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We introduce the Scalable ZX-calculus (SZX-calculus for short), a formal and compact graphical
language for the design and verification of quantum computations. The SZX-calculus is an extension
of the ZX-calculus, a powerful framework that captures graphically the fundamental properties of
quantum mechanics through its complete set of rewrite rules. The ZX-calculus is, however, a low
level language, with each wire representing a single qubit. This limits its ability to handle large and
elaborate quantum evolutions. We extend the ZX-calculus to registers of qubits and allow compact
representation of sub-diagrams via binary matrices. We show soundness and completeness of the
SZX-calculus and provide two examples of applications, for graph states and error correcting codes.

The ZX-calculus is an intuitive and powerful graphical language for quantum computing, introduced
by Coecke and Duncan [3]]. Quantum processes can be represented by ZX-diagrams, which can be seen
intuitively as a generalisation of quantum circuits. The language is also equipped with a set of rewrite
rules which preserves the represented quantum evolution. Unlike quantum circuits, the ZX-calculus has
been proved to be complete for various universal fragments of pure quantum mechanics [14, 12} [15, 21],
and also mixed states quantum mechanics [3]]. Completeness means that any equality can be derived in
this language: if two diagrams represent the same quantum process then they can be transformed one into
the other using the rewriting rules of the language. Completeness opens avenues for various applications
of the ZX-calculus in quantum information processing, including circuit optimisation [|8,17]] — which out-
performs all other technics for T-count reductions [[19] — error correcting codes [9, |11} 4], lattice surgery
[L], measurement-based quantum computing [10, [7, [18]] efc. Automated tools for quantum reasoning,
e.g. Quantomatic [20] and PyZX [16], are also based on the ZX-calculus. The ZX-calculus is also used
as intermediate representation in a commercial quantum compiler [6].

The cornerstone of the ZX-calculus is that fundamental properties of quantum mechanics can be
captured graphically. The language remains, however, relatively low level: each wire represents a single
qubit, a feature that limits the design of larger-scale and more complex quantum procedures. We address
in this paper the problem of scalability of the ZX-calculus. In [4], the authors — including one of the
present paper — demonstrated that the ZX-calculus can be used in practice to design and verify quantum
error correcting codes. They introduced various shortcuts to deal with the scalability of the language:
mainly the use of thick wires to represent registers of qubits and matrices to represent sub-diagrams,
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and hence reason about families of diagrams in a compact way. However, the approach lacked a general
theory and fundamental properties like soundness and completeness.

Contributions. We introduce the Scalable ZX-calculus, SZX calculus for short, to provide theoretical
foundations to this approach. We extend the ZX-calculus to deal with registers of qubits by introducing
some new generators and rewrite rules. We show soundness — i.e. the new generators can be used in
a consistent way — as well as completeness of the SZX-calculus. A simple but key ingredient is the
introduction of two generators, not present in [4]], for dividing and gathering registers of qubits. A wire
representing a register of (n+m)-qubits can be divided into two wires representing respectively n and m
qubits. Similarly two registers can be gathered into a single larger one. We also extend the generators
of the ZX-calculus so that they can act not only on a single qubit but on a register of qubits. The
SZX-calculus is then constructed as a combination of the ZX-calculus and the sub-language made of the
divider and the gatherer, by adding the necessary rewrite rules describing how these two sub-languages
interact. We show that the SZX-calculus is universal, sound, and complete, providing an intuitive and
formal language to represent quantum operations on an arbitrarily large finite number of qubits. The use
of the divider and the gatherer allows one to derive inductive (graphical) proofs.

Furthermore, the SZX-calculus provides the fundamental structures — namely the (co)comutative
Hopf algebras — to develop a graphical theory of binary matrices, following work on graphical linear
algebra [2]. As a consequence, we introduce an additional generator parametrized by a binary matrix
together with four simple rewrite rules. Note that, while matrices were also used in [4], we introduce
here a more elementary generator acting on a single register (1 input/1 output) rather than two registers (2
inputs/2 outputs). We prove completeness of the SZX-calculus augmented with these matrices. The use
of matrices allows a compact representation where subdiagrams can be replaced by matrices. Moreover,
basic matrix arithmetic can be done graphically. It makes the SZX-calculus with matrices a powerful
tool for formal and compact quantum reasoning.

We then show the SZX-calculus in action. The main application of the SZX-calculus we consider
in this paper is the graph state formalism [[13]. We show how graph states can be represented using
SZX-diagrams and how some fundamental properties like fixpoint properties, local complementation,
and pivoting can be derived in the calculus. We also consider error correcting code examples in order
to show that the techniques for the design and verification of codes developed in [4] can be performed
smoothly in the SZX-calculus.
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