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Abstract

Contextuality is often referred to as a generalization of non-locality.
In this work, using the hypergraph approach for contextuality we show
how to associate a contextual scenario to a general k-partite non local
game, and consider the reverse direction : how and when is it possible
to represent a general contextuality scenario as a non local game. Using
the notion of conditional contextuality we show that it is possible to
embed any contextual scenario in a two players non local game. We
also discuss di↵erent equivalences of contextuality scenarios and show
that the construction used in the proof is not optimal by giving a
simpler bipartite non local game when the contextual scenario is a
graph instead of a general hypergraph.
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1 Introduction

Non locality is a key feature for quantum information theory and has many
implications on quantum computing. For example, there are certain lin-
ear algebra problems which can be solved by parallel quantum circuits of
constant-depth but require logarithmic-sized classical circuits [5], or dis-
tributed computing tasks which can be solved in a constant number of rounds
with a quantum setting but with a network-size number of rounds in the
classical setting [7].

These two approaches used the same quantum computing tool, non-local
games. They are cooperation games in which the players are each asked a
question and can’t communicate, but they can share predefined quantum
states and operate certain measurements on them according to their ques-
tion which improves their success without sharing more information thanks
to quantum superposition and entanglement. Contextuality is resource for
models of quantum computation [4] which, for example, allows to describe
the counter-intuitive correlations behind these strategies.

It is usually acknowledged [2] that non-locality is a particular case of
contextuality. But, could certain aspects of non-locality capture contex-
tuality as a whole? What is the exact relation between non-locality and
contextuality? There are several ways to describe contextuality: with a
hypergraphs-theoretic approach [2], a graph-theoretic one [6] and a sheaf-
theoretic one [1]. This paper uses the first approach and aims at obtaining
any contextuality scenario from Foulis-Randall products. The players are
identified with the factor scenarios of this product.

First o↵ we introduce the notion of contextuality as hypergraphs and
several equivalence relations that are helpeful to understand what need to
be captured. Indeed, to show that it is possible to capture the properties of
a hypergraph one may use a representative in an equivalence class. Then we
express multipartite non-locality with a contextuality formalism, we finally
show in a constructive way how contextuality can be captured by bipartite
non-locality, and show that the size of the construction can be optimized by
showing a smaller embedding in the case where the contextuality scenario
is a graph.

2 Hypergraph approach to Contextuality

We first define the graph theory tools which are going to be used to describe
contextuality and equivalence relations. Many of these definitions and ap-
proaches are inspired from [2]. The hypergraphs allow to see contextuality
in the frame of general probabilistic theories [3].

Definition 2.1. Contextuality Scenario [2]
A contextuality scenario is a hypergraph H = (V,E) such that there is

2



no isolated vertex, i.e.:

V =
[

e2E
e

Its edges are called measurements and its vertices are called the outcomes
(or results) of the measurements containing them. Thereafter, the term
hypergraph will also be used to refer to a contextuality scenario and the size
of a scenario will refer to |V |.

Within the interpretation of hypergraphs as experiments - that is in
terms of preparation, settings and possible measurement - this definition
ensures that each vertex is the result of at least one of the measurements.

If a contextuality scenario isn’t connected (if there are two sets of vertices
with no edge in between them), its m > 1 connected components can be
interpreted as m unrelated experiments, and the whole hypergraph as one
parallel experiment.

Figure 1: All models on the right scenario are of this form with p 2 [0, 1]
There is only one model for the left scenario

Contextuality arises from considering the probability distributions over
the outcomes:

Definition 2.2. General Probabilistic Model [2]
Let H = (V,E) be a contextuality scenario, a probabilistic model on H
is a function p : V ! [0, 1] such that

8e 2 E,
X

v2e
p(v) = 1

The set of all probabilistic models on H is denoted by G(H). And for any
W ✓ V , the sum

P
v2W p(v) will be denoted by p(W ).

Note that the likelihood to obtain a certain outcome is independent from
which measurement containing it is conducted. Hence, when a measurement
is conducted, one of its results is obtained with a probability given by this
model.

For any hypergraph H, di↵erent resources define di↵erent families of
models: deterministic models D(H) are one were the outcome of each mea-
surement is predefined (one vertex per edge), classical models C(H) is a con-
vex combinations of deterministic models (deterministic hidden variables),
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and quantum models Q(H) are defined form measuring a quantum state
on a Hilbert space (protective measurements). In [2] it has been proved
that Q(H) is characterized by a hierarchy of semi-definite programs that is
enclosed into the local orthogonality models CE1(H) (also called consistent
exclusivity models) in which the sum of probability on any independent set
of non-orthogonal vertices is smaller than 1 (where two vertices are called
orthogonal if there exists an edge containing both of them).

In order to say that a hypergraph captures another hypergraph : we
define the notion of conditional contextuality to express that a subset of
vertices of the first hypergraph can be identified with the vertices of the
second in such a way that there is a bijection between the probability distri-
butions (the general probabilistic models) of the second and the probability
distributions on the subset of vertices that can be extended to a general
probabilistic model of the first.

Definition 2.3. Conditional Contextuality
Let H = (V,E) and H 0 = (V 0, E0) be two hypergraphs such that there is an
injection � : V 0 ! V . H 0 is a conditional contextuality scenario of H
if and only if G(H) � � = G(H 0), i.e.

8p 2 G(H), p � � 2 G(H 0)
8p0 2 G(H 0), 9p 2 G(H), p � � = p0

That is, the structure of a contextuality scenario H 0 will be captured
by non-locality if one can find a non-local scenario H whose models are
extensions of all the models of the contextuality scenario H 0. We will use
this notion to try to capture the models of any contextuality scenario with
on corresponding to a non local game (in the case of the two players the size
will be of the form n1 ⇥ n2).

In order to manipulate scenarios and reduce them while maintaining the
core structure of their models, this following notion of sub-hypergraph will
be useful:

Definition 2.4. Induced Sub-hypergraph [2]
Let H = (V,E) be a hypergraph and W ✓ V , the sub-hypergraph of H
induced by W is the hypergraph

HW = ( W , { e \W : e 2 E } )

Any probabilistic model pW on HW , can be extended to p on H by setting
p such that

8v 2 V, p(v) =

(
pW (v) if v 2 W

0 otherwise

In that case p is a probabilistic model on H.1

1Note that this extension is very di↵erent from the one of conditional contextuality
as its models are just the intersection of the probability models of the larger hypergraph
with the subspace where the missing vertices have 0 probability
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Figure 2: The contextuality scenarios � and �3, the first is an induced
sub-hypergraph of the second

In order to decrease the number of scenarios - and identify what is the
fundamental structure of G(H) which makes H more complex and hard
to capture - these equivalence relations will aim to reduce the size of the
hypergraphs considered. It will be also useful to try to define a canonical
instance of contextuality scenarios.

Because the majority of the following definitions rely on G(H), only
scenarios such that G(H) 6= ; will usually be considered for the examples
and to illustrate the interpretation of these concepts.

Definition 2.5. Observational Equivalence
Let H = (V,E) and H 0 = (V 0, E0) be two contextuality scenarios. H and
H 0 are observationally equivalent if and only if G(H) = G(H 0). What is
meant by this equation is than there exists a bijection � : V 0 ! V such that

G(H 0) = G(H) � � = { p � � : p 2 G(H) }

The motivation behind decreasing the size of contextuality scenarios is
that the constructions created to ’contain’ are thus smaller. So, the three
following definitions try to reduce V and E without losing the structure of
the probabilistic models of the scenario.

Definition 2.6. Virtual Equivalence
Let H = (V,E) be a contextuality scenario and e ✓ V . e is a virtual edge
of H if and only if

8p 2 G(H),
X

v2e
p(v) = 1

H is virtually included in any H 0 = (V,E [ E0) such that E0 contains only
virtual edges of H. The symmetric closure of this inclusion is called virtual
equivalence. The completion of H, denoted by H, is the virtual equivalent
of H which has the most edges.
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Figure 3: As the only model is v 7! 1/2, any pair of vertices sum to 1

Definition 2.7. Equivalence by Contraction
Let H = (V,E) be a hypergraph and W a subset of vertices W ✓ V, W 6= ;.
W can be contracted in H if and only no edge e cuts the subset into two
non trivial parts :

8e 2 E, (W ✓ e) _ (W \ e = ;)

The vertices of W are said to be indistinguishable. For every W 0 ✓ W, W 0 6=
;, the induced sub-hypergraph HV \(W\W 0) is a contraction of H. The sym-
metric transitive closure of this relation is called equivalence by con-
traction. Furthermore, there is an simple way to transform a probabilistic
model p on H into a probabilistic model on HV \(W\W 0) as any function p0

such that �
8v 2 V \W, p0(v) = p(v)

�
^ p0(W 0) = p(W )

is a valid model of HV \(W\W 0).

Definition 2.8. Zero equivalence
Let H = (V,E) be a contextuality scenario and W ✓ V . H zero-reduces to
HW if and only if

8p 2 G(H), 8v 2 V \W, p(v) = 0

In that case, the vertices of W are called zero weighted. The symmetric
closure of the zero-reduction is called zero equivalence.

If there exists e1 and e2 in E such that e1 ⇢ e2, then 8p 2 G(H), 8v 2
e2\e1, p(v) = 0. Only contextuality scenarios where there are no such edges
are usually considered.

The combined relation of these three equivalence relations is what we will
consider in order to reduce the size of the studied scenarios. The non-local
interpretation of a given contextuality scenario increases with the number of
vertices and edges so this equivalence tries to build a smaller scenario with
the same structure.
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Figure 4: In any model, the middle vertex has weight 0

Definition 2.9. VCZ Equivalence
The VCZ equivalence, denoted ⇠vcz, is defined as the smallest equivalence
relation containing virtual equivalence, equivalence by contraction and zero
equivalence. For each scenario H, let Hvcz = (V vcz, Evcz) denote an equiv-
alent of H with respect to ⇠vcz, obtained by removing all zero weighted
vertices, by contracting the remaining vertices so that |V vcz| is minimal and
finally by considering the completion and removing edges so that |Evcz| is
minimal.

Hvcz is not unique but this notation can be used regardless because of
the following result.

Theorem 2.10. Consistency of VCZ Equivalence
Let H1 and H2 be two contextuality scenarios such that H1 ⇠vcz H2, then
(any choice of) Hvcz

1 and Hvcz
2 are observationally equivalent.

Proof in appendix A.

3 Expressing multipartite non local games as con-

textuality scenarios

A k player combinatorial multipartite game is a game in which k players not
allowed to communicate receive each one local question xi in some setXi and
provides an answer ai in some set Ai. The game is characterised by a winning
global relation between the inputs and outputs W (x1 . . . xk, a1 . . . ak).

For each player pi each question xi is represented by an edge containing
|Ai| vertices. Each input correspond to a player’s measurement and each
output to a possible outcome.

The scenario for one player is therefore a set of disjoint vertices that can
be labeled x|a. We denote by B the set of such uncorrelated scenarios.

Combining scenarios can be done with Foulis Randall product.

Definition 3.1. Bipartite Foulis-Randall Product
Let HA = (VA, EA) and HB = (VB, EB) be two hypergraphs. The sets of
joint measurement edges EA!B et EA B, respectively of HA to HB and of
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HA from HB, are defined as :

EA!B :=

(
[

a2eA

�
{a}⇥ f(a)

�
: eA 2 EA, f : eA ! EB

)

EA B :=

(
[

b2eB

�
g(b)⇥ {b}

�
: eB 2 EB, g : eB ! EA

)

The bipartite Foulis-Randall product of HA and HB is the product
hypergraph HA ⌦HB = (VA ⇥ VB , EA!B [ EA B).

The set EA!B (and symmetrically EA B) can be interpreted as Alice
picking a measurement eA 2 EA and for each of its outcomes Bob is picking
one measurement in EB.

The set of global questions is covered with the edges in EA!B \EA B.
As observed in [2] by definition of the probability models for any p,

for any two edges
P

v2e1\e2 p(v) =
P

v2e2\e1 p(v). This allows to recover
the nonsignaling condition ensuring the setting in which the players do not
communicate from the Foulis Randall product.

The bipartite game scenario is therefor just obtained by restricting the
product viewing the winning relation as a rule:

Definition 3.2. Bipartite Game
Let H = (V,E) = B1 ⌦B2 with Bi = (Vi, Ei) 2 B.
The edges of H of the form of e1 ⇥ e2 with ei 2 Ei, 8i 2 [1, 2] are called
questions of H and the set of questions is denoted by QE . A function
r : QE ! P(V ) such that 8e 2 QE , r(e) ✓ e is called a rule on H. For any
rule r, the winning outcomes are the vertices in Wr =

S
e2QE

r(e) and the
game on H under the rule r is the subsequent hypergraph

Hr =

 
Wr , { e \Wr : e 2 E }

!
= HWr
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Figure 5: Left figure : Bell Scenario for 2 players with 2 measurements each
which can give 2 outcomes, denoted as B2,2,2. Right figure: The CHSH game
on the Bell scenario B2,2,2, the only model is v 7! 1/2 so the � scenario has
a 2-partite conditional interpretation

Figure 6: This contextuality scenario on the left can be directly obtained as
a game with a rule (denoted in red) which restrict the questions 00 and 01
to the diagonal answers 00, 11 and 22

There are di↵erent choices of products of k > 2 scenarios. However,
all these choices are observationally equivalent- their completion does not
depend on the particular choice of the product[2].

Definition 3.3. k-partite Joint Measurement
Let Hi = (Vi, Ei), i 2 [1, k], be k hypergraphs. The set of joint measure-
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ment edges Ei![1,k]\i of Hi to the Hj 6=i, is defined as:

Ei![1,k]\i :=

8
><

>:

(
(v1, ..., vk) :

8j 6= i, vj 2 ej
vi 2 f((vj)j 6=i)

)
:

(ej)j 6=i 2
Q
j 6=i

Ej

f :
Q
j 6=i

ej ! Ei

9
>=

>;

It can be interpreted as the k�1 other players each picking an measure-
ment ej 2 Ej and for each product outcome of these the player i picks a
measurement in Ei.

Definition 3.4. k-partite Products
Let Hi = (Vi, Ei) for i 2 [1, k] be k hypergraphs. The minimal Foulis-
Randall product of the Hi, denoted Hmin

FR = min
1ik

N
Hi, is defined as

:

Hmin
FR =

 
kY

i=1

Vi ,
k[

i=1

Ei![1,k]\i

!

The complete Foulis-Randall product of theHi, denotedHFR =
N

1ikHi,
is defined as :

H̄FR = Hmin
FR

And with these products comes the generalization of the property of
G( min

1ik
N

Hi): a probabilistic model p 2 G(H1⇥...⇥Hk) lies in G( min
1ik

N
Hi)

if and only if it satisfies the k-partite no-signaling equations.

Definition 3.5. k-partite Game

Let H = (V,E) =
Nk

i=1Bi with Bi = (Vi, Ei) 2 B, 8i 2 [1, k].

The edges of H of the form of
Qk

i=1 ei with ei 2 Ei, 8i 2 [1, k] are called
questions of H and the set of questions is denoted by QE . A function
r : QE ! P(V ) such that 8e 2 QE , r(e) ✓ e is called a rule on H. For any
rule r, the winning outcomes are the vertices in Wr =

S
e2QE

r(e) and the
game on H under the rule r is the subsequent hypergraph

Hr =

 
Wr , { e \Wr : e 2 E }

!
= HWr

Note that the translation from compatible measurements to the event
based hypergraph model is well known and can be found in the appendix
of [2]. A straightforward representation of k�partite non local games is
obtained in the compatible measurements as each player’s measurements
have to be compatible with all the other player’s measurement and each
player can chose exactly one measurement. Therefore in the compatibility
measurements each player has a set of vertices two by two disjoint and the
sets are connectected as complete multipartite graphs.
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4 Contextuality as Bipartite Non-Locality

The first result in terms of conditional contextuality is that any scenario can
be found in a bipartite game when the two players operate on uncorrelated
scenarios as large as the intended contextuality scenario.

Theorem 4.1. General Bipartite conditional contextuality
Let H = (V,E) be a hypergraph such that |E| = m and maxe2E |e| = d.
Then, H has a 2-partite conditional interpretation as a game on B2,m,d.

Proof.
First, let’s formally define the sought game and then construct the condi-
tional interpretation. Consider the two 1-local scenarios Ha = (Va, Ea) and
Hb = (Vb, Eb) such that

Ha = Hb =

✓ �
v|e : e 2 E, v 2 e

 
,
�
{v|e : v 2 e} : e 2 E

 ◆

Those are the factors scenarios. For each v 2 V , there are, in Va and Vb, as
many clones of v as edges of H which contains v. Each edge {v|e : v 2 e}
in Ea and Eb can be interpreted as a decorrelated version of e. Ha and Hb

are thus two uncorrelated scenarios, observe that there is already a labeling
induced by the names of the vertices. In the product hypergraph Ha ⌦Hb,
the edge {vv0|ee0 : v 2 e, v0 2 e0} is called the question on the edges (e, e0)
and will be denoted by ee0 . Finally, the sought game Gab = (Vab, Eab) is the
game on Ha ⌦Hb under the standard rule r, Gab = (Ha ⌦Hb)r such that

8e, e0 2 E, r(ee0) =
�
vv0|ee0 : v = v0 or {v, v0} \ e \ e0 = ;

 

Now let’s prove that H is a conditional scenario of Gab. To show that,
consider for each v 2 V an edge ev 2 E such that v 2 ev, this creates an
injection � : v 2 V 7! vv|evev 2 Vab. The (stronger) result which will be
proved is that any choice of the edges ev makes a valid labeling of H.

• Let pab 2 G(Gab) be a probabilistic model and p = pab � �. In order to
show p 2 G(H), i.e.

8e 2 E,
X

v2e
p(v) =

X

v2e
pab(vv|evev) = 1,

consider an edge e = {v1, ..., vk} 2 E. Let’s show that

8i 2 [1, k], pab(vivi|evievi) = pab(vivi|ee)

and then use the question on (e, e) to get the result.
Consider for each i 2 [1, k] the two following joint measurement edges
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of Ha ⌦Hb, respectively in Ea!b and Ea b:

(ea!b)i =
�
{vi|e}⇥ e

�
[

[

j 6=i

{vj |e}⇥ evi

(ea b)i =
�
evi ⇥ {vi|evi}

�
[

[

v02evi\{vi}

e⇥ {v0|evi}

Now, in the game Gab these edges lost vertices thanks to the rule r
applied to the questions on (e, e), (e, evi) and (evi , evi). In Eab, the
edge (ea!b)i was restricted to:

{vivi|ee} [
[

j 6=i
vj2evi

{vjvj |eevi} [
[

j 6=i
vj 62evi

{vjv0|eevi : v0 2 evi \ e}

Then, observe that these two unions can be rewritten as:

[

j 6=i
vj2evi

{vjvj |eevi} = {ww|eevi : w 2 (e \ evi) \ {vi}} =
[

v02evi\{vi}
v02e

{v0v0|eevi}

[

j 6=i
vj 62evi

{vjv0|eevi : v0 2 evi \ e} = {vjv0|eevi : vj 2 e \ evi , v0 2 evi \ e}

=
[

v02evi\{vi}
v0 62e

{vjv0|eevi : vj 2 e \ evi}

And (ea b)i was restricted to:

{vivi|evievi} [
[

v02evi\{vi}
v02e

{v0v0|eevi} [
[

v02evi\{vi}
v0 62e

{vjv0|eevi : vj 2 e\evi}

Thus, these two unions form a subsetW ✓ Vab such that {vivi|ee} [ W
and {vivi|evievi} [ W are both edges in Eab, i.e.

pab(vivi|ee) = 1� pab(W ) = pab(vivi|evievi)

Hence, 8i 2 [1, k], pab(vivi|ee) = pab(vivi|evievi) and so:

X

vi2e
p(vi) =

X

vi2e
pab(vivi|evievi) =

X

vi2e
pab(vivi|ee)

Finally, {vivi|ee : vi 2 e} 2 Eab, therefore
P
vi2e

p(vi) = 1.
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Figure 7: Example of the construction for the �3 scenario (cf. Figure 2).
The rules are in blue, the edges used in this proof are in red and green
(also half of the vertices are omitted because the construction is symmet-
rical). The vertices labeled 00|00, 11|00, 22|00, 33|11, 44|11 and 55|22 have
valid probability distributions in bijection with the vertices of �3. The first
three represent one edge, the second diagonal edge uses a clone of 11||00
that is 11|11 and the third diagonal edge uses two clones.

• Let p 2 G(H) be a probabilistic model, and let’s define a candidate for
its extension to G(Gab) as pab : Vab ! [0, 1] such that

8e, e0 2 E, pab(vv
0|ee0) =

8
>>><

>>>:

p(v) if v = v0

p(v)p(v0)

1� p(e \ e0)
if {v, v0} \ e \ e0 = ; and p(e \ e0) < 1

0 if {v, v0} \ e \ e0 = ; and p(e \ e0) = 1

Then, it follows that 8v 2 V, (pab ��)(v) = pab(vv|evev) = p(v), hence
pab � � = p. Now, in order to show pab 2 G(Gab), i.e.

8e 2 Eab,
X

v2e
pab(v) = 1,
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consider eab 2 Eab. As Gab was obtained from the product Ha ⌦Hb,
there exists a joint measurement edge ejm 2 Ea!b [ Ea b such that
eab = ejm \ Vab. Let’s consider the case where ejm 2 Ea!b, the other
is treated symmetrically. By definition of Ea!b, there exists the edges
e 2 E, ea = {v|e : v 2 e} 2 Ea and the function f : ea ! Eb such
that ejm =

S
va2ea

�
{va}⇥ f(va)

�
. Therefore:

X

u2eab

pab(u) =
X

u2ejm\Vab

pab(u) =
X

va2ea

X

u2({va}⇥f(va))\Vab

pab(u)

=
X

v2e

X

u2({v|e}⇥f(v|e))\Vab

pab(u)

=
X

v2e

X

v0|e02f(v|e)
v=v0 or {v,v0}\e\e0=;

pab(vv
0|ee0)

For each vertex v 2 e there is f(v|e) 2 Eb, so consider the edge e0 2 E
such that f(v|e) = {v0|e0 : v0 2 e0}.
If v 2 e0 then 8v0 2 e0, v 2 {v, v0} \ e \ e0 thus:

X

v0|e02f(v|e)
v=v0 or {v,v0}\e\e0=;

pab(vv
0|ee0) = pab(vv|ee0) = p(v)

and if v 62 e0 then:

X

v0|e02f(v|e)
v=v0 or {v,v0}\e\e0=;

pab(vv
0|ee0) =

X

v02e0\e

p(v)p(v0)

1� p(e \ e0)
=

p(v)p(e0 \ e)
1� p(e \ e0)

=
p(v)p(e0 \ e \ e0)

1� p(e \ e0)
=

p(v)(p(e0)� p(e \ e0))

1� p(e \ e0)

=
p(v)(1� p(e \ e0))

1� p(e \ e0)
= p(v)

Hence, the result:
X

u2eab

pab(u) =
X

v2e
p(v) = 1

In that respect any contextuality scenario is captured by the joint experi-
ment of two players who operate on a hypergraph larger than the scenario.
The size of the non-local product which captures it using the construction
of Theorem 4.1 is the square of its size.

This result can be improved, for example in Figure 8 it is clear that any
connected scenario with only binary edges (a graph seen as a hypergraph)
has a 2-partite conditional interpretation with linear-size factors with respect
to |V |.
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Figure 8: If the graph is bipartite (no odd-length cycles) then the left con-
struction shows that it’s in a product B1,1,2 � B1,m,1, otherwise it’s in a
CHSH-like scenario where you extend the factors by adding B1,2,2

Theorem 4.2. Bipartite Conditional Contextuality of Graphs
Let H = (V,E) be a connected hypergraph such that its edges are binary,
i.e. 8e 2 E, |e| = 2. Then, H has a 2-partite conditional interpretation as
a game with a size of O(|V |).

Proof.
There are two types of connected graphs: bipartite graphs and graphs which
contain an odd-length cycle. In the first case, consider U1]U2 the partition
of V such that 8e 2 E, 9u1 2 U1, u2 2 U2, e = {u1, u2} and |Ui| = mi.
The only models of H are of the form p(u1) = q, p(u2) = 1 � q with q 2
[0, 1] because H is bipartite and connected. The product B1,max(m1,m2),1 �
B1,1,2 has a canonical labelling of the form 0b|x0 with b 2 {0, 1}, x 2
[0,max(m1,m2)�1]. The conditional interpretation ofH comes by assigning
the vertices of Ui to the the product vertices with labels 0(i� 1)|x0 because
the only models of this product are of the form p(00|x0) = q, p(01|x0) =
1� q with q 2 [0, 1]. In the second case, consider product B1,2m,2 � B1,2n,2

such that 8mn � |V |, its canonical labeling of the form ab|xy with a, b 2
{0, 1}, x 2 [0,m� 1], y 2 [0, n� 1], and the game on this product with an
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extension of the CHSH rules: r(xy) = {ab|xy : a = b () (x ⌘ 0[2])_ (y ⌘
0[2])}. This game is mn games of CHSH so this gives a scenario with 8mn
vertices and only one model which assigns 1/2 to all of them. As H is
connected and contains an odd-length cycle it has only one model which
assigns 1/2 to all the vertices hence the conditional interpretation.

Conclusion

We have shown that any contextuality scenario can be captured by a bipar-
tite non local game using the notion of conditional contextuality, and that
the construction we provide is not optimal in size. It would be interesting
to characterise the subset that could be perfectly captured by nonlocality.
In addition from the foundational question about how general each setting
is, it might have some potential applications o↵ering a new point of view to
test or certify contextual scenarios using two-player games.

A natural link to be investigate is the relation between this ”conditional
contextuality” and almost quantum correlations analysed in [8, 10] and also
with the notion of ”no detection events” used recently by Kunjwal [9] to
relate graph contextuality of [6] to hypergraph contextuality.

Another intriguing and interesting direction for further analysis is the
multipartite case : if we consider players with binary inputs/outputs, is
it possible to capture any contextual scenario on n vertices as a k-player
game, and how does the optimal number of player relate to other measures
of multipartiteness.
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Appendix A

In order to prove the consistency of VCZ equivalence - i.e. for all contex-
tuality scenarios H1 and H2 such that H1 ⇠vcz H2 (any choice of) Hvcz

1

and Hvcz
2 are observationally equivalent- we will need to use the following

lemmas.

Lemma 4.3. Structure of V vcz

Let H = (V,E) be a hypergraph. A maximal set of indistinguishable non
zero weighted vertices is a subset W ✓ V such that W doesn’t contain zero
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weighted vertices, it can be contracted in H and it is a maximal element of
P(V ) satisfying these properties, i.e.:

8w 2 W, 9p 2 G(H), p(w) > 0 (1)

8e 2 E, (W ✓ e) _ (W \ e = ;) (2)

(W 0 ◆ W ) ^ (W 0 satisfies (1) and (2)) ) W 0 = W (3)

Then, any choice of Hvcz = (V vcz, Evcz) satisfies that V vcz is isomorphic to
M(V ) = {maximal sets of indistinguishable non zero weighted vertices}.

Proof.
A choice of V vcz is done by removing all zero weighted vertices and then
contracting the remaining vertices so that |V vcz| is minimal. Consider V ⇤ ✓
V the set of non zero weighted vertices of V , now M(V ) is a partition of V ⇤

and so choosing a V vcz is just picking exactly one vertex in each element of
M(V ), hence the isomorphism.

Lemma 4.4. Independence of zero-reduction
Let H = (V,E) be a hypergraph such that V contains a zero weighted vertex
v0 and consider the induced sub-hypergraph HV \{v0}. Then any choice of
Hvcz and Hvcz

V \{v0} are observationally equivalent.

Proof.
Let Hvcz = (V vcz, Evcz) and Hvcz

V \{v0} = (V 0vcz, E0vcz) be the choices. Since

v0 is zero weighted M(V ) = M(V \ {v0}), so both V vcz and V 0vcz are
isomorphic to M(V ) thus the two are isomorphic. Hence their completion
is the same up to this isomorphism and soHvcz andH 0vcz are observationally
equivalent because removing edges by virtual equivalence preserve the set of
probabilistic models.

Lemma 4.5. Independence of contraction
Let H = (V,E) be a hypergraph, W ✓ V such that W can be contracted
in H and consider the contraction HV \(W\W 0) of H with W 0 ✓ W, W 0 6= ;.
Then any choice of Hvcz and Hvcz

V \(W\W 0) are observationally equivalent.

Proof.
Let Hvcz = (V vcz, Evcz) and Hvcz

V \(W\W 0) = (V 0vcz, E0vcz) be the choices.

Since W 0 ✓ W, W 0 6= ; M(V ) and M(V \ (W \ W 0)) only di↵er on one
element (in the case W contains a non zero weighted vertex, if not there
are identical): there exists U ✓ V \ W such that M(V ) \ {W [ U} =
M(V \ (W \W 0)) \ {W 0 [U}. So M(V ) is isomorphic to M(V \ (W \W 0))
by assigning W [ U to W 0 [ U and thus V vcz and V 0vcz are isomorphic.
Hence their completion is the same up to this isomorphism and so Hvcz

and H 0vcz are observationally equivalent because removing edges by virtual
equivalence preserve the set of probabilistic models.
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Lemma 4.6. Independence of virtual inclusion
Let H = (V,E) be a hypergraph such that e ✓ V is a virtual edge of H and
consider the hypergraph H 0 = (V,E [ {e}). Then any choice of Hvcz and
(H 0)vcz are observationally equivalent.

Proof.
The zero weighted vertices of H and H 0 are the same because they have
the same probabilistic models. They also have the same maximal sets of
indistinguishable non zero weighted vertices because the virtual edge e can’t
”split” such a set: if e0 contains only a subset of W 2 M(V ) we can find two
models of H which have a di↵erent value of e0 \W but the same values on
the other vertices of e0 because the vertices of W can be interchanged. So
any choice of Hvcz and (H 0)vcz gives V vcz isomorphic to (V 0)vcz, hence Hvcz

and (H 0)vcz are observationally equivalentby the same previous reasoning.
The theorem is then proved by considering that two scenarios H1 and H2

such that H1 ⇠vcz H2 can be obtained from one another step by step with
zero-reduction, contraction and virtual inclusion. So this creates a chain of
observationally equivalent scenarios and thus any choice for Hvcz

1 and Hvcz
2

are observationally equivalent.

References

[1] Samson Abramsky and Adam Brandenburger. The sheaf-theoretic
structure of non-locality and contextuality. New Journal of Physics,
13(11):113036, 2011.
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