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Abstract

Kliuchnikov, Maslov, and Mosca proved in 2012 that a 2 × 2 unitary matrix V can be exactly
represented by a single-qubit Clifford+T circuit if and only if the entries of V belong to the ring Z[1/

√
2, i].

Later that year, Giles and Selinger showed that the same restriction applies to matrices that can be
exactly represented by a multi-qubit Clifford+T circuit. These number-theoretic characterizations shed
new light upon the structure of Clifford+T circuits and led to remarkable developments in the field of
quantum compiling. In the present paper, we provide number-theoretic characterizations for certain
restricted Clifford+T circuits by considering unitary matrices over subrings of Z[1/

√
2, i]. We focus on

the subrings Z[1/2], Z[1/
√

2], Z[1/
√

-2], and Z[1/2, i], and we prove that unitary matrices with entries
in these rings correspond to circuits over well-known universal gate sets. In each case, the desired gate
set is obtained by extending the set of classical reversible gates {X,CX,CCX} with an analogue of the
Hadamard gate and an optional phase gate.

Preprint: The preprint for this extended abstract can be found at arXiv:1908.06076.

Introduction: Kliuchnikov, Maslov, and Mosca showed in [20] that a 2-dimensional unitary matrix V can
be exactly represented by a single-qubit Clifford+T circuit if and only if the entries of V belong to the ring
Z[1/
√

2, i]. This result gives a number-theoretic characterization of single-qubit Clifford+T circuits. In [12],
Giles and Selinger extended the characterization of Kliuchnikov et al. to multi-qubit Clifford+T circuits by
proving that a 2n-dimensional unitary matrix can be exactly represented by an n-qubit Clifford+T circuit
if and only if its entries belong to Z[1/

√
2, i].

These number-theoretic characterizations provide great insight into the structure of Clifford+T circuits.
As a result, single-qubit Clifford+T circuits are now very well understood [9, 13, 21, 22, 24]. In contrast,
our understanding of multi-qubit Clifford+T circuits remains more limited, despite interesting results [8, 11,
14, 15, 29]. One of the reasons for this limitation is that large unitary matrices over Z[1/

√
2, i] are hard to

analyze. In order to circumvent the difficulties associated with multi-qubit Clifford+T circuits, restricted
gate sets have been considered in the literature. This led to important developments in the study of multi-
qubit Clifford, CNOT+T , and CNOT-dihedral circuits [3, 4, 5, 6, 18, 23, 26]. Unfortunately, the simpler
structure of these restricted gate sets comes at a cost: they are not universal for quantum computing.

Contributions: In the present work, our goal is to address both of these limitations by considering re-
strictions of the Clifford+T gate set which are nevertheless universal for quantum computing. To this end,
we study circuits corresponding to unitary matrices over proper subrings of Z[1/

√
2, i], focusing on Z[1/2],

Z[1/
√

2], Z[1/
√

-2], and Z[1/2, i]. For each subring, we find a set of quantum gates G with the property that
circuits over G correspond to unitary matrices over the given ring. Writing U2n(R) for the group of 2n × 2n

unitary matrices over a ring R, our main results can then be summarized in the following theorem.
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Theorem. A 2n × 2n unitary matrix V can be exactly represented by an n-qubit circuit over

(i) {X,CX,CCX,H ⊗H} if and only if V ∈ U2n(Z[1/2]),

(ii) {X,CX,CCX,H,CH} if and only if V ∈ U2n(Z[1/
√

2]),

(iii) {X,CX,CCX,F} if and only if V ∈ U2n(Z[1/
√

-2]), and

(iv) {X,CX,CCX,ωH, S} if and only if V ∈ U2n(Z[1/2, i]),

where ω = eiπ/4 and F ∝
√
H. Moreover, in (i)-(iv), a single ancilla is sufficient.

The gate sets in items (i)–(iv) of the above theorem are all universal for quantum computing [2, 27],
and we sometimes refer to circuits over these gate sets as integral, real, imaginary, and Gaussian Clifford+T
circuits, respectively.

Restrictions similar to the ones considered here were previously studied in the context of foundations [25],
randomized benchmarking [17], and graphical languages for quantum computing [7, 19, 28]. Furthermore,
our study fits within a larger program, initiated by Aaronson and others which aims at classifying quantum
operations. Such classifications exist for classical reversible operations [1], for stabilizer operations [16], and
for beam-splitter interactions [10], but no classification is known for a universal family of quantum operations
suited for fault-tolerant quantum computing. In this context, our work can be seen as a partial classification of
the universal extensions of the set of classical reversible gates {X,CX,CCX}. This perspective is illustrated
in Figure 1, which depicts a fragment of the lattice of subgroups of Un(Z[1/

√
2, i]) where, for conciseness,

we wrote D for the ring Z[1/2] so that the rings Z[1/
√

2], Z[1/
√

-2], Z[1/2, i] and Z[1/
√

2, i] are denoted by
D
[√

2
]
, D
[√

-2
]
, D[i], and D [ω], respectively.

Overview: Unrestricted Clifford+T circuits are generated by

H =
1√
2

[
1 1
1 −1

]
, CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , and T =

[
1 0
0 ω

]
.

Since ω = (1 + i)/
√

2, the entries of all the generators belong to the ring Z[1/
√

2, ω] = Z[1/
√

2, i] = D[ω].
Hence, if a matrix V can be represented exactly by an n-qubit Clifford+T circuit, then V ∈ U2n(D [ω]), the
group of 2n×2n unitary matrices with entries in D [ω]. Showing that the ring D [ω] characterizes Clifford+T
circuits thus amounts to proving the converse implication. An algorithm establishing that every element of
U2n(D [ω]) can be exactly represented by a Clifford+T circuit is known as an exact synthesis algorithm.

The original insight of Kliuchnikov, Maslov and Mosca in the single-qubit Clifford+T case was to reduce
the problem of exact synthesis to the problem of state preparation. The latter problem is to find, given a
target vector v ∈ D [ω]

n
, a sequence G1, . . . , G` of Clifford+T gates such that G` · · ·G1e1 = u or, equivalently,

such that G†
1 · · ·G

†
`u = e1. Kliuchnikov et al. realized that this sequence of gates can be found by first writing

v as v = u/
√

2
q

for some u ∈ Z [ω] and then iteratively reducing the exponent q.
This basic premise was extended by Giles and Selinger to the multi-qubit context by adding an outer

induction over the columns of an n-qubit unitary. This method amounts to performing a constrained Gauss-
ian elimination where the row operations are restricted to a few basic moves. The Giles-Selinger algorithm
proceeds by reducing the leftmost column of an n × n unitary matrix to the first standard basis vector by
applying a sequence of one- and two-level matrices, which act non-trivially on at most two components of a
vector, before recursively dealing with the remaining submatrix. If the target unitary is V =

[
v V ′ ], then

the Giles-Selinger algorithm first constructs a sequence of matrices G1, . . . , G` such that G1 · · ·G`v = e1.
Left-multiplying V by this sequence of matrices then yields

G1 · · ·G`

 v V ′

 =


1 0 · · · 0
0
... V ′′

0


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Figure 1: Some subgroups of Un(D [ω]). To the left of the cube, in yellow, the symmetric group Sn corresponds
to circuits over the gate set {X,CX,CCX}. On the bottom face of the cube, in blue, are generalized
symmetric groups, and on the top face of the cube, in red, are universal subgroups of Un(D [ω]). The edges
of the lattice denote inclusion. The gates labeling the edges are sufficient to extend the expressive power
of a gate set from one subgroup to the next (and no further). For example, the edge labeled Z going from
Sn to Un(Z) indicates that adding the Z gate to {X,CX,CCX} produces a gate set expressive enough to
represent every matrix in Un(Z) (but not every matrix in Un(Z [i])).

where V ′′ is unitary. The fact that the matrices used in this reduction act non-trivially on no more than
two rows of the matrix ensures that when the algorithm recursively reduces the columns of V ′′ it does so
without perturbing the previously fixed columns. The Giles-Selinger algorithm thus relies on the following
two facts.

1. A unit vector in D [ω]
n

can be reduced to a standard basis vector by using one- and two-level matrices
and

2. the required one- and two-level matrices can be exactly represented by Clifford+T circuits.

While each of our characterizations presents specificities, our method in characterizing restricted Clifford+T
circuits follows this general structure.

Conclusion: In this contribution, we provide number-theoretic characterizations for several classes of
restricted but universal Clifford+T circuits, focusing on integral, real, imaginary, and Gaussian circuits. We
show that a unitary matrix can be exactly represented by an n-qubit integral Clifford+T circuit if and only if
it is an element of the group U2n(D). We then establish that real, imaginary, and Gaussian circuits similarly
correspond to the groups U2n(D

[√
2
]
), U2n(D

[√
-2
]
), and U2n(D[i]), respectively.
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