing linear transformation and then
applying the desired transformation: A′ =A ·P ′−1.

C Additional results
This appendix contains additional figures and tables to show the performance of the proposed
algorithm with respect to the existing algorithms.

To show the scaling of our algorithm with respect the number of qubits, the number of
phase gadgets and the density of the device connectivity graph, we have run several experiments,
generating 20 random phase polynomials per experimental setting. Since Staq only supports a
small selection of quantum computer architectures, we compare the proposed algorithm against
an in-house implementation of Steiner-GraySynth for all synthetic architectures.

Figure 3 shows how our algorithm and the two baselines perform on a line, square and
fully connected connectivity of various sizes given a phase polynomial with 100 phase gadgets.
Similarly, Figure 4 shows how our algorithm and the two baselines perform on phase polynomials
of various sizes given a 36 qubit line, square and unconstrained connectivity graph. In Figure 5,
we show that, if Staq is used with qubit placement optimisation, it can synthesise slightly smaller
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circuits than without qubit placement. However, this comes at an extreme runtime cost. The
runtime of this option was long enough that it was not feasible for to run experiments with more
than 50 and 100 gadgets (IBMQ Singapore and Rigetti Aspen, respectively) because Staq would
take more than two hours to synthesise a single circuit with 500 gadgets on Rigetti Aspen.

Lastly, the exact data that was visualised in each figure, Figure 2, 3, 4, and 5, is given in
Table 1, 2, 3, and 4, respectively.
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Figure 3: The influence of the number of qubits on the CNOT count, CNOT depth and runtime
for architectures with different regular structures: line, square grid and fully connected. The
exact data can be found in Table 2.
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Figure 4: Plots showing the scaling of the CNOT count, CNOT depth and runtime with respect
to the number of phase gadgets on a 36 qubit line, square grid, and unconstrained architecture.
The exact data can be found in Table 3.
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(a) 16 qubit Rigetti Aspen
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(b) 20 qubit IBM Singapore

Figure 5: Plots showing the scaling of the CNOT count, CNOT depth and runtime with respect
to the number of phase gadgets on the 16 qubit Rigetti Aspen architecture and the 20 qubit
IBMQ Singapore device. The exact data can be found in Table 4.
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t|ket〉 Staq Proposed
#RZ count depth time count depth time count depth time
1 13.80 13.80 0.004s 31.10 23.70 0.017s 32.00 28.30 0.035s
5 209.55 142.95 0.020s 169.85 94.70 0.018s 229.30 109.70 0.066s
10 433.25 302.65 0.038s 264.80 136.45 0.021s 355.80 143.95 0.073s
50 2109.35 1622.45 0.164s 820.80 409.00 0.044s 961.05 331.90 0.110s
100 3917.60 3090.60 0.306s 1466.85 728.80 0.074s 1611.90 522.05 0.151s
500 17416.70 14274.65 1.506s 5928.60 3293.90 0.345s 6081.30 2082.25 0.611s
1000 32357.05 26896.25 2.851s 11043.40 6500.05 0.807s 11238.30 4018.20 1.431s

(a) Rigetti 16Q Aspen
t|ket〉 Staq Proposed

#RZ count depth time count depth time count depth time
1 25.20 25.20 0.007s 69.60 62.75 0.014s 40.60 35.70 0.068s
5 296.70 210.60 0.032s 218.60 129.15 0.021s 301.60 139.75 0.140s
10 604.95 417.90 0.057s 376.50 208.60 0.025s 475.50 191.75 0.151s
50 2499.30 1897.70 0.219s 1073.25 492.40 0.054s 1226.00 395.20 0.206s
100 4969.60 3863.90 0.431s 1834.75 819.65 0.091s 2035.10 607.95 0.265s
500 22710.00 18205.90 2.033s 7498.85 3440.55 0.437s 8054.35 2293.45 0.893s
1000 43538.10 35533.30 3.983s 14309.70 6867.05 1.031s 14908.55 4422.70 2.054s

(b) IBMQ Singapore

Table 1: The average number of CNOT, CNOT depth and runtime for 20 circuits for synthesising
phase polynomials with various sizes using t|ket〉, Staq (without qubit placement) and our
proposed algorithm on Rigetti Aspen (Table 1a) and IBMQ Singapore (Table 1b). This data
was visualised in Figure 2.
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t|ket〉 Nash Proposed
Qubits count depth time count depth time count depth time
9 1444.30 1142.75 0.117s 836.45 422.75 0.186s 575.40 318.65 0.038s
16 4565.50 3846.85 0.362s 2480.10 629.95 1.121s 1818.75 499.85 0.168s
25 9240.80 8004.30 0.905s 4724.60 711.55 4.269s 3673.35 627.50 0.609s
36 14761.20 13074.70 1.863s 7866.50 788.75 13.198s 6211.55 739.30 2.072s
49 24291.45 21651.35 3.867s 11920.00 886.60 36.099s 9592.70 875.40 6.484s
64 27632.10 24473.65 5.462s 16960.45 975.30 82.994s 13750.00 1017.30 17.706s

(a) Line
t|ket〉 Nash Proposed

Qubits count depth time count depth time count depth time
9 1025.65 874.75 0.120s 472.15 316.10 0.201s 459.35 283.85 0.044s
16 2986.20 2372.30 0.458s 1222.50 530.50 1.342s 1299.00 505.95 0.236s
25 5514.35 4327.40 0.939s 2191.35 677.30 4.479s 2497.65 672.35 0.693s
36 8842.65 6993.00 2.227s 3409.85 824.35 13.679s 3982.25 815.60 2.475s
49 13171.00 10457.15 4.432s 4948.05 984.55 34.106s 6135.10 1016.65 6.843s
64 18259.70 14393.05 7.977s 6881.55 1174.30 70.358s 8615.05 1261.85 16.918s

(b) Square
t|ket〉 Nash Proposed

Qubits count depth time count depth time count depth time
9 583.30 566.90 0.069s 187.75 180.05 0.184s 233.75 162.25 0.038s
16 1343.40 1294.60 0.148s 527.05 506.25 1.103s 583.85 330.15 0.206s
25 2227.70 2155.15 0.280s 990.10 949.85 4.463s 1125.55 555.80 0.963s
36 3351.10 3281.25 0.502s 1543.40 1483.15 13.501s 1915.45 847.85 3.642s
49 4668.50 4599.60 0.813s 2200.75 2131.25 35.417s 2994.10 1271.05 11.777s
64 6155.90 6076.20 1.303s 2978.95 2880.10 80.856s 4466.60 1829.50 33.257s

(c) Unconstrained

Table 2: The average number of CNOT, CNOT depth and runtime for 20 circuits for synthesising
phase polynomials with 100 phase gadgets using t|ket〉, Nash and our proposed algorithm on
synthetic qubit architectures of various sizes connected in a line (Table 2a), square (Table 2b)
and fully connected (Table 2c). This data was visualised in Figure 3.
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t|ket〉 Nash Proposed
#RZ count depth time count depth time count depth time
1 37.10 37.10 0.016s 64.15 35.40 0.714s 96.90 96.90 0.658s
5 1298.70 684.85 0.181s 521.10 82.00 1.126s 603.80 183.95 1.163s
10 2142.80 1424.30 0.257s 991.85 157.15 1.631s 1167.45 248.40 1.335s
50 7960.45 6700.05 0.884s 4391.70 477.30 5.943s 3800.50 512.50 1.624s
100 14761.20 13074.70 1.591s 7866.50 788.75 11.137s 6211.55 739.30 1.776s
500 69417.10 64493.35 7.885s 34883.95 3272.30 55.913s 23425.10 2435.75 3.718s
1000 126095.50 118035.55 14.913s 69584.50 6446.50 120.575s 43934.05 4564.45 7.853s

(a) 36 qubit line
t|ket〉 Nash Proposed

#RZ count depth time count depth time count depth time
1 34.10 34.10 0.013s 34.60 14.20 0.755s 61.30 35.80 0.681s
5 493.45 346.30 0.128s 268.80 92.15 1.164s 562.95 226.65 1.400s
10 1017.65 745.20 0.238s 541.70 177.15 1.695s 1002.75 317.45 1.552s
50 4859.05 3737.90 0.980s 1969.35 488.35 5.762s 2512.10 568.20 1.658s
100 8842.65 6993.00 1.669s 3409.85 824.35 10.080s 3982.25 815.60 1.809s
500 40734.55 33232.65 8.840s 14560.45 3469.65 52.656s 15492.85 2844.85 4.087s
1000 79821.90 65423.70 17.518s 28530.30 6876.90 113.956s 29621.30 5390.25 8.196s

(b) 36 qubit square
t|ket〉 Nash Proposed

#RZ count depth time count depth time count depth time
1 34.10 34.10 0.012s 17.05 17.05 0.826s 34.10 34.10 0.769s
5 166.90 163.50 0.034s 83.80 70.65 1.239s 232.70 110.90 1.141s
10 333.80 326.95 0.063s 174.95 156.00 1.897s 551.40 255.60 1.759s
50 1673.00 1636.20 0.259s 801.60 761.30 6.981s 1290.25 581.80 2.695s
100 3351.10 3281.25 0.520s 1543.40 1483.15 13.252s 1915.45 847.85 3.611s
500 16781.80 16489.55 2.715s 7081.75 7006.85 77.596s 6741.75 2935.00 11.749s
1000 33291.10 32759.35 4.999s 13642.20 13550.90 135.732s 12660.40 5479.05 19.504s

(c) 36 qubit unconstrained

Table 3: The average number of CNOT, CNOT depth and runtime for 20 circuits for synthesising
phase polynomials with various sizes using t|ket〉, Nash and our proposed algorithm on synthetic
36 qubit architectures connected in a line (Table 3a), square (Table 3b) and fully connected
(Table 3c). This data was visualised in Figure 4.
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t|ket〉 Staq Proposed
#RZ count depth time count depth time count depth time
1 13.80 13.80 0.004s 31.10 23.70 0.518s 32.00 28.30 0.037s
5 209.55 142.95 0.021s 160.20 91.20 3.407s 229.30 109.70 0.068s
10 433.25 302.65 0.040s 260.65 134.45 8.854s 355.80 143.95 0.076s
50 2109.35 1622.45 0.193s 820.80 409.00 138.448s 961.05 331.90 0.121s
100 3917.60 3090.60 0.380s 1466.85 728.80 521.102s 1611.90 522.05 0.199s

(a) Rigetti 16Q Aspen
t|ket〉 Staq Proposed

#RZ count depth time count depth time count depth time
1 25.20 25.20 0.006s 69.60 62.75 1.784s 40.60 35.70 0.068s
5 296.70 210.60 0.034s 213.30 124.95 11.770s 301.60 139.75 0.143s
10 604.95 417.90 0.060s 376.30 208.80 34.636s 475.50 191.75 0.163s
50 2499.30 1897.70 0.227s 1073.25 492.40 597.870s 1226.00 395.20 0.229s

(b) IBMQ Singapore

Table 4: The average number of CNOT, CNOT depth and runtime for 20 circuits for synthesising
phase polynomials with various sizes using t|ket〉, Staq (with qubit placement) and our proposed
algorithm on Rigetti Aspen (Table 4a) and IBMQ Singapore (Table 4b). This data was visualised
in Figure 5.
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