

Algorithmics and Complexity Cours 1/7 : Graph Traversal

CentraleSupélec – Gif

ST2 – Gif

Plan

- 2 Depth-First Search
- Breadth-First Search
- 4 Complexity
- 6 Connectivity

Plan

- Graph-based problems
 - Concret problems
 - Graph-based modeling
 - Problems' family
 - Solving Algorithm
- 2 Depth-First Search
- Breadth-First Search
- 4 Complexity

5 Connectivity

ST2 - Gif

Find the exit out of a maze

- Computational model of this maze problem?
- What characterises a solution to this problem?

Find the exit out of a maze

- Computational model of this maze problem?
- What characterises a solution to this problem?
- How to compute efficiently a solution in an efficient manner?

Identify elements in a picture

- Computational model of this picture?
- What characterises a chromosome?

Identify elements in a picture

- Computational model of this picture?
- What characterises a chromosome?
- How to compute which parts of the image represent chromosomes?

Mazes and chromosomes

What is the connection between finding a path in a maze and counting chromosomes?

Mazes and chromosomes

What is the connection between finding a path in a maze and counting chromosomes?

→ Graphs, graph traversal and connectivity !

Graph

Data Structures

What you saw in your previous studies :

- ✓ Variables (often connected to representation types)
- Arrays (one dimensions or more)
- Lists, stacks, queues
- 🗡 Objects
- X Dictionnaries

Graph

Graphs are another type of data structure

→ Maybe the most frequently used in algorithmics !

What is a Graph?

Graph

Mathematical structure used to represent relations between elements

What is a Graph?

${\sf Graph}$

Mathematical structure used to represent relations between elements

Definitions

- Nodes also known as vertices
- Edges

What is a Graph?

Graph

Mathematical structure used to represent relations between elements

Definitions

- Nodes also known as vertices
- Edges

Notation

Graph G = (V, E)where V is the set of vertices and E the set of edges.

Maze modeling

A maze seen as a graph

Maze modeling

A maze seen as a graph

• The intersections and the dead-ends are represented by vertices;

Each vertex can be associated with a label.

Maze modeling

A maze seen as a graph

• The intersections and the dead-ends are represented by vertices;

Each vertex can be associated with a label.

• Each corridor is represented by an edge.

Maze modeling

A maze seen as a graph

• The intersections and the dead-ends are represented by vertices;

Each vertex can be associated with a label.

• Each corridor is represented by an edge.

Remarks & definitions

Remarks

- This type of graph is a non-directed graph. We will see directed graphs in the next lecture
- Each edge is characterised by its two ending vertices : $E \subseteq V \times V$

Remarks & definitions

Remarks

- This type of graph is a non-directed graph. We will see directed graphs in the next lecture
- Each edge is characterised by its two ending vertices : $E \subseteq V \times V$

Definitions

- A chain from x to y is a finite series of consecutive edges connecting x to y.
- A graph is connected when there exists a chain between any pair of vertices.

Model of the maze problem

```
With the same data,
```

```
(in our case, a graph G = (V, E) and two vertices s and t)
```

we can build different types of problems !

- Decision problem
- Construction problem
- Optimization problem

Model of the maze problem – Decision

Existence of a chain

- Inputs : Given a graph G = (V, E), a starting vertex s ∈ V and a target vertex t ∈ V
- Question : Is there a chain from s to t?

Decision problem

The answer to the above question is either yes or no.

Model of the maze problem – Construction

Construction of a chain

- Inputs : Given a graph G = (V, E), a starting vertex s ∈ V and a target vertex t ∈ V
- Question : Build a chain from s to t

Construction problem

- The answer is a solution to the problem.
 - Compute a data structure that satisfies the constraints of the problem.
- Such a structure might not exist !
 - \rightarrow The answer to the corresponding decision problem is no

Model of the maze problem – Optimisation

Shortest chain

- Inputs : Given a graph G = (V, E), a starting vertex $s \in V$ and a target vertex $t \in V$
- Question : What is the shortest chain from s to t?

Optimisation problem

- The answer to the question is a solution.
- There exists a function (in this case, the length of the chain) that needs to be maximised or minimised.

Model of the maze problem – Optimisation

Shortest chain

- Inputs : Given a graph G = (V, E), a starting vertex s ∈ V and a target vertex t ∈ V
- Question : What is the shortest chain from s to t?

Optimisation problem

- The answer to the question is a solution.
- There exists a function (in this case, the length of the chain) that needs to be maximised or minimised.

In this lecture, we will focus on decision problems. (existence of a chain)

Instance of a problem

Definition : instance

- An instance is a set of inputs that satisfy the constraints of the problem.
- The size of an instance corresponds to the size of the data :
 - ➔ It depends on the computer representation;
 - → Atomic element : number of elements in a list, number of vertices and edges in a graph...

Instance of a problem

Definition : instance

- An instance is a set of inputs that satisfy the constraints of the problem.
- The size of an instance corresponds to the size of the data :
 - ➔ It depends on the computer representation ;
 - → Atomic element : number of elements in a list, number of vertices and edges in a graph...

Example

• A graph G = (V, E) and two vertices s and $t \in V$.

• Size of the instance = |V| + |E|

Definition : algorithm

An algorithm is a finite and non ambiguous series of operations or instructions that can be used to solve a problem.

Example : existence of a chain

- Starting from s, select a vertex connected to the currently selected vertex
- \bigcirc Continue as long as the currently selected vertex is not t
- Answer "yes" when t is reached

Definition : algorithm

An algorithm is a finite and non ambiguous series of operations or instructions that can be used to solve a problem.

Example : existence of a chain

- Starting from s, select a vertex connected to the currently selected vertex
- \bigcirc Continue as long as the currently selected vertex is not t
- Answer "yes" when t is reached

Remarks

- This algorithm never answers "no"
- This algorithm might not terminate.
 - \rightarrow One cannot always predict whether an algorithm terminates or not

Algorithm

In Computer Science, an algorithm is a finite series of instructions using :

- variables, data structures,
- control instructions (loops, conditional instructions, function calls, *etc*).

that can be executed step by step by a deterministic computer.

Algorithm

In Computer Science, an algorithm is a finite series of instructions using :

- variables, data structures,
- control instructions (loops, conditional instructions, function calls, *etc*).

that can be executed step by step by a deterministic computer.

Can we write this algorithm in Python?

def exists_chain(V,E,s,t): ... (to be continued)

We assume that there exists a function meighbours(x,E) that returns the list of neighbouring vertices

Back to mazes

Find the exit = existence of a chain !

Back to mazes

Find the exit = existence of a chain !

 \rightarrow Graph traversal algorithms.

Back to mazes

Find the exit = existence of a chain !

 \rightarrow Graph traversal algorithms.

Beware of cycles !

→ We must store the visited vertices to avoid a loop.

(unlike the previous algorithm...)

Plan

- 2 Depth-First Search
 - Principle
 - Recursive implementation
 - Iterative implementation
- Breadth-First Search
- 4 Complexity

5 Connectivity

Depth-First Search

General idea of the algorithm...

Always select the first connected vertex (not already visited) with respect to the current one and retrace its steps

Depth-First Search

General idea of the algorithm...

Always select the first connected vertex (not already visited) with respect to the current one and retrace its steps

General idea of the algorithm...

General idea of the algorithm...

Always select the first connected vertex (not already visited) with respect to the current one and retrace its steps

Stop when t is reached

i.e. turn it into an algorithm...

- In Knowing the neighbours of a vertex (to select the first one)
- Knowing if a vertex was already visited (to avoid looping)

- Select systematically the first non-visited neighbour
- If this is not t, repeat from the current node

i.e. turn it into an algorithm...

- In Knowing the neighbours of a vertex (to select the first one)
 - → neighbours(x,E) function that returns the list of neighbours
- In Knowing if a vertex was already visited (to avoid looping)

- Select systematically the first non-visited neighbour
- If this is not t, repeat from the current node

i.e. turn it into an algorithm...

- In Knowing the neighbours of a vertex (to select the first one)
 - → neighbours(x,E) function that returns the list of neighbours
- In Knowing if a vertex was already visited (to avoid looping)
 - ➔ An array visited that associates nodes with a boolean value.
- Select systematically the first non-visited neighbour
- If this is not t, repeat from the current node

i.e. turn it into an algorithm...

- In Knowing the neighbours of a vertex (to select the first one)
 - → neighbours(x,E) function that returns the list of neighbours
- Ø Knowing if a vertex was already visited (to avoid looping)
 - → An array visited that associates nodes with a boolean value.
 - → Python dictionary
- Select systematically the first non-visited neighbour
- If this is not t, repeat from the current node

i.e. turn it into an algorithm...

- In Knowing the neighbours of a vertex (to select the first one)
 - → neighbours(x,E) function that returns the list of neighbours
- Ø Knowing if a vertex was already visited (to avoid looping)
 - → An array visited that associates nodes with a boolean value.
 - → Python dictionary
- Select systematically the first non-visited neighbour
- If this is not t, repeat from the current node
 - → Recursive function

Reminder : Python dictionaries

```
Set of (key,value) data structure
```

```
dico = { key:value, \dots }
```

- The data structure associates a value to a name (the key), using : dico[key]=value
- Keys are often character strings
- Values are accessed using : dico[key]
- We can iterate over the keys :

for k in dico: ...

• We can test if a key exists :

if k in dico: ...

Depth-First Search : recursive implementation

1. Initialization of the dictionary : visited = { }

Depth-First Search : recursive implementation

- 1. Initialization of the dictionary : visited = { }
- 2. Recursive function DFS_rec(V,E,n,t)

```
def DFS_rec(V,E,n,t): # n : the current node
  visited[n] = True
  if n==t: return True
  for v in neighbours(n,E):
    if not v in visited:
        if DFS_rec(V,E,v,t):
            return True
  return False
```


Depth-First Search : recursive implementation

- 1. Initialization of the dictionary : visited = { }
- 2. Recursive function DFS_rec(V,E,n,t)

```
def DFS_rec(V,E,n,t): # n : the current node
  visited[n] = True
  if n==t: return True
  for v in neighbours(n,E):
    if not v in visited:
        if DFS_rec(V,E,v,t):
            return True
  return False
```

3. Calling the function : DFS_rec(V,E,s,t)

Depth-First Search : recursive implementation

- 1. Initialization of the dictionary : visited = { }
- 2. Recursive function DFS_rec(V,E,n,t)

```
def DFS_rec(V,E,n,t): # n : the current node
  visited[n] = True
  if n==t: return True
  for v in neighbours(n,E):
    if not v in visited:
        if DFS_rec(V,E,v,t):
            return True
  return False
```

3. Calling the function : DFS_rec(V,E,s,t)

Remarks

- The list of nodes V is not used in DFS_rec
- This algorithm does not return the path, only True or False depending on whether it reaches *t* or not.

Implementation : demo

DFS_rec(V,E,'s','t')

Implementation : demo

DFS_rec(V,E,'s','t')

Implementation : demo

DFS_rec(V,E,'s','t')

Implementation : demo

 $DFS_rec(V,E,'s','t')$ $\hookrightarrow DFS_rec(V,E,'a','t')$

Implementation : demo

 $DFS_rec(V,E, 's', 't')$ $\hookrightarrow DFS_rec(V,E, 'a', 't')$

Implementation : demo

 $DFS_rec(V,E, 's', 't')$ $\hookrightarrow DFS_rec(V,E, 'a', 't')$

Implementation : demo

 $DFS_rec(V,E, 's', 't')$ $\hookrightarrow DFS_rec(V,E, 'a', 't')$

Implementation : demo

 \hookrightarrow DFS_rec(V,E,'a','t') : True

Implementation : demo

DFS_rec(V,E,'s','t') : True

Implementation : demo

DFS_rec(V,E,'s','t') : True

Remark

All vertices marked to True in visited are accessible from s.

We will come back to that property later on...

Remove the recursion?

Remove the recursion ? Introduction of a stack

- ✓ Turns a recursive algorithm into an iterative one using a stack.
- → The next vertices to be explored are stored in the stack.

Remove the recursion ?

- Turns a recursive algorithm into an iterative one using a stack.
- → The next vertices to be explored are stored in the stack.

Reminder : stack

- Data structure.
- Sequence of elements in which one adds and retrieves elements always on the same end.
- Objects pop out of the stack in reverse order (Last In First Out).

Stack in Python

In Python Methods append and pop on a list

In the Algorithmics and Complexity course

We use two ad-hoc functions that "hide" the implementation :

```
def add_end(x,1):
    l.append(x)
```

def pop_end(l):
 return l.pop()

In computer science

Push and pop methods on stack

Depth-First Search : iterative implementation

```
def DFS_iter(V,E,s,t):
   lnext = [s]
                             # the stack
    reached = { s: True }
                             # avoid adding multiple times
    while len(lnext)>0:
      n = pop_end(lnext)
      if n==t:
        return True
      for v in neighbours(n,E):
        if not v in reached:
          reached[v] = True
          add_end(v,lnext) # recursion -> add to stack
```

return False

Remark : Does not return the founded path \rightarrow see first tutorial

Iterative implementation : demo

lnext = ['s']
n =

Iterative implementation : demo

lnext = [] n = 's'

Iterative implementation : demo

lnext = ['f', 'a'] n = 's'

Iterative implementation : demo

lnext = ['f']n = 'a'

Iterative implementation : demo

Iterative implementation : demo

lnext = ['f', 'c'] n = 'b'

Iterative implementation : demo

lnext = ['f'] n = 'c'

Iterative implementation : demo

lnext = ['f', 'd'] n = 'c'

Iterative implementation : demo

lnext = ['f'] n = 'd'

Iterative implementation : demo

lnext = []
n = 'f'

Iterative implementation : demo

lnext = ['u']n = 'f'

Iterative implementation : demo

lnext = [] n = 'u'

Iterative implementation : demo

Iterative implementation : demo

reached

lnext = ['w'] n = 't'

Iterative implementation : remarks

Order on the neighbours

To obtain the same traversal as in the recursive version, we added the neighbours in the inversed lexical order !

Iterative implementation : remarks

Order on the neighbours

To obtain the same traversal as in the recursive version, we added the neighbours in the inversed lexical order !

→ Exercise : Run the algorithm with the lexical order on neighbours

Iterative implementation : remarks

Order on the neighbours

To obtain the same traversal as in the recursive version, we added the neighbours in the inversed lexical order !

→ Exercise : Run the algorithm with the lexical order on neighbours

Visited/reachable nodes (the remark of the recursive version is always valid)

The nodes with True in reached are reachable from s.

Plan

- Breadth-First Search
 Principle
 Algorithm
- 4 Complexity
- 5 Connectivity

Breadth-First Search

Principle

- Visit nodes by order of proximity with the starting vertex.
- Implementation using a queue instead of a stack.
- Difficult to implement in a recursive manner.

Definition of a queue

- Data structure.
- Sequence of elements in which one adds elements in one end and retrieves them from the other.
- Objects pop out of the queue in the same order as they entered (First In First Out).

Queues in Python

In Python

```
Methods append and pop(0) on a list
```

 \rightarrow with a parameter to remove in the begining instead of the end!

In Algorithmics and Complexity course

Two fonctions "hiding" the implementation :

```
def add_end(x,1):
    l.append(x)
```

```
def pop_begin(l):
    return l.pop(0)
```

In computer science

Methods enqueue and dequeue on a queue

Breadth-First Search

Iterative implementation : demo

lnext = ['s']
n =

Iterative implementation : demo

lnext = [] n = 's'

Iterative implementation : demo

lnext = ['a', 'f'] n = 's'

Iterative implementation : demo

lnext = ['f']n = 'a'

Iterative implementation : demo

Iterative implementation : demo

lnext = ['b', 'c'] n = 'f'

Iterative implementation : demo

Iterative implementation : demo

lnext = ['c', 'u'] n = 'b'

Iterative implementation : demo

lnext = ['u']
n = 'c'

Iterative implementation : demo

lnext = ['u', 'd'] n = 'c'

Iterative implementation : demo

lnext = ['d'] n = 'u'

Iterative implementation : demo

Iterative implementation : demo

lnext = ['t', 'w'] n = 'd'

Iterative implementation : demo

lnext = ['w'] n = 't'

Plan

- 2 Depth-First Search
- Breadth-First Search
- 4 Complexity
 - Principle
 - Complexity of iterative search
 - Complexity with data structures

5 Connectivity

How to evaluate the algorithm?

Complexity analysis

Complexity analysis of a algorithm consists in studying the amount of resources (time and space) required to run the algorithm.

Warning

Not to be confused with *complexity theory*, which studies the inherent difficulty of problems (and see later in this algorithmics course).

How to evaluate the algorithm?

Complexity analysis

Complexity analysis of a algorithm consists in studying the amount of resources (time and space) required to run the algorithm.

Warning

Not to be confused with *complexity theory*, which studies the inherent difficulty of problems (and see later in this algorithmics course).

Utilization

Compare algorithms independently from the implementation, the processor, the memory, the programming language...

Calculation of complexity

• The complexity of an algorithm depends on the size of an instance. Number of elements in a list, number of vertices and edges in a graph...

Calculation of complexity

- The complexity of an algorithm depends on the size of an instance. Number of elements in a list, number of vertices and edges in a graph...
- Count the number of elementary operations, *i.e.* whose cost does **not** depend on the size of the instance.

```
def contains(T,x):
    i = 0
    while i<len(T) and T[i]!=x:
        i = i + 1
    return i<len(T)</pre>
```

 \Rightarrow at minimum 0 additions and 2 comparisons (if T is empty) at maximum *n* additions and 2n + 2 cmp with n=len(T)

Calculation of complexity

- The complexity of an algorithm depends on the size of an instance. Number of elements in a list, number of vertices and edges in a graph...
- Count the number of elementary operations, *i.e.* whose cost does **not** depend on the size of the instance.

```
def contains(T,x):
    i = 0
    while i<len(T) and T[i]!=x:
        i = i + 1
    return i<len(T)</pre>
```

- \Rightarrow at minimum 0 additions and 2 comparisons (if T is empty) at maximum *n* additions and 2n + 2 cmp with n=len(T)
- It is an asymptotic measure, most often a domination, in this case $\mathcal{O}(n)$.

Asymptotical dominance

Definition : asymptotically dominated

A function $f : \mathbb{N} \to \mathbb{R}$ is asymptotically dominated by another function $g : \mathbb{N} \to \mathbb{R}$ if and only if :

 $f(n) \leq c g(n)$

• $\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \forall n > n_0.$

We write : $f \in \mathcal{O}(g)$


```
def DFS_iter(V,E,s,t):
     lnext = [s]
                                                     \mathcal{O}(1)
     reached = \{s: True\}
                                                     \mathcal{O}(1)
     while len(lnext)>0:
                                                     ×?
                                                     \mathcal{O}(1)
        n = pop_...(lnext)
                                                     \mathcal{O}(1)
        if n==t:
           return True
                                                     ×?
        for v in neighbours(n,E):
                                                     \mathcal{O}(1)
           if not v in reached:
                                                     \mathcal{O}(1)
             reached[v] = True
                                                     \mathcal{O}(1)
              add_end(v,lnext)
     return False
```

- We know how to construct add_end, pop_begin and pop_end in $\mathcal{O}(1)$
- The existence checking and writing in a dictionary is in O(1)


```
def DFS_iter(V,E,s,t):
      lnext = [s]
                                                                 \mathcal{O}(1)
      reached = { s: True }
                                                                 \mathcal{O}(1)
      while len(lnext)>0:
                                                                 \times a
                                                                 \mathcal{O}(1) \times a
         n = pop_...(lnext)
                                                                 \mathcal{O}(1) \times a
          if n==t:
             return True
                                                                 ×b
          for v in neighbours(n,E):
                                                                 \mathcal{O}(1) \times \boldsymbol{b}
             if not v in reached:
                                                                 \mathcal{O}(1) \times \boldsymbol{b}
                reached[v] = True
                                                                 \mathcal{O}(1) \times \boldsymbol{b}
                 add_end(v,lnext)
      return False
```

- We know how to construct add_end, pop_begin and pop_end in $\mathcal{O}(1)$
- The existence checking and writing in a dictionary is in O(1)
- How many loops?


```
def DFS_iter(V,E,s,t):
      lnext = [s]
                                                                 \mathcal{O}(1)
      reached = { s: True }
                                                                 \mathcal{O}(1)
      while len(lnext)>0:
                                                                 \times |V|
                                                                 \mathcal{O}(1) \times |V|
         n = pop_...(lnext)
                                                                 \mathcal{O}(1) \times |V|
          if n==t:
             return True
                                                                 ×b
          for v in neighbours(n,E):
                                                                 \mathcal{O}(1) \times \boldsymbol{b}
             if not v in reached:
                                                                 \mathcal{O}(1) \times \boldsymbol{b}
                reached[v] = True
                                                                 \mathcal{O}(1) \times \boldsymbol{b}
                 add_end(v,lnext)
      return False
```

- We know how to construct add_end, pop_begin and pop_end in $\mathcal{O}(1)$
- The existence checking and writing in a dictionary is in O(1)
- How many loops?
 - a
 ightarrow at worst |V| times if all vertices are added in <code>lnext</code>


```
def DFS_iter(V,E,s,t):
      lnext = [s]
                                                                \mathcal{O}(1)
      reached = { s: True }
                                                                \mathcal{O}(1)
      while len(lnext)>0:
                                                                \times |V|
                                                                \mathcal{O}(1) \times |V|
         n = pop_...(lnext)
                                                                \mathcal{O}(1) \times |V|
          if n==t:
             return True
                                                                \times |E|
          for v in neighbours(n,E):
                                                                \mathcal{O}(1) \times |\mathbf{E}|
             if not v in reached:
                                                                \mathcal{O}(1) \times |\mathbf{E}|
                reached[v] = True
                                                                \mathcal{O}(1) \times |\mathbf{E}|
                add_end(v,lnext)
      return False
```

- We know how to construct add_end, pop_begin and pop_end in $\mathcal{O}(1)$
- The existence checking and writing in a dictionary is in $\mathcal{O}(1)$
- How many loops?
 - a
 ightarrow at worst |V| times if all vertices are added in <code>lnext</code>
 - $\textit{b} \rightarrow$ as many additions as edge number ! as we only add the neighbors.


```
def DFS_iter(V,E,s,t):
      lnext = [s]
                                                                \mathcal{O}(1)
      reached = { s: True }
                                                                \mathcal{O}(1)
      while len(lnext)>0:
                                                                \times |V|
                                                                \mathcal{O}(1) \times |V|
         n = pop_...(lnext)
                                                                \mathcal{O}(1) \times |V|
          if n==t:
             return True
                                                                \times |E|
          for v in neighbours(n,E):
                                                                \mathcal{O}(1) \times |\mathbf{E}|
             if not v in reached:
                                                                \mathcal{O}(1) \times |\mathbf{E}|
                reached[v] = True
                                                                \mathcal{O}(1) \times |\mathbf{E}|
                add_end(v,lnext)
      return False
```

- We know how to construct add_end, pop_begin and pop_end in $\mathcal{O}(1)$
- The existence checking and writing in a dictionary is in O(1)
- How many loops?
 - a
 ightarrow at worst |V| times if all vertices are added in <code>lnext</code>
 - b
 ightarrow as many additions as edge number ! as we only add the neighbors.
- → Complexity of the algorithm in $\mathcal{O}(|V| + |E|) \approx \mathcal{O}(|E|)$ (if G sufficiently dense)

Data Structures

Attention

It depends on the implementation !

Example : Check if element is in list

if not v in reached

- With a list : $\mathcal{O}(|\textit{list}|)$
- With a dictionary : $\mathcal{O}(1)$
 - → See lab session next week...

Data Structures

Attention

It depends on the implementation !

Example : Check if element is in list

if not v in reached

- With a list : $\mathcal{O}(|\textit{list}|)$
- With a dictionary : $\mathcal{O}(1)$
 - → See lab session next week...

Everything is important !

- List for successors
- Dictionary for visited vertices (reached)
- → And for the graph (edges E)?

What implementation(s) for graphs?

Data structures

A grah is an abstract data structure.

- → How to implement it?
 - What representation for vertices and edges?
 - What data structure groups vertices and edges?
- What are the consequences on the time complexity of algorithms?

What implementation(s) for graphs?

Data structures

A grah is an abstract data structure.

- → How to implement it?
 - What representation for vertices and edges?
 - What data structure groups vertices and edges?
- → What are the consequences on the time complexity of algorithms?

Many possible implementations

- Adjacency list
- Adjacency matrix
- Incidence matrix (we won't see them)

Representation 1 : adjacency list

Idea

For each vertex, store in memory the direct list of its neighbours (the neighbouring function is often denoted by Γ) :

$$\Gamma: V \to \mathcal{P}(V), \qquad x \mapsto \Gamma(x) = \{y \in V \mid (x, y) \in E\}$$

by using a key-value table.

Representation 1 : adjacency list

Idea

For each vertex, store in memory the direct list of its neighbours (the neighbouring function is often denoted by Γ) :

$$\Gamma: V \to \mathcal{P}(V), \qquad x \mapsto \Gamma(x) = \{y \in V \mid (x, y) \in E\}$$

by using a key-value table.

Representation 1 : adjacency list

- Memory space in $\mathcal{O}(|E| + |V|)$
- Browsing the set of neighbours of a vertex u in O(deg(u))¹
 Useful for BFS/DFS, Dijkstra (Lecture 2), Prim (Lecture 3)...
- Facilitate edge storage in the structure (existence by the value 1) {a:{b:1,c:1},...}
- Check existence of an edge (u, v) in $\mathcal{O}(1)^2$
- Add an edge in $\mathcal{O}(1)^2$
- Delete an edge in $\mathcal{O}(1)^2$

- Degree of a node = number of adjacent edges worst case : deg(u) = |V| - 1 when u is connected to all.
- 2. See lab session for the dictionary

Representation 2 : adjacency matrix

Idea

- 2D array indexed by the set |V| of vertices;
- tab[i,j] = 1 if the vertices are linked by an edge else 0.

Representation 2 : adjacency matrix

Idea

- 2D array indexed by the set |V| of vertices;
- tab[i,j] = 1 if the vertices are linked by an edge else 0.

	а	b	С	d	е	f	g	h
а	0	1	0	1	0	0	0	0
Ь	1	0	1	0	1	0	0	0
с	0	1	0	0	1	0	1	0
d	1	0	0	0	1	0	0	0
е	0	1	1	1	0	0	1	1
f	0	0	0	0	0	0	0	0
g	0	0	1	0	1	0	0	0
h	0	0	0	0	1	0	0	0

Representation 2 : adjacency matrix

- **X** Memory space in $\mathcal{O}(|V| \times |V|)$
- X Browsing the set of neighbours of a vertex u in O(|V|)You need to walk the whole line of the matrix...
- ✓ Check existence of an edge (u, v) in O(1) And this writes tab[i][j] in Python!
- ✓ Add an edge in O(1)
- ✓ Delete an edge in O(1)

A concrete example

BFS algorithm with two different implementations

→ only the neighbours function changes!

```
def neighbours_mat(i,g):
    l=[]
    for j in range(len(g[i])):
        if g[i][j]:
            l.append(j)
        return l
    def neighbours_list(i,g):
        return g[i]
vertices and indexes are identical...
```

→ Compare the time of BFS(mat,0,neighbours_mat) and BFS(list,0,neighbours_list) on a reasonably large graph...

Complexity of graph search algorithms

Complexity

How to iterate over neighbours?

The running time complexity of a graph search algorithm depends on the graph implementation !

Complexity of graph search algorithms

Complexity

How to iterate over neighbours?

The running time complexity of a graph search algorithm depends on the graph implementation !

Adjacency matrix

We iterate over neighbours in $\mathcal{O}(|V|)$

→ Time complexity of the algorithm is $\mathcal{O}(|V|^2)$

Complexity of graph search algorithms

Complexity

How to iterate over neighbours?

The running time complexity of a graph search algorithm depends on the graph implementation !

Adjacency matrix

We iterate over neighbours in $\mathcal{O}(|V|)$

→ Time complexity of the algorithm is $\mathcal{O}(|V|^2)$

Adjacency list

We iterate over neighbours of u in O(deg(u))

→ Time complexity of the algorithm is $\mathcal{O}(|E|)$ as

 $2|E| = \sum_{u \in V} deg(u)$

To be remembered about DFS and $\ensuremath{\mathsf{BFS}}$

- Two similar algorithms
- Find out whether there exists a chain between two vertices (decision)

and to build one in this case (construction) \rightarrow TD1!

- Can detect cycles in the graph(when a neighbour is already visited).
- DFS can be implemented by a recursive or an iterative function with a stack.
- BFS uses an Iterative implementation with a queue.
- Theoretical time-complexity in $\mathcal{O}(|E|)$ $(\mathcal{O}(|V|^2)$ with matrix and $\mathcal{O}(|E|)$ with list).

To be remembered about DFS and $\ensuremath{\mathsf{BFS}}$

- Two similar algorithms
- Find out whether there exists a chain between two vertices (decision)

and to build one in this case (construction) \rightarrow TD1 !

- Can detect cycles in the graph(when a neighbour is already visited).
- DFS can be implemented by a recursive or an iterative function with a stack.
- BFS uses an Iterative implementation with a queue.
- Theoretical time-complexity in $\mathcal{O}(|E|)$ $(\mathcal{O}(|V|^2)$ with matrix and $\mathcal{O}(|E|)$ with list).

Connected subgraph

Both algorithms (DFS and BFS) can be used to compute a connected subgraph...

Plan

- 2 Depth-First Search
- Breadth-First Search
- Omplexity
- 6 Connectivity
 - Connected subgraph
 - Algorithm
 - Application

Identify connected subgraphs

Remark

If t cannot be reached from s, the algorithm returns False.

Identify connected subgraphs

Remark

If t cannot be reached from s, the algorithm returns False.

→ The dictionary reached gives the set of nodes that can be reached from s. This is called a connected subgraph.

Definition : connected subgraph

In a graph G = (V, E), any maximal subset $V' \subseteq V$ of vertices is called a connected subgraph of G if there exists a chain between any pair of vertices in V'.

Identify connected subgraphs

Remark

If t cannot be reached from s, the algorithm returns False.

→ The dictionary reached gives the set of nodes that can be reached from s. This is called a connected subgraph.

Definition : connected subgraph

In a graph G = (V, E), any maximal subset $V' \subseteq V$ of vertices is called a connected subgraph of G if there exists a chain between any pair of vertices in V'.

Idea ?

Could we modifier BFS/DFS to compute a connected subgraph?

Connected subgraph – Construction

Problem definition

- Input : Given a graph G = (V, E) and a starting vertex $s \in V$
- Question : Build connected subgraph of G that contains s.

Connected subgraph – Construction

Problem definition

- Input : Given a graph G = (V, E) and a starting vertex $s \in V$
- Question : Build connected subgraph of G that contains s.

Solution

We simply need to modify the depth-first search or breadth-first search algorithm so that it does not stop when reaching a given vertex but continues until the stack/queue is empty.

Connected subgraph with BFS

```
def BFS_connex(V,E,s):
    lnext = [s]
    reached = {s}
    while len(lnext)>0:
        n = pop_begin(lnext)
        # we delete the test n==t
        for m in neighbours(n,E):
            if m not in reached:
                reached.add(m)
                     lnext.append(m)
    # we return the list of reachable nodes
    return reached
```


Connected subgraph with BFS

```
def BFS_connex(V,E,s):
    lnext = [s]
    reached = {s}
    while len(lnext)>0:
        n = pop_begin(lnext)
        # we delete the test n==t
        for m in neighbours(n,E):
            if m not in reached:
                reached.add(m)
                     lnext.append(m)
    # we return the list of reachable nodes
    return reached
```

Exercise

Modify the DFS and DFS_iter algorithms presented earlier to compute a connected subgraph.

Identify all connected subgraphs of a graph

Problem definition

- Input : Given a graph G = (V, E)
- Question : Build a data structure that associates each vertex in V with an integer such that two different vertices s and t are associated to the same value if and only if they are in the same connected subgraph.

Algorithm identifying subgraphs

```
def ident_CC(V,E):
    res={v:-1 for v in V}
    i=0
    for v in res:
        if res[v]==-1:
            cc=BFS_connex(V,E,v)
            for c in cc:
                res[c]=i
            i = i+1
    return res
```


Algorithm identifying subgraphs

```
def ident_CC(V,E):
    res={v:-1 for v in V}
    i=0
    for v in res:
        if res[v]==-1:
            cc=BFS_connex(V,E,v)
            for c in cc:
                res[c]=i
                i = i+1
    return res
```

The time complexity of this algorithm is also $\mathcal{O}(|V| + |E|)$

➔ Each subgraph is visited only once

Counting chromosomes

Algorithm to identify chromosomes

- Load the grey-scaled image.
- Apply a threshold to obtain a black-and-white image.
- Turn the image into a graph where each white pixel is a vertex. Edges connect vertices that correspond to two adjacent white pixels.
- Use the subgraph identification algorithm

Plan

- Graph-based problems
- 2 Depth-First Search
- Breadth-First Search
- 4 Complexity
- 5 Connectivity

To be remembered

- Definition of a graph, notation
- Decision, construction and optimization problems
- Instance of a problem
- Definition of an algorithm
- Breadth-First Search and Depth-First Search
 - General algorithm
 - Implementation with a queue or a stack
 - Properties
- Complexity
 - General complexity
 - Complexity with adjacency list
 - Complexity with adjacency matrix
- Application to a concrete problem