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Abstract

Kliuchnikov, Maslov, and Mosca proved in 2012 that a 2 X 2 unitary matrix V' can be exactly
represented by a single-qubit Clifford+T circuit if and only if the entries of V belong to the ring Z[1/+/2,1].
Later that year, Giles and Selinger showed that the same restriction applies to matrices that can be
exactly represented by a multi-qubit Clifford+7 circuit. These number-theoretic characterizations shed
new light upon the structure of Clifford+7 circuits and led to remarkable developments in the field of
quantum compiling. In the present paper, we provide number-theoretic characterizations for certain
restricted Clifford+T circuits by considering unitary matrices over subrings of Z[1/v/2,i]. We focus on
the subrings Z[1/2], Z[1/v/2], Z[1/v/-2], and Z[1/2,i], and we prove that unitary matrices with entries
in these rings correspond to circuits over well-known universal gate sets. In each case, the desired gate
set is obtained by extending the set of classical reversible gates {X,CX,CCX} with an analogue of the
Hadamard gate and an optional phase gate.

Preprint: The preprint for this extended abstract can be found at arXiv:1908.06076.

Introduction: Kliuchnikov, Maslov, and Mosca showed in [20] that a 2-dimensional unitary matrix V' can
be exactly represented by a single-qubit Clifford+7" circuit if and only if the entries of V' belong to the ring
Z[1/+/2,4]. This result gives a number-theoretic characterization of single-qubit Clifford+7 circuits. In [12],
Giles and Selinger extended the characterization of Kliuchnikov et al. to multi-qubit Clifford+7 circuits by
proving that a 2"-dimensional unitary matrix can be exactly represented by an n-qubit Clifford+T circuit
if and only if its entries belong to Z[1/v/2,1].

These number-theoretic characterizations provide great insight into the structure of Clifford+71" circuits.
As a result, single-qubit Clifford+7" circuits are now very well understood [9] 13| 211 22| 24]. In contrast,
our understanding of multi-qubit Clifford+T circuits remains more limited, despite interesting results [8] [T,
14, 15, 29]. One of the reasons for this limitation is that large unitary matrices over Z[1//2, ] are hard to
analyze. In order to circumvent the difficulties associated with multi-qubit Clifford+T" circuits, restricted
gate sets have been considered in the literature. This led to important developments in the study of multi-
qubit Clifford, CNOT+T', and CNOT-dihedral circuits [3 [4] [5 [6, 18] 23, 26]. Unfortunately, the simpler
structure of these restricted gate sets comes at a cost: they are not universal for quantum computing.

Contributions: In the present work, our goal is to address both of these limitations by considering re-
strictions of the Clifford+T gate set which are nevertheless universal for quantum computing. To this end,
we study circuits corresponding to unitary matrices over proper subrings of Z[1/v/2, 1], focusing on Z[1/2],
Z[1/+/2], Z[1/v/~-2], and Z[1/2,]. For each subring, we find a set of quantum gates G with the property that
circuits over G correspond to unitary matrices over the given ring. Writing Us» (R) for the group of 2" x 2"
unitary matrices over a ring R, our main results can then be summarized in the following theorem.
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Theorem. A 2™ x 2" unitary matriz V can be exactly represented by an n-qubit circuit over
(i) {X,CX,CCX,H® H} if and only if V € Uan (Z[1/2)),
(ii) {X,CX,CCX,H,CH} if and only if V € Uan(Z[1/V/2]),
(iii) {X,CX,CCX, F} if and only if V € Uan (Z[1/v/-2]), and
(iv) {X,CX,CCX,wH,S} if and only if V € Uan(Z[1/2,1]),
where w = €™/* and F oc VH. Moreover, in (i)-(), a single ancilla is sufficient.

The gate sets in items (¢)—(iv) of the above theorem are all universal for quantum computing [2] 27],
and we sometimes refer to circuits over these gate sets as integral, real, imaginary, and Gaussian Clifford+T
circuits, respectively.

Restrictions similar to the ones considered here were previously studied in the context of foundations [25],
randomized benchmarking [I7], and graphical languages for quantum computing [7, 19, 28]. Furthermore,
our study fits within a larger program, initiated by Aaronson and others which aims at classifying quantum
operations. Such classifications exist for classical reversible operations [I], for stabilizer operations [16], and
for beam-splitter interactions [I0], but no classification is known for a universal family of quantum operations
suited for fault-tolerant quantum computing. In this context, our work can be seen as a partial classification of
the universal extensions of the set of classical reversible gates { X, CX,CCX}. This perspective is illustrated
in Figure |1} which depicts a fragment of the lattice of subgroups of U, (Z[1/v/2,i]) where, for conciseness,
we wrote I for the ring Z[1/2] so that the rings Z[1/v/2], Z[1/v/-2], Z[1/2,i] and Z[1/+/2,1] are denoted by
D [\/ﬂ, D [\/-ﬂ, D[i], and D [w], respectively.

Overview: Unrestricted Clifford+7 circuits are generated by
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Since w = (1 +14)/v/2, the entries of all the generators belong to the ring Z[1/v/2,w] = Z[1/v/2,i] = D[w].
Hence, if a matrix V' can be represented exactly by an n-qubit Clifford+7 circuit, then V' € Uan (D [w]), the
group of 2" x 2™ unitary matrices with entries in D [w]. Showing that the ring D [w] characterizes Clifford+T'
circuits thus amounts to proving the converse implication. An algorithm establishing that every element of
Usn (D [w]) can be exactly represented by a Clifford+T circuit is known as an exact synthesis algorithm.

The original insight of Kliuchnikov, Maslov and Mosca in the single-qubit Clifford+7" case was to reduce
the problem of exact synthesis to the problem of state preparation. The latter problem is to find, given a
target vector v € D [w]", a sequence G1, . .., Gy of Clifford+T gates such that Gy - - - Gie; = u or, equivalently,
such that GJ{ e qu = e;. Kliuchnikov et al. realized that this sequence of gates can be found by first writing
vas v =u/v2" for some u € Z [w] and then iteratively reducing the exponent g.

This basic premise was extended by Giles and Selinger to the multi-qubit context by adding an outer
induction over the columns of an n-qubit unitary. This method amounts to performing a constrained Gauss-
ian elimination where the row operations are restricted to a few basic moves. The Giles-Selinger algorithm
proceeds by reducing the leftmost column of an n X n unitary matrix to the first standard basis vector by
applying a sequence of one- and two-level matrices, which act non-trivially on at most two components of a
vector, before recursively dealing with the remaining submatrix. If the target unitary is V = [ v ‘ 14 ], then
the Giles-Selinger algorithm first constructs a sequence of matrices Gy,...,Gy such that Gy ---Gyv = e;.
Left-multiplying V' by this sequence of matrices then yields
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Figure 1: Some subgroups of U, (D [w]). To the left of the cube, in yellow, the symmetric group S,, corresponds
to circuits over the gate set {X,CX,CCX}. On the bottom face of the cube, in blue, are generalized
symmetric groups, and on the top face of the cube, in red, are universal subgroups of U, (D [w]). The edges
of the lattice denote inclusion. The gates labeling the edges are sufficient to extend the expressive power
of a gate set from one subgroup to the next (and no further). For example, the edge labeled Z going from
Sp to Un(Z) indicates that adding the Z gate to {X,CX,CCX} produces a gate set expressive enough to
represent every matrix in U, (Z) (but not every matrix in U, (Z[i])).

where V" is unitary. The fact that the matrices used in this reduction act non-trivially on no more than
two rows of the matrix ensures that when the algorithm recursively reduces the columns of V" it does so
without perturbing the previously fixed columns. The Giles-Selinger algorithm thus relies on the following
two facts.

n

1. A unit vector in D [w]” can be reduced to a standard basis vector by using one- and two-level matrices

and
2. the required one- and two-level matrices can be exactly represented by Clifford+7 circuits.

While each of our characterizations presents specificities, our method in characterizing restricted Clifford+T
circuits follows this general structure.

Conclusion: In this contribution, we provide number-theoretic characterizations for several classes of
restricted but universal Clifford+T circuits, focusing on integral, real, imaginary, and Gaussian circuits. We
show that a unitary matrix can be exactly represented by an n-qubit integral Clifford+T circuit if and only if
it is an element of the group Us» (D). We then establish that real, imaginary, and Gaussian circuits similarly
correspond to the groups Us» (D [v/2]), Uz (D [V-2]), and Usz- (DIi]), respectively.
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