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The ZX& calculus: A complete graphical calculus for
classical circuits using spiders

Cole Comfort
Department of Computer Science, University of Oxford

We give a complete presentation for the fragment, ZX&, of the ZX-calculus generated by the
Z and X spiders (corresponding to copying and addition) along with the not gate and the and
gate. To prove completeness, we freely add units and counits to the category TOF generated
by the Toffoli gate and ancillary bits, showing that this yields the strictification of spans of
powers of the two element set; and then perform a two way translation between this category
and ZX&. A translation to some extension of TOF, as opposed to some fragment of the ZX
calculus, is a natural choice because of the multiplicative nature of the Toffoli gate. To this
end, we show that freely adding counits to the semi-Frobenius algebra of a discrete inverse
category is the same as computing the “environment structure” of the classical structures of
the base discrete inverse category. We show that in this setting, the classical channels and the
discrete Cartesian completion are the same constructions. Therefore, in the case of TOF, freely
adding a counit, constructing the category of quantum channels, and computing the discrete
Cartesian completion are all equivalent to partial functions between powers of the two element
set. By glueing together the free counit completion and the free unit completion, this yields
qubit multirelations.

1 Introduction

In this paper a complete set of identities is provided for the fragment, ZX&, of the ZX-calculus,
generated by black and white spiders, the not gate and the and gate. We show that this is a universal
and complete presentation of “qubit multirelations,” or equivalently 2n×2m dimensional matrices
over N. To prove completeness and universality requires much exposition. Along the way we
show that the category of classical channels of a discrete inverse category is the discrete Cartesian
completion of that discrete inverse category. We then show that the corresponding environment
structure is precisely the free counit completion of the chosen Frobenius structure. This allows us
to present the discrete Cartesian completion of, TOF, the category generated by the Toffoli gate,
|1〉 and 〈1| by only adding the |+〉 state and the unitality equation. By freely adding both the unit
and counit to TOF, corresponding to unnormalized |+〉 and 〈+|, this yields an isomorphism with
spans between ordinals [2n], n ∈ N.

The identities which are given by this two way translation are almost exactly the union of the com-
plete identities for Boolean functions [26, Thm. 10] (functions of type Zn

2→ Z2) and the identities
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2 The ZX& calculus

for interacting Hopf algebras over Z2 [3, Def. 5.1]; however, we don’t require that 〈+|+〉 = 1, so
some axioms are appropriately scaled. These classes of circuits, and these identities for that matter,
are nothing new; however, we provide a completeness result, as well as a structural account of how
the full classical qubit fragment of FHilb can be obtained from adding discarding and codiscarding
to the full classically reversible Boolean fragment. In fact, some of these identities are presented
in [22, Chap. 5], and they are used in the ZH-calculus [1, 33], as well as in some presentations
of the ZX-calculus with the triangle generator as a primitive [27, 32]. This is particularity unsur-
prising for the latter, [32], where the author proves completeness of the ZX-calculus over arbitrary
semirings, which subsumes the completeness result herein. Albeit, the presentation given here is
substantially simpler. It should be said, that ZX& is not a ZX∗ calculus in the sense of [7], because
the and gate is not a spider. ZX& should be instead though of as the “classical fragment” of the
phase-free ZH-calculus: retaining the monoid for “and” without H-boxes. From this presentation
only natural-number H-boxes can be derived.

We assume familiarity with the theory of monoidal categories and categorical quantum mechanics.
Most of the paper will be devoted to reviewing the required categorical machinery of restriction and
inverse categories, and developing it further, in order to prove the main result. With all of math-
ematics reviewed and developed in generality, the desired result follows from abstract nonsense
after a mechanical calculation.

In Section 2, the theory of restriction categories and inverse categories is reviewed. In Section
3, we construct classical channels in the setting of discrete inverse categories, showing that the
“environment structures” of the classical channels corresponds to adding a counit to the base dis-
crete inverse category. Finally, in Section 4, we actually compute the (co)unit completion of TOF.
We show that this category has a much more canonical presentation, ZX&, in terms of interacting
monoids/comonoids which very much resembles the ZH calculus. We also show that this category
is isomorphic to the category spans between ordinals [2n], n ∈ N.

2 Restriction and Inverse Categories

Restriction and inverse categories provide a categorical semantics for partial computing and re-
versible computing, respectively. We review how weakened products can be constructed in both
settings; relating one to the other.

Definition 2.1. [10, §2.1.1] A restriction category is a category along with a restriction operator:

(A
f−→ B) 7→ (A

f−→ A)
such that:1

1Using diagrammatic composition.
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[R.1] f f = f [R.2] f g = g f [R.3] f g = f g [R.4] f g = f g f

Maps of the form f are called restriction idempotents. The canonical example of a restriction
category is Par, sets and partial maps. The restriction in this case, just restricts partial functions
to their domain of definition.

Restriction categories have a partial order on homsets given by f ≤ g ⇐⇒ f g = f .

A map f in a restriction category is called a partial isomorphism, in case there exists a map g
called the partial inverse of f so that f g = f and g f = g. Similarly, a map f in a restriction
category is total if f = 1. Denote the subcategories of partial isomorphisms and total maps of a
restriction category X, respectively by ParIso(X) and Total(X).

Example 2.2. [29, p. 101] [11, §5] A counital copy category (or a p-category with a one element
object) is a monoidal category with a family of commutative comonoids on every object compatible
with the monoidal structure, with a natural comultiplication. This gives a restriction via copying
and then discarding:

f :=
f

Definition 2.3. [10, §3.1] A stable system of monics M of X is a collection of monics in X con-

taining all isomorphisms; where for any cospan X
f−→ Z oomoo Y in X, where m′ is in M , the following

pullback exists:

Wxxm′
xx

f ′
&&X

f
&&

Yxx
mxxZ

Where m′ is in M .

Stable systems of monics allow one to represent the domains of definition of a partial functions as
a subobjects:

Definition 2.4. [10, §3.1] Given a stable system of monics M in a category X, the partial map
category Par(X,M ) is given by the same objects as in X where morphisms X → Y , given by iso-

morphism classes of spans X oomoo Z
f−→Y where f is a map in X and m is a map in M . Composition

is given by pullback and the identity is given by the trivial span.

Partial map categories have a restriction structure given by: (X oomoo Z
f−→ Y ) 7→ (X oomoo Z // m // X).

Moreover, a partial isomorphism is a span X ooeoo Z // m //Y where e,m ∈M ; the partial inverse given
by Y oomoo Z // e // X.

Par is equivalently the partial map category Par(Set,M ) where M is all monics in Set.
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Let Span∼(X) denote the category given by isomorphism classes of spans over X. Given a stable
system of monics M over X, if X is finitely complete, then Span∼(X) exists, and thus, there is a
faithful functor Par(X,M )→ Span∼(X).

Definition 2.5. [10, §2.3.2] An inverse category is a restriction category in which all maps are
partial isomorphisms. The subcategory of partial isomorphisms of Par is called Pinj.

Inverse categories can be presented with a dagger functor taking maps to their partial inverses:

Theorem 2.6. [10, Thm. 2.20] A restriction category X is an inverse category if and only if there

is a dagger functor ( )◦ : Xop→ X such that for all X
f←− Z

g−→ Y :

f f ◦ f = f f f ◦gg◦ = gg◦ f f ◦

Since restriction categories and inverse categories give a categorical semantics for partial comput-
ing and reversible computing, respectively, it is natural to ask when these categories have copying.

In the case of restriction categories, one must weaken the notion of the product to lax products
using the partial order enrichment:

Definition 2.7. [11] A restriction category has binary restriction products, when for all objects
X ,Y , there exists an object X ×Y and total maps X

π0←− X ×Y π1−→ Y , so that for all objects Z and

all maps X
f←− Z

g−→Y , the following diagram commutes there exists a unique Z
〈 f ,g〉−−−→ X×Y making

the diagram commute: Z
〈 f ,g〉
��

f

��

g

��≥ ≤
X X×Y

π1
//

π0
oo Y

so that 〈 f ,g〉π0 f = 〈 f ,g〉π0 and 〈 f ,g〉π1g = 〈 f ,g〉π1; where additionally 〈 f ,g〉 = f g.

A restriction category has a restriction terminal object > when for all objects X, there exists a
unique total map !X : X →> such that f !Y = f !X .

A restriction category with a restriction terminal object and binary restriction products is a Carte-
sian restriction category.

An object A in a restriction category with restriction products is discrete when the diagonal map
∆X := 〈1X ,1X〉 is a partial isomorphism. A restriction category is discrete when all objects are
discrete. Discrete Cartesian restriction categories are said to have restriction products.

Theorem 2.8. [11, Thm. 5.2] The structure of a counital copy category structure is precisely that
of a Cartesian restriction category.

Proposition 2.9. [11, §5.1]

If X is a discrete Cartesian restriction category, then Total(X) is Cartesian.

Par is a canonical example of a discrete Cartesian restriction category; the restriction product is
given by the Cartesian product on underlying sets and the terminal object is the singleton set.
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The weakened notion of products in restriction categories is not satisfying for inverse categories
because it does not impose enough equations governing the interaction between the diagonal map
and its partial inverse.

Definition 2.10. [21, Def. 4.3.1] A symmetric monoidal inverse category X is a discrete inverse
category when there is a natural, special commutative †-semi-Frobenius algebra2 on every object
(where the (co)multiplications are drawn as white bubbles) compatible with the tensor product:

= =

Where the tensor product is also required to preserve restriction in both components.

In a discrete inverse category, restriction idempotents are prephases for the Frobenius algebra, so
that:

f =
f

=
f f

=
f

= f

Discrete inverse categories are the “right” notion of weakened products for monoidal inverse cate-
gories:

Theorem 2.11. [21, Thm. 5.2.6] There is an equivalence of categories between the category of
discrete inverse categories and the category of discrete Cartesian categories.

To go from discrete Cartesian restriction categories to discrete inverse categories, one takes the
subcategory of partial isomorphisms. The other direction is less trivial; in particular, this involves
adding a restriction terminal object via the following construction which “adds a history” to a
partial isomorphism:

Definition 2.12. [21, Def. 5.1.1] Given a discrete inverse category X, define its discrete Cartesian
completion X̃ as the category with:

Objects: The same objects as X.

Maps:
X

f−→ Y ⊗S ∈ X

X
( f ,S)−−−→ Y ∈ X̃

Where two parallel maps X
( f ,S),(g,T )−−−−−−→ Y are equivalent when either (both conditions are

equivalent):

f f ◦ g
= g or

g g◦ f
= f

2The “semi” adjective on Frobenius just means that the a semigroup and cosemigroup are interacting instead of a
monoid and comonoid.
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Composition: f ; g := f
g

Identity:

Restriction:
(

f

)
:= f

Restriction product: 〈 f ,g〉 :=
f

g

Restriction terminal map:

Tensor product: f ⊗ g :=
f

g

Tensor unit: The same as in X.

Example 2.13. [21, Ex. 5.3.3] P̃inj is Par.

Proof. For a partial function f : X → Y , {(x,(y,x))|(x,y) ∈ f}/∼ is a partial isomorphism.

Lemma 2.14. The canonical functor ι : X→ X̃ is faithful.

The proof is contained in §A.

Lemma 2.15. The induced Frobenius algebra structure in X̃ is counital.

Proof. For all X , the map X→ (X⊗X)⊗ I in X̃ induced by the Frobenius algebra in X has a counit
given by the unitor X → I⊗X since, in X:

=

3 Categorical quantum mechanics and completely positive maps

The CPM construction gives a notion of quantum channels for any †-compact closed category [31].
The †-Frobenius algebras in the base category induce idempotents in CPM corresponding to de-
cohering quantum channels. By splitting these idempotents one obtains the CP∗ construction of
[13]: yielding classical channels between finite dimensional C∗-algebras when applied to FHilb.
However, both the CPM construction and the CP∗ construction can not be applied to Hilb in gen-
eral because unlike FHilb, it is not compact closed. The CP∞ construction [12] generalizes the
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f ; g := f
g

h h◦ = k k◦

Figure 1: Composition of representatives f ;g; equivalence relation h ∼ k; decoherence map in
CP∞.

CPM construction to (non compact closed) †-symmetric monoidal categories, by unbending the
cups/caps and, identifying two Kraus super-maps when they act the same on all positive test maps.

To generalize the CP∗ construction to †-semi-Frobenius algebras, one must combine the CP∗ and
CP∞ constructions, as the compact closed structure is no longer taken for granted. We show that
splitting the idempotent in the CP∞ construction induced by the chosen semi-Frobenius algebra
for every object in a discrete inverse category is precisely its discrete Cartesian completion.3. The
following Lemma is needed to prove this fact:

Lemma 3.1. Given two parallel maps X
f ,g−→ Y ⊗Z in a discrete inverse category:

f = g ⇐⇒ f = g

Proof. Clearly if f = g, then the right hand side of the equation holds. Suppose that the right hand
side equation holds. Then:

f = f =
f

f
=

f
f =

f
g

=
f

g

=
g

g
= g

Lemma 3.2. Given two maps X
f−→ Y ⊗S and X

g−→ Y ⊗T , in a discrete inverse category:

g g◦ f = f ⇐⇒
f f ◦

= g g◦

⇐⇒ f f ◦ = g g◦

3Although, composition of the CP∞ construction applied to a discrete inverse category is not obviously well-defined
unless the base category embeds in a compact closed category
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Proof. First note:

f f ◦
= f f ◦

= f f ◦ = f

f

f ◦

f ◦

= f f ◦f ◦f = f f ◦

So that we only have to prove the first biconditional. Suppose that the left hand side holds, then:

f f ◦
= g g◦ f g◦gf ◦

= f f ◦g◦ gg g◦ = gg g◦ g◦

=
g◦g

gg◦
=

g◦g gg◦

= g◦g
g

g◦
=

g◦g g◦ g = g g◦

Conversely, suppose that the right hand side holds. Then:

g g◦ f = g g◦ f = f f ◦ f

=
f

ff ◦
=

f ff ◦

= f
ff ◦

= f ff ◦ = f

Thus, by Lemma 3.1 : g g◦ f = f
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The natural question arises: can we characterize classical channels in this setting, algebraically in
terms of a discarding morphism, without performing any doubling. In other words, is there some
notion of “environment structure” [16] for the classical channels of discrete inverse categories:

Definition 3.3. Given a discrete inverse category X, define the counital completion of X, c(X) to
have the same objects and maps of X, except with a freely adjoined counit !X : X → I to the chosen
semi-Frobenius algebra on X, for each object in X compatible with the monoidal structure.

Lemma 3.4. c(X) is a discrete Cartesian restriction category.

Proof. This is clearly a counital copy category, with a restriction terminal object given by the tensor
unit. Moreover, because the Frobenius structure is special, it is also discrete.

Lemma 3.5. Given a discrete inverse category X, c(X) and X̃ are isomorphic as discrete Cartesian
restriction categories.

The proof is contained in §B.

4 ZX&

In this section, we add a unit and counit to the Frobenius algebra in TOF by glueing its counital
completion and unital completion together. We then give a presentation of this category in terms
of the self-dual compact closed prop ZX& generated by the copy and addition spiders, the not gate
and the and gate via a two-way translation.

Definition 4.1. [8] The category TOF is the prop generated by the Toffoli gate and ancillary bits,
satisfying the equations in §D Figure 5.

Theorem 4.2. [8] TOF is isomorphic to partial isomorphisms between ordinals [2n], n ∈ N.

What do discrete inverse categories with units and counits freely adjoined look like? We can
compute this for categories such as Pinj and TOF:

Lemma 4.3. Consider a finitely complete category X , and a stable system of monics M , so that
Span∼(M ) is a discrete inverse category with discrete Cartesian completion Par(X,M ). Then
adding a unit and counit to the chosen semi-Frobenius structure in Span∼(M ) yields Span∼(X).

The proof is contained in §C.

If f is a partial isomorphism between finite sets, then the white spiders correspond to the classical
structure for the chosen computational basis. For the interpretation into FHilb via the `2 functor,
this means that in the qubit case, the unit and counit correspond to the unnormalized |+〉 and 〈+|
state and effect. Call the category TOF with the unit and counit adjoined, TOF

∧
:

Corollary 4.4. TOF
∧

is isomorphic to spans between ordinals [2n] for n ∈ N.
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[ZX&.1] α β ...
... = ...

...α +β

[ZX&.2] α ... = α ...

[ZX&.3] ...
...

... = ...
...

[ZX&.4] ... = ...

[ZX&.5] =

[ZX&.6] =

[ZX&.7] =

[ZX&.8] =

[ZX&.9]

...

...

...

& & = &

...

...

...

[ZX&.10] &
π =

[ZX&.11] & = &

[ZX&.12] & =
&

&

[ZX&.13] & =

[ZX&.14] π =
π

π

[ZX&.15] = &

[ZX&.16] & π =
π

π

[ZX&.17] & =
&

&

Figure 2: The identities of ZX&, where α,β ∈ {0,π} and a blank grey spider has angle 0.

We give a more elegant presentation of this category in terms of interacting monoids and comonoids:

Definition 4.5. Consider the self dual prop ZX& generated by the addition spider with phases in
{0,π}, the copy spider and the monoid for conjunction satisfying the identities given in Figure 2.

One can interpret the generators as logical connectives and open wires as variables, similar to the
regular logic [5], or the logic of a Cartesian bicategory [6], except we forget the 2-cells in ZX&. The
decorated black spiders correspond to fixed variables and xor. White (co)multiplications (co)copy
variables; the white unit is existential quantification and the counit is discarding. The relations
are open Σ1 Boolean formulas augmented with copying and discarding as well as duals; the open
variables correspond to distinguished inputs and outputs.

The identities of ZX& can also be interpreted by freely taking the coproduct of the free prop of
commutative (co)monoids †-PROP 3×2 times, modulo various (undirected) distributive laws, and
monoid maps. The distributive laws are summarized in Figure 3 (the duals under diagonal are
omitted). Te spider rules implicitly identify the (co)units of the †-compact closed structure induced
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by Z and X ; which is needed for completeness.

λ Z X & Z† X† &†

Z Comm. monoid Extraspecial commutative
†-Frobenius algebra

Hopf algebra‡ with s=1 Special bialgebra

X Comm. monoid Hopf algebra‡ with s=1 Commutative
†-Frobenius algebra

& Comm. monoid Special bialgebra
Z† Cocomm. comonoid
X† Cocomm. comonoid
&† Cocomm. comonoid

Figure 3: Generating distributive laws of ZX&. ‡: The unit Z of is only copied by the comultipli-
cation of X† by a factor of 2.

Additionally, [ZX&.16] states that the counit of &† is copied by &; ie. the counit is a monad map
from & to the trivial monad. [ZX&.17], alongside the other axioms, using the compact structure,
is asserting that &

∧
is a monad map from Z to Z⊗X :

&
∧

:= & where &
[ZX&.17]
=

&

&
, & Lem.E.7

=

Proposition 4.6. Consider the interpretation J KZX& : ZX&→ TOF
∧

taking:

7→ 7→ 7→ 7→

7→ 7→ 7→ 7→

π 7→ & 7→ & 7→

This interpretation is a strict symmetric †-monoidal functor.

See §E.3 for the proof.

Proposition 4.7. Consider the interpretation J K
TOF
∧ : TOF
∧

→ ZX& taking:

7→ & 7→ π 7→ π

7→ 7→

This interepretation is a strict symmetric †-monoidal functor.



12 The ZX& calculus

See §E.4 for the proof.
Theorem 4.8. The interpretation functors J KZX& and J K

TOF
∧are inverses, so that TOF

∧
and ZX&

are isomorphic as strongly compact closed props.

See §E.5 for the proof.

Recall the following proposition:
Proposition 4.9. [4, Prop. 2.6]4 The category Span∼(FinOrd) equipped with the Cartesian prod-
uct is monoidally equivalent to the category of (finite) matrices over the natural numbers and the
Kronecker product.

Thus,
Corollary 4.10. ZX& is complete for the prop of 2n→ 2m matrices over the natural numbers.

5 Conclusion

There are various other directions which could be pursued. One could also ask if there is a normal
form for ZX& induced by the presentation in terms of distributive laws and monoid maps, using the
correspondence between strict factorization systems and distributive laws in spans [30]. It would
also be interesting to investigate the 2-categorical structure of ZX&; presenting the corresponding
category of relations as a Frobenius theory [2] using the partial order enrichment of TOF.

Another immediate direction would be to add the white π phase to ZX& to obtain an approximately
universal graphical calculus for quantum computing using only distributive laws and monoid maps.
In such a fragment, one could construct the and gate for the X basis; perhaps expanding the table
of distributive laws in Figure 3 to be complete for an approximately universal fragment of quantum
computing, furthering the general programme of [3, 20] decomposing circuits using distributive
laws. This approach is contrasted to considering H-boxes as primitives, as in the phase-free frag-
ment of the ZH-calculus [33]—in ZX&+the white π phase, the unnormalized Hadamard gate is
derived. Perhaps proving the minimality of the axioms using this presentation might be easier,
although we do not prove minimality in this paper.

It would also be interesting to investigate the connection to the ZH-calculus and triangle fragments
of the ZX-calculus; in particular, in regard to natural number labelled H-boxes, as in [19]. These
gates can be represented in string diagrams. The diagram of the triangle can be interpreted as the
assertion x∧¬y =⊥ which is equivalent to the material implication x⇒ y.

:= &
π

n := π&
n

π

Figure 4: Triangles and H-boxes in ZX&, for n ∈ N.
4In [4], they do not prove this equivalence is monoidal, but it is an obvious corollary.
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A Proof of Lemma 2.14

Recall the statement of the Lemma:

Lemma 2.14: The canonical functor ι : X→ X̃ is faithful.

Proof. Suppose that ι( f )∼ ι(g), Then:

g = f
f ◦ g = gf ◦

f f ◦ f

=
gf ◦

f
f ◦ f

=
g

f f ◦
f

=
g

ff f ◦

=
g

f

=
g
f

=
f

g

= g
g◦ f = f

B Proof of lemma 3.5

Recall the statement of the Lemma:

Lemma 3.5 Given a discrete inverse category X, c(X) and X̃ are isomorphic as discrete Cartesian
restriction categories.

Proof. Define an identity on objects functor F : c(X)→ X̃ in the obvious way, sending the counits
to the ancillary space. Similarly, define an identity on objects functor from G : X̃→ c(X) given
by plugging counits into the ancillary space. These maps are clearly inverses to each other and
preserve discrete Cartesian restriction structure; however, once again we mush show that they are
actually functors.

To see that F is a functor, it suffices to observe that every object in X̃ is equipped with a counital
Frobenius algebra, where the unit is in the image of the freely adjoined counit under F .
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To prove that G is a functor, take some ( f ,S) ∼ (g,T ) in X̃. Therefore, in X̃, since the Frobenius
structure is counital:

f ◦f ∼ f ◦f = g◦g ∼ g◦g

However, since the functor X→ X̃ is faithful by Lemma 2.14, using the alternate equivalence
relation of X̃ by Lemma 3.2, we have that in X:

f ◦f
=

g◦g
and thus

f f ◦
=

g g◦

Therefore in c(X):

f f ◦
Rem. E.1
=

f f ◦
= f

f ◦

= f
f ◦

=
f f ◦

=
f

= f

So that combining the previous two equations:

f =
f f ◦

=
g g◦

= g

C Proof of Lemma 4.3

Recall the statement of the Lemma:

Lemma 4.3: Consider a finitely complete category X, and a stable system of monics M , so that
Span∼(M ) is a discrete inverse category with discrete Cartesian completion Par(X,M ). Then
adding a unit and counit to the chosen semi-Frobenius structure in Span∼(M ) yields Span∼(X).
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Proof. First note that because Par(X,M ) is a discrete Cartesian restriction category, by Proposi-
tion 2.9, Total(Par(X,M )) = X is Cartesian. Therefore, Span∼(X) inherits a monoidal structure
from the Cartesian product of X: so that Par(X,M ) is a monoidal subcategory of Span∼(X).
By assumption Par(X,M ) is the discrete Cartesian completion of Span∼(X); therefore by Lemma
3.5, Par(X,M ) can be presented by adding a counit to Span∼(M ). To compute the symmetric
monoidal category with both a unit and counit adjoined is to compute a distributive law:

Par(X,M )⊗Span∼(M )Par
op(X,M )→ Parop(X,M )⊗Span∼(M )Par(X,M )

So that the unit and counit from Parop(X,M ) and Par(X,M ), are compatible with the symmetric
monoidal structure of Span∼(M ). Note that this is implicitly asking for for bimodule structures
for both Par(X,M ) and Parop(X,M ) over Span∼(M ). Since all 3 categories are subcategories
of Span∼(Set) with the same set of objects: the actions are given by pullback in Span∼(X). So
for example, tensoring Par(X,M ) by Parop(X,M ) over Span∼(M ) is given by the following
coequalizer in Span(Set):

Par(X,M );Span∼(M );Parop(X,M ) //
// Par(X,M );Parop(X,M ) // Par(X,M )⊗Span∼(M )Par

op(X,M )

Given f ,g maps in Span∼(M ), the distributive law is witnessed by the following equation:

f g◦ = f g◦

Denote all actions and compositions by a semicolon, as they are all given by underlying pullback

in X. Given maps X
f←− A // e //Y in Parop(X,M ) and Y oomoo B

g−→ Z in Par(X,M ); in the category
given by quotienting by the distributive law, we have:

Af
zz

$$ e
$$

X Y
; Bzzm
zz

g
$$

Y Z
= Af

zz
X A

; A $$ e
$$

A Y
; Bzzm
zz

Y B
; B g

$$
A Z

= Af
zz

X A
; C

∼
��

$$ e′
$$

zzm′
zz

A $$
e $$

Bzz
mzzA Y B

; B g
$$

B Z

= Af
zz

X A
; Czzm′
zz

$$ e′
$$

A B
; B g

$$
B Z

= Af
zz

X A
; Czzm′
zz

A C
; C $$ e′

$$
C B

; B g
$$

B Z

= Cm′ f
zz

X C
; C e′g

$$
C Z
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Therefore, every map in this quotiented category has a representative span in X. This representative

is unique; given two isomorphic maps X
f ′←− B

g′−→ Y ∼h X
f←− A

g−→ Y in Span∼(X), we have:

Bf ′
zz

X B
; B g′

$$
B Y

= Bh f
zz

X B
; B hg

$$
B Y

= Af
zz

X A
; Bh
zz

A B
; B h

$$
B A

; A g
$$

A Y

= Af
zz

X A
; Bh
zz

h
$$

h∼
��

A A
A

; A g
$$

A Y

= Af
zz

X A
; A

A A
; A g

$$
A Y

= Af
zz

X A
; A g

$$
A Y

So that, noting that Span∼(X), Par(X,M ), Parop(X,M ) and Span∼(M ) all have the same under-
lying symmetric monoidal structure, the category induced by this distributive law is isomorphic as
a †-symmetric monoidal category to Span∼(X).

D Identities of TOF

Define the category TOF [8] to be the PROP, generated by the 1 ancillary bits |1〉 and 〈1| as well
as the Toffoli gate, satisfying the identities given in Figure 5.

The Toffoli gate and the 1-ancillary bits allow cnot, not, |0〉, 〈0|, and flipped tof gate and flipped
cnot gate can defined in this setting:

:= , := , :=

:= , := , :=

One can moreover construct generalized controlled not gates with arbitrarily many control wires in
the obvious way. Let [x,X ] denote a generalized Toffoli gate acting on the xth wire, controlled on
the wires indexed by a set X . Then we can partially commute generalized controlled-not gates:
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[TOF.1]

=

=

[TOF.2]

=

=

[TOF.3] =

[TOF.4] =

[TOF.5] =

[TOF.6] =

[TOF.7] =

[TOF.8] =

[TOF.9] =

[TOF.10] =

[TOF.11] =

[TOF.12] =

[TOF.13] =

[TOF.14] =

[TOF.15] =

[TOF.16] =

Figure 5: The identities of TOF

Lemma D.1. [18, Lem. 7.2.6] Let [x,X ] and [y,Y ] be generalized controlled not gates in TOF
where x /∈ Y . We can perform the identities of Iwama et al. [24], to commute them past each other
with a trailing generalized controlled not gate as a side effect:

[y,X ∪Y ][y,Y t{x}][x,X ]
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In TOF, one can define the diagonal map as follows:

:=

Lemma D.2. [18, §5.3.2] The diagonal map is a natural special commutative †-symmetric monoidal
nonunital Frobenius algebra.

It is also natural on target qubits:

Lemma D.3. [18, Lem. B.0.2 (iii)]

=

E The isomorphism between ZX& and the (co)unitual completion of
TOF

We establish some basic properties of ZX& and the (co)unitual completion of TOF.

E.1 Basic properties of the (co)unitual completion of TOF

First, note that because T̃OF is a discrete Cartesian restriction category, it is a copy category and
thus, for any map f in TOF

Remark E.1.

f =
f

= f

First, the cnot gate is its own mate on the second wire:

Lemma E.2.

=

Proof.

=
[CNOT.2]
=

Lem. D.3
=

Frob.
=

unit
=

Lem. D.3
=

[CNOT.2]
=

unit
=
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Therefore,

Lemma E.3.

Prop. E.2
=

yanking
=

Thus

Lemma E.4.
=

Proof.

unit
= =

E.3
= =

[CNOT.2]
=

Lem. D.3
=

unit
=

[CNOT.2]
=

E.2 Basic properties of ZX&

Lemma E.5.
=

Proof.

[ZX&.1]
=

[ZX&.3]
=

[ZX&.6]
=

[ZX&.3]
=

[ZX&.7]
=

Lemma E.6. The phase fusion of the black spider in ZX&,

π

π
=

in the presence of the other axioms is equivalent to asserting:

π =

Or in other terms, the phase fusion of the black spider is equivalent to the interaction of the unit
for and and the counit for copying as a bialgebra.
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Proof. For the one direction, suppose that phase fusion holds:

π
[ZX&.3]
= π

[ZX&.1]
= π

[ZX&.8]
=

π

π

=
[ZX&.7],E.5

=

Conversely if the unit part of the bialgebra rule holds:

π

π

[ZX&.14]
= π

[ZX&.8]
= π =

Lemma E.7.

& =

Proof.

&
[ZX&.1]
= &

π

π
[ZX&.17]
= π

π &

&

[ZX&.10]
=

[ZX&.8]
=

E.3 Proof of Proposition 4.6

Recall the statement of Proposition 4.6:

Proposition 4.6: The interpretation J KZX& : ZX&→ TOF
∧

is a strict symmetric monoidal functor.

Proof. We prove that all of the axioms of ZX& hold in TOF
∧

:

[ZX&.1]: Unitality: By Lemma E.4:

s {

ZX&

=
comm.
=

unit
=

Rem. E.1
= = J KZX&

Associativity:
u

v

}

~

ZX&

=
[CNOT.8]
=

Rem. E.1
=
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=

u

v

}

~

ZX&

Frobenius:
u

v

}

~

ZX&

=
Lem D.1
=

Lem. E.4
=

[CNOT.5]
= =

s {

ZX&

Phase amalgamation:

J π π KZX& = = = J KZX&

[ZX&.2]:
s {

ZX&
=

[TOF.14]
=

[CNOT.2]
=

Lem. E.4
= =

s {

ZX&

[ZX&.3]: This is immediate.

[ZX&.4]: This is immediate.

[ZX&.5]:

s {

ZX&
=

Lem D.1
=

[TOF.2]
=

unit
= =

[CNOT.2]
=

Lem. D.3
=

Lem. E.4
=

[TOF.14]
= = =

r z

ZX&

[ZX&.6]: r z

ZX&
=

[TOF.2]
= =

r z

ZX&

[ZX&.7]: This is immediate.
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[ZX&.8]:

J KZX& =
Lem. E.4
=

[TOF.14]
=

= = J KZX&

[ZX&.9]:

t
&

&

|

ZX&

=
Lem D.1
=

Rem. E.1
=

[TOF.2]
=

[TOF.2]
=

Lem D.1
=

Rem. E.1
=

=

t

&
&

|

ZX&

[ZX&.10]:
r

&
π

z

ZX&
= =

[TOF.1]
=

Rem. E.1
=

Lem. E.4
= = J KZX&

[ZX&.11]:
r

&

z

ZX&
=

[TOF.15]
= = =

r
&

z

ZX&

[ZX&.12]:

t

&

&
|

ZX&

=
[TOF.4]
=

unit
= =

[TOF.2]
=

Lem D.1
= =

r
&

z

ZX&
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[ZX&.13]:
s

&

{

ZX&
=

[TOF.2]
=

Rem. E.1
= =

r z

ZX&

[ZX&.14]: r
π

z

ZX&
=

[TOF.1]
= =

r
π

π

z

ZX&

[ZX&.15]:

q
&

y
ZX& =

Lem. D.1
=

Rem. E.1
=

[TOF.2]
=

Rem. E.1
=

Lem. E.4
= = J KZX&

[ZX&.16]: This is precisely [TOF.7].

[ZX&.17]:

s
&

{

ZX&
= =

Lem. D.1
=

Rem. E.1
=

Rem. E.1
=

[TOF.2]
=

Lem. D.1
=

[TOF.9]
=

Rem. E.1
=

Rem. E.1
=

[TOF.2]
=

[TOF.2]
=

[ZX&.11]
=

Lem. D.1
= =

s
&

&

{

ZX&
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E.4 Proof of Proposition 4.7

Recall the statement of Proposition 4.7:

Proposition 4.7: The interpretation J K
TOF
∧: TOF
∧

→ ZX& is a strict symmetric monoidal functor.

Proof. First, observe:

r z

TOF
∧=

ππ

& [ZX&.14]
=

π π
π

& [ZX&.1]
=

π

&

Lem. E.5, [ZX&.7]
=

π

& [ZX&.10]
=

[ZX&.4]
=

Thus:

J K
TOF
∧=

ππ

π π

& =
π π [ZX&.14]

=
π ππ [ZX&.1]

=
π

Lem. E.5, [ZX&.7]
= π

Thus:
u

v
π

&

}

~

TOF
∧

=

ππ

π π

&

π

= ππ
[ZX&.1]
=

We prove that all of the axioms of TOF
∧

hold in ZX& :

[TOF.1]:

s {

TOF
∧= &

π

[ZX&.14]
= &

π π

[ZX&.10]
=

π

[ZX&.3]
=

π

=

s {

TOF
∧

[TOF.2]:

s {

TOF
∧= & [ZX&.6]

= & Lem. E.7
=

[ZX&.1]
=

[ZX&.3]
= =

s {

TOF
∧
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[TOF.3]: This follows from the spider law.

[TOF.4]: This follows from the spider law.

[TOF.5]: This follows from the spider law.

[TOF.6]: This follows from the spider law.

[TOF.7]:

s {

TOF
∧=

π π

[ZX&.1]
=

π π

[ZX&.16]
=

π&

[ZX&.1]
= &

π

=

s {

TOF
∧

[TOF.8]: This follows immediately from Lemma E.5 and [ZX&.7].

[TOF.9]:

s {

TOF
∧= && [ZX&.3]

= &&

=
&

&
[ZX&.12]
= & [ZX&.8]

= &

[ZX&.1]
= & [ZX&.13]

=
[ZX&.3]
= =

s {

TOF
∧

[TOF.10]: It is easier to prove that [TOF.10] is redundant. Given [TOF.9], [TOF.6] and [TOF.12],
[TOF.10] is equivalent to the following:

[TOF.10]
=

[TOF.9]
=

However

[TOF.12]
=

[TOF.6]
=

[TOF.9]
=



28 The ZX& calculus

[TOF.11]:

u

v

}

~

TOF
∧

= &
[ZX&.3]
=

&
=

&

[ZX&.5]
=

&

[ZX&.17]
=

&

&

[ZX&.1],[ZX&.3]
=

&

&
=

u

v

}

~

TOF
∧

[TOF.12]:

u

v

}

~

TOF
∧

=

& &

&
[ZX&.3]
=

& &

&

= &

&

&

[ZX&.12]
=

&

&

[ZX&.5]
=

&

&
[ZX&.1],[ZX&.2]

=
&

&
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[ZX&.8]
=

&

&
[ZX&.17]
=

&

&

&

=

&

&

&

[ZX&.11]
=

&

&

&

[ZX&.9]
=

&

&
&

[ZX&.3]
=

&

&
&

[ZX&.15]
=

&

& [ZX&.3]
=

&

&

[ZX&.11]
=

&

&
=

u

v

}

~

TOF
∧

[TOF.13]:

u

v

}

~

TOF
∧

=
& & [ZX&.3]

=
&&
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[ZX&.3]
=

&&
= &

&

[ZX&.12]
= & [ZX&.5]

=
&

[ZX&.1],[ZX&.3]
=

&
[ZX&.8]
=

&

[ZX&.1]
=

&
=

u

v

}

~

TOF
∧

[TOF.14]:
r z

TOF
∧= =

[ZX&.5]
= =

[ZX&.1],[ZX&.3],[ZX&.15]
= =

r z

TOF
∧

[TOF.15]:
s {

TOF
∧= & [ZX&.11]

= & = &

=

s {

TOF
∧

[TOF.16]:

u

w
v

}

�
~

TOF
∧

=

& &

&

[ZX&.1]
=

& &

&
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[ZX&.3]
=

& &

&

=

&

&

&

[ZX&.12]
=

&

&

[ZX&.3]
=

&

&

=

&

&
[ZX&.11]
=

&

&

[ZX&.9]
=

&
& [ZX&.11]

=

&
&

[ZX&.9]
= &

&
[ZX&.11]
= &

&

= &
&

=

& &

&

=

u

w
v

}

�
~

TOF
∧

Where unitality and counitality follow from the fact that the white spiders are Frobenius algebras.
Also, we must also note that both Frobenius algebras induce the same compact closed structure, as
is implied by the spider law; this is immediate.
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E.5 Proof of Theorem 4.8

Theorem 4.8 The interpretations J KZX& and J K
TOF
∧ are inverses, so that TOF

∧
and ZX& are

isomorphic as strongly compact closed props.

Proof. First we show that JJ KZX&K
TOF
∧= 1:

For the white spider: The case for the unit and counit is trivial. For the (com)multiplication we
have:
ss {

ZX&

{

TOF
∧=

r z

TOF
∧= &

π π

= =

For the grey spider: The cases for the unit, counit and π phase are trivial. For the (com)multiplication
we have:

ss {

ZX&

{

TOF
∧=

r z

TOF
∧=

π π

&
= =

For the and gate:
ss

&

{

ZX&

{

TOF
∧=

t |

TOF
∧= & = &

Next, we show that JJ K
TOF
∧KZX& = 1: The ancillae are trivial. For the Toffoli gate:

ts {

TOF
∧

|

ZX&

=

u

v &

}

~

ZX&

=
unit
=

Lem. D.1
=

[TOF.2]
=

unit
=

Lem. D.1
=

[TOF.2]
=

unit
=
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F The identities of CNOT

The category CNOT [9] is the †-symmetric monoidal subcategory of TOF generated by the con-
trolled not gate and ancillary bits |1〉, 〈1|. A complete set of identities is presented in the following
figure, because some of the identities are used in the translation between ZX& and the (co)unital
completion of TOF.

[CNOT.1] =

[CNOT.2] =

[CNOT.3] =

[CNOT.4]
=

=

[CNOT.5] =

[CNOT.6] =

[CNOT.7]

=

=

[CNOT.8] =

[CNOT.9] =

Figure 6: The identities of CNOT
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