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1 Introduction

Contextuality [3], and more recently, generalized contextuality [6], refer to no-go theorems dismiss-
ing context-independent classical models for measured statistics. Besides probabilistic (or ontological)
models, statistics from operational procedures can also be modeled using the framework of general prob-
abilistic theories (GPTs), an example of which is quantum theory.

In this work [5], we prove that any finite-dimensional GPT satisfying the no-restriction hypothesis
is ontologically noncontextual if and only if it is simplicial. In the more subtle case of subGPTs, i.e.
GPTs for which the no-restriction hypothesis is violated, it is also proven that they are ontologically
noncontextual if and only if they are subtheories of simplicial GPTs of the same dimensionality.

2 Ontological Models

Operationally, the laboratory prescriptions for preparations and measurements forming the collections
P:={Pk} and M :={M j}, respectively [6]. The measurement processes with the same number of out-
comes are described by a measurable space (Ω,ω), where Ω is the finite set of all outcomes and ω is
the σ -algebra of events on it. In ontological model formalism an underlying ontic variable space ϒ is
assumed. Then, given the spaces Y and Q of all probability measures on (ϒ,υ) (υ is the σ -algebra
on ϒ) and (Ω,ω), respectively, the ontological model hypothesizes the existence of convex linear maps
µ:P→Y and ξ :M→Q that assign the ontic state µP to the preparation procedure P and the ontic
measurement ξM to the measurement procedure M [6], so that

µP : υ → [0,1],
∫

ϒ

dµP(λ ) = 1, ξM : ω×ϒ→ [0,1], and ξM(Ω|λ ) = 1 ∀λ ∈ ϒ. (1)

The probability of a particular event X in a measurement M given the preparation P is obtained as,

p(X |P,M)=
∫

ϒ

dµP(λ )ξM(X |λ ). (2)

3 GPTs

A second approach to the abstraction of operational scenarios is known as general probabilistic theories
(GPTs). Their construction begin with assuming an ordered vector space V endowed with an inner-
product 〈·,·〉. Each possible event X∈ω is then measured “vector-valuedly” by a probability vector-
valued measure (PVVM) which is a function E:ω→V satisfying (i) E(X)>0 for all X∈ω , (ii) E(Ω)=U
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for a fixed nonzero element U∈V , and (iii) E(∪iXi)=∑iE(Xi) for all sequences of disjoint events Xi∈ω .
Each vector E(Xi) is called an effect where their collection is denoted by E .

It is reasonable [5] to assume that (i) given any operationally legitimate effect E(X), the effect
pE(X) for any real number p∈[0,1] is also allowed, and (ii) if E1 and E2 are two PVVMs, so is
Ep:=pE1+(1−p)E2 implying that the set of all effects E is convex. We further assume that E spans
V . These allow us to state a Gleason-type theorem for GPTs as follows [5].

Theorem 1. Any generalized probability measure q:E→[0,1] satisfying (i) q(E(X))>0 for all effects
E(X)∈E , (ii) q(U)=1, and (iii) q(∑iE(Xi))=∑iq(E(Xi)) for all sequences of effects in E that satisfy
∑iE(Xi)6U, must be of the form q(A)=〈A,B〉 for all A∈V , for a unique B∈V which is normalized in the
sense that 〈U ,B〉=1.

Theorem 1 in conjunction with the no-restriction hypothesis, i.e. that given PVVM space E all
definable probability measures (q’s) on it correspond to physically valid states, delineates the GPT’s
state space as S := {ρ ∈ V |〈E(X),ρ〉 > 0 ∀E(X) ∈ E ,〈U ,ρ〉 = 1}. We denote a GPT by its pair of
PVVM and state spaces as T :=(E ,S ).

We have shown in the full paper of this abstract [5] that any GPT that does not satisfy the no-
restriction hypothesis is obtained as a subtheory of possibly (infinitely) many GPTs that do satisfy it by
imposing appropriate further constraints, thus named a subGPT.

4 Broad (Non)Contextuality

By the statistical equivalence assumption [6, 2], two preparations P1,P2∈P are statistically indis-
cernible and equivalent, P1∼=P2, if and only if for every measurement procedure M∈M and every event
X∈ω it holds that p(X |P1,M)=p(X |P2,M). Similarly, two measurements M1,M2∈M are statistically in-
discernible and equivalent, M1∼=M2, if and only if for every preparation procedure P∈P and every event
X∈ω it holds that p(X |P,M1)=p(X |P,M2). The particular way in which a state or measurement is exper-
imentally realized thus corresponds to an element within an equivalence class and it is called a context.
The broad assumption of noncontextuality of a statistical model for experiments states that our models
of physical phenomena should depend only on equivalence classes rather than individual contexts. An
ontological model which is noncontextual in the broad sense is called a noncontextual ontological model
(NCOM) and satisfies P1 ∼= P2 ⇔ µP1 = µP2 and M1 ∼= M2 ⇔ {ξM1(X |λ )} = {ξM2(X |λ )}. Similarly,
broad noncontextulaity of GPTs reads as P1 ∼= P2⇔ P1,P2 7→ ρ and M1 ∼=M2⇔M1,M2 7→ {E(X)}.

5 Ontological (Non)Contextuality of (Sub)GPTs

We now aks if it is possible to construct ontological models of generic GPTs noting that, with appropri-
ate care, such models will inherit the noncontextuality from the theory leading to NCOMs. In doing so,
we replace the preparation and measurement procedures P and M in Eqs. (1) and (2), with their repre-
sentatives in the theory, ρ∈S and {E(X)}⊂E , respectively. Hence, there should exist injective maps
η :S→Y and ζ :E→Q that assign the unique ontic state ηρ and ontic measurement ζE to each state vec-
tor ρ and PVVM E, respectively, such that for all λ∈ϒ and all events X∈ω , ηρ(λ )> 0, ζE(X |λ ) ∈ [0,1],
and satisfy

∫
ϒ
dηρ(λ ) = 1, and ∀λ ζE(Ω|λ ) = 1. The probability of a particular event X in a measure-

ment M given the preparation P should then be obtained as

p(X |P,M)=p(X |ρ,E)=
∫

ϒ

dηρ(λ )ζE(X |λ ). (3)
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6 Main Results

We now state our first main result regarding the ontological noncontextuality of GPTs.

Theorem 2. A GPT is ontologically noncontextual if and only if its pure states and nonrefinable sharp
effects each form a complete basis for the space V . Equivalently, the GPT must be simplicial meaning
that S and convEnr are simplexes.

Here we outline the proof of Theorem 2, the complete version of which can be found in [5]. Re-
call that the maps µ and ξ , and hence η and ζ , are convex linear. Using the fact that S and E
both span V and Riesz’s theorem we find that η and ζ must be of the forms ηρ(λ )=〈ρ,F(λ )〉 and
ζE(X |λ )=〈E(X),D(λ )〉 for F(λ ),D(λ )∈V . Satisfying Eq. (3) then implies that F :={F(λ )} resem-
bles a PVVM whereas D :={D(λ )} is a subset of GPT’s state space. After a few more simple steps
we find that F and D must in fact be the generating sets of closed convex sets E and S , respectively.
We conclude from the latter that the extreme states ρ∈D and the extreme effects E(X)∈F must be
represented by Dirac measures over the ontic space ϒ, that is, (i) D3ρ

η7−→δλρ
(λ ) for some λρ∈ϒ and

(ii) F3E(X)
ζ7−→δλE(X)

(λ ) for some λE(X)∈ϒ, where δa(β ) equals 0 if a/∈β and equals 1 if a∈β for any
measurable subset β . These two enforce that states and effects possess a unique decompositions into
nonrefinable extreme elements, hence the theorem.

Theorem 3. Any subGPT Tsub=(Esub,Ssub) over Vsub admits a NCOM if and only if it is a subtheory of
an ontologically noncontextual GPT T =(E ,S ) over V and dimVsub=dimV =cardϒ.

The proof of Theorem 3 is similar to that of Theorem 2, as detailed in Ref. [5].
We acknowledge the support from the Royal Commission for the Exhibition of 1851, AQTION

project (820495) funded by the European Union Quantum Technology Flagship, and the Sêr SAM Project
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Note added.— Two independent works by Schmid et al [4] and Barnum and Lami [1] also present
similar results.
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