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Introduction — Procedures for translating between the quantum circuit model and the measurement-
based one-way model are useful for verification and optimisation of quantum computations [2, 22].
Existing results require the existence of a gflow on the measurement pattern. Each measurement pattern
has an underlying graph augmented with some additional information; gflow is a property of this graph
which ensures determinism of the pattern. While the concept of gflow is defined for patterns allowing
measurements in three different planes of the Bloch sphere, most research so far has focused on patterns
containing only measurements in the XY-plane. We give the first efficient circuit-extraction algorithm
that works for all patterns that have a gflow, including those with measurements in all three planes.
Furthermore, our algorithm results in ancilla-free circuits. We represent measurement patterns using the
ZX-calculus and hence our algorithm also represents the most general known procedure for extracting
circuits from ZX-diagrams. In developing this algorithm, we generalise and unify several concepts and
results previously known for patterns containing only XY-plane measurements. With these results, we
can simplify measurement patterns by reducing the number of measured qubits while preserving both the
semantics of the pattern and the existence of gflow (and hence the deterministic implementability of the
pattern).

Background — The circuit model and the measurement-based model are two fundamentally different
approaches to implementing quantum computations. In the circuit model [20], measurements serve mainly
to read out data and may often be postponed to the end of the computation, while in the measurement-
based model the bulk of the computation is performed via measurements. In the one-way model [21] of
measurement-based quantum computing, the starting resource is a graph state, and all measurements are
performed on single qubits.

Computations in the one-way model are represented by measurement patterns [7, 8], which describe
both the graph state, the measurements performed on it, and necessary corrections depending on the
measurement outcomes. Instead of allowing arbitrary single-qubit measurements, measurements are
usually restricted to the planes of the Bloch sphere that are spanned by two of the principal axes, labelled
the XY-, XZ-, and YZ-planes. Since quantum measurements are non-deterministic, later measurement
angles must be adapted according to the outcomes of earlier measurements in order to achieve an overall
deterministic computation [21] . However, not all measurement patterns support such corrections. The
existence of a causal flow is a sufficient condition for patterns containing only measurements in the
XY-plane to be deterministically implementable [6]. This condition is not necessary for determinism,
however, and also does not allow measurements in different planes. The broader property of having a
generalized flow (or gflow) [3] is both sufficient and necessary for deterministic implementability. The
concept of gflow can be defined for patterns containing measurements in all three planes, in which
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Figure 1: Example of the translation between measurement patterns and circuits via the ZX-calculus. At
the top we have a measurement pattern where Mλ ,α

j represents a measurement on qubit j in plane λ at
angle α , E jk represents a controlled-Z operation between qubits j and k, and N j represents the preparation
of qubit j. Correction operators are ignored as they will not appear in the ZX-diagram. Below and to
the left, we have the underlying labelled open graph of the pattern, where {1,5} are inputs and {3,7}
are outputs. The middle diagram shows the corresponding MBQC-form ZX-diagram and the right-most
diagram shows the extracted circuit.

case it is sometimes called extended gflow [3, Theorems 2 & 3]. The underlying labelled open graph
of a measurement pattern specifies a graph, the sets of ‘input’ and ‘output’ qubits, and the choice of
measurement plane for every non-output qubit. A gflow is defined on such a labelled open graph as a
partial order on the qubits, representing the time order in which measurements are to be performed, and
a correction set for each qubit, showing which future measurements need to be modified to correct an
undesired outcome.

Translation and rewriting — Translations between the quantum circuit model and the one-way
model use a type of local rewriting that translates computations piece-by-piece. Local rewriting techniques
can also be used to transform computations within the same model, e.g. to find representations with more
desirable properties such as a smaller number of qubits, lower computational depth, or simpler operations
and resources. The ZX-calculus [4] allows straightforward representations of both measurement patterns
and quantum circuits, and it has several complete sets of graphical rewrite rules [10, 13, 14, 23]. This
makes it a useful intermediary formalism for translating and transforming computations in the two models,
as illustrated in Fig. 1. We define a ZX-diagram to be in MBQC form if it is related to a measurement
pattern in a specific way, and we say such a diagram has gflow if the underlying labelled open graph has
gflow. We derive a number of explicit rewrite rules for MBQC-form ZX-diagrams, including rewrites
that involve local complementations [16] on the underlying resource graph state. Crucially, we show how
a gflow changes when each of our rewrite rules is applied. Since the existence of a gflow is preserved,
the pattern remains deterministically implementable. Our rewrite rules unify and formalise several
rules that were previously employed in the literature in a more ad-hoc manner, e.g. the pivot-minor
transformation [19] or the elimination of Clifford measurements first derived in a different context in
Ref. [12].

The rewrite rules serve not only to extract a circuit from a measurement pattern, but also to simplify
measurement patterns by reducing the number of qubits involved. Combining the different rules allows us
to remove any qubit measured in a Clifford basis, while maintaining deterministic implementability. This
shows that the number of qubits needed to perform a measurement-based computation is directly related
to the number of non-Clifford operations required for the computation.

We generalise several concepts originally developed for patterns containing only XY-plane measure-
ments to patterns with measurements in multiple planes. In particular, we adapt the definitions of focused
gflow [17] and maximally delayed gflow [18] to the extended gflow case. This allows us to generalise the
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Figure 2: A schematic overview of the translation procedures between the three paradigms.

efficient algorithm of Ref. [18] (which finds a gflow on a given labelled open graph with only XY-plane
measurements) to work for patterns with measurements in multiple planes. Note that our generalisation of
focused gflow differs from the three generalisations suggested by Hamrit and Perdrix [11].

Circuit extraction — Using the rewrite rules for ZX-diagrams in MBQC-form, we give an algorithm
that extracts an ancilla-free quantum circuit from any measurement pattern with extended gflow. This is
the first circuit extraction algorithm for extended gflow, i.e. for patterns which contain measurements in
more than one plane. The algorithm works by translating the pattern into the ZX-calculus and transforming
the resulting ZX-diagram into a circuit-like form. It generalises a similar algorithm, which works only
for patterns where all measurements are in the XY-plane [9]. The circuit extraction algorithm employs
the ZX-calculus, so it can be used not only on diagrams arising from measurement patterns but on any
ZX-diagram that satisfies the MBQC-form properties and has gflow. In particular, this includes the
ZX-diagrams arising from the procedures of Refs. [9, 15] that contain phase gadgets [1, 5]. Our procedure
is therefore not only the most general circuit extraction algorithm for measurement patterns but also the
most general known circuit extraction algorithm for ZX-diagrams.

Combined with the known procedure for transforming a quantum circuit into a measurement pattern
using the ZX-calculus [9], our pattern simplification and circuit extraction procedure can be used to reduce
the non-Clifford gate count of quantum circuits. This involves translating the circuit into a ZX-diagram,
transforming to a diagram which corresponds to a measurement pattern, simplifying the pattern, and then
re-extracting a circuit. Hence, our results can be seen as a unification of the optimisation of measurement
patterns and circuits. See Fig. 2 for a schematic overview of this procedure.

Conclusions — We have generalised several concepts involving gflow to work for patterns involving
measurements in multiple planes. This has allowed us to unify multiple known results regarding rewriting
measurement patterns. As a result we can remove all internal qubits measured in a Clifford basis from
a pattern while preserving deterministic realisability. Furthermore, we can efficiently transform any
measurement pattern with gflow into an ancilla-free quantum circuit. This transformation also represents
the most general known circuit extraction algorithm for ZX-diagrams.
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