
Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Algorithmics and Complexity

Cours 1/7 : Graph Traversal

CentraleSupélec – Gif

ST2 – Gif

ST2 – Gif Algorithmics and Complexity 1/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Plan

1 Graph-based problems

2 Depth-First Search

3 Breadth-First Search

4 Complexity

5 Connectivity

6 Conclusion

ST2 – Gif Algorithmics and Complexity 2/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Plan

1 Graph-based problems
Concret problems
Graph-based modeling
Problems’ family
Solving Algorithm

2 Depth-First Search

3 Breadth-First Search

4 Complexity

5 Connectivity

6 ConclusionST2 – Gif Algorithmics and Complexity 3/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Find the exit out of a maze

Problems

Computational model of this maze problem ?

What characterises a solution to this problem ?

How to compute efficiently a solution in an efficient manner ?

ST2 – Gif Algorithmics and Complexity 4/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Find the exit out of a maze

Problems

Computational model of this maze problem ?

What characterises a solution to this problem ?

How to compute efficiently a solution in an efficient manner ?

ST2 – Gif Algorithmics and Complexity 4/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Identify elements in a picture

Problems

Computational model of this picture ?

What characterises a chromosome ?

How to compute which parts of the image represent
chromosomes ?

ST2 – Gif Algorithmics and Complexity 5/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Identify elements in a picture

Problems

Computational model of this picture ?

What characterises a chromosome ?

How to compute which parts of the image represent
chromosomes ?

ST2 – Gif Algorithmics and Complexity 5/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Mazes and chromosomes

What is the connection between finding a path in a maze and
counting chromosomes ?

➜ Graphs, graph traversal and connectivity !

ST2 – Gif Algorithmics and Complexity 6/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Mazes and chromosomes

What is the connection between finding a path in a maze and
counting chromosomes ?

➜ Graphs, graph traversal and connectivity !

ST2 – Gif Algorithmics and Complexity 6/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Graph

Data Structures

What you saw in your previous studies :

✓ Variables (often connected to representation types)

✓ Arrays (one dimensions or more)

✓ Lists, stacks, queues

✗ Objects

✗ Dictionnaries

Graph

Graphs are another type of data structure

➜ Maybe the most frequently used in algorithmics !

ST2 – Gif Algorithmics and Complexity 7/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

What is a Graph ?

Graph

Mathematical structure used to represent relations between
elements

a

b c

d

e

f

g

Definitions

Nodes also known as vertices

Edges

Notation

Graph G = (V ,E)
where V is the set of vertices and E the set of edges.

ST2 – Gif Algorithmics and Complexity 8/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

What is a Graph ?

Graph

Mathematical structure used to represent relations between
elements

a

b c

d

e

f

g

Definitions

Nodes also known as vertices

Edges

Notation

Graph G = (V ,E)
where V is the set of vertices and E the set of edges.

ST2 – Gif Algorithmics and Complexity 8/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

What is a Graph ?

Graph

Mathematical structure used to represent relations between
elements

a

b c

d

e

f

g

Definitions

Nodes also known as vertices

Edges

Notation

Graph G = (V ,E)
where V is the set of vertices and E the set of edges.

ST2 – Gif Algorithmics and Complexity 8/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Maze modeling

s

t

s

a

b

cd

f

u

w

t

A maze seen as a graph

The intersections and the dead-ends are represented by
vertices ;

Each vertex can be associated with a label.

Each corridor is represented by an edge.

ST2 – Gif Algorithmics and Complexity 9/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Maze modeling

s

t

s

a

b

cd

f

u

w

t

A maze seen as a graph

The intersections and the dead-ends are represented by
vertices ;

Each vertex can be associated with a label.

Each corridor is represented by an edge.

ST2 – Gif Algorithmics and Complexity 9/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Maze modeling

s

t

s

a

b

cd

f

u

w

t

A maze seen as a graph

The intersections and the dead-ends are represented by
vertices ;

Each vertex can be associated with a label.

Each corridor is represented by an edge.

ST2 – Gif Algorithmics and Complexity 9/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Maze modeling

s

t

s

a

b

cd

f

u

w

t

A maze seen as a graph

The intersections and the dead-ends are represented by
vertices ;

Each vertex can be associated with a label.

Each corridor is represented by an edge.

ST2 – Gif Algorithmics and Complexity 9/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Remarks & definitions

Remarks

This type of graph is a non-directed graph.
We will see directed graphs in the next lecture

Each edge is characterised by its two ending vertices :
E ⊆ V × V

Definitions

A chain from x to y is a finite series of consecutive edges
connecting x to y .

A graph is connected when there exists a chain between any
pair of vertices.

ST2 – Gif Algorithmics and Complexity 10/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Remarks & definitions

Remarks

This type of graph is a non-directed graph.
We will see directed graphs in the next lecture

Each edge is characterised by its two ending vertices :
E ⊆ V × V

Definitions

A chain from x to y is a finite series of consecutive edges
connecting x to y .

A graph is connected when there exists a chain between any
pair of vertices.

ST2 – Gif Algorithmics and Complexity 10/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Model of the maze problem

With the same data,
(in our case, a graph G = (V ,E) and two vertices s and t)

we can build different types of problems !

Decision problem

Construction problem

Optimization problem

ST2 – Gif Algorithmics and Complexity 11/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Model of the maze problem – Decision

Existence of a chain

Inputs : Given a graph G = (V ,E), a starting vertex s ∈ V
and a target vertex t ∈ V

Question : Is there a chain from s to t ?

Decision problem

✓ The answer to the above question is either yes or no.

ST2 – Gif Algorithmics and Complexity 12/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Model of the maze problem – Construction

Construction of a chain

Inputs : Given a graph G = (V ,E), a starting vertex s ∈ V
and a target vertex t ∈ V

Question : Build a chain from s to t

Construction problem

✓ The answer is a solution to the problem.

➜ Compute a data structure that satisfies the constraints of the
problem.

Such a structure might not exist !

➜ The answer to the corresponding decision problem is no

ST2 – Gif Algorithmics and Complexity 13/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Model of the maze problem – Optimisation

Shortest chain

Inputs : Given a graph G = (V ,E), a starting vertex s ∈ V
and a target vertex t ∈ V

Question : What is the shortest chain from s to t ?

Optimisation problem

✓ The answer to the question is a solution.

✓ There exists a function (in this case, the length of the chain)
that needs to be maximised or minimised.

ST2 – Gif Algorithmics and Complexity 14/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Model of the maze problem – Optimisation

Shortest chain

Inputs : Given a graph G = (V ,E), a starting vertex s ∈ V
and a target vertex t ∈ V

Question : What is the shortest chain from s to t ?

Optimisation problem

✓ The answer to the question is a solution.

✓ There exists a function (in this case, the length of the chain)
that needs to be maximised or minimised.

In this lecture, we will focus on decision problems.
(existence of a chain)

ST2 – Gif Algorithmics and Complexity 14/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Instance of a problem

Definition : instance

An instance is a set of inputs that satisfy the constraints of
the problem.

The size of an instance corresponds to the size of the data :

➜ It depends on the computer representation ;
➜ Atomic element : number of elements in a list, number of vertices

and edges in a graph. . .

Example

A graph G = (V ,E) and two vertices s and t ∈ V .
s

a

b

cd

f

u

w

t

Size of the instance = |V |+ |E |

ST2 – Gif Algorithmics and Complexity 15/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Instance of a problem

Definition : instance

An instance is a set of inputs that satisfy the constraints of
the problem.

The size of an instance corresponds to the size of the data :

➜ It depends on the computer representation ;
➜ Atomic element : number of elements in a list, number of vertices

and edges in a graph. . .

Example

A graph G = (V ,E) and two vertices s and t ∈ V .
s

a

b

cd

f

u

w

t

Size of the instance = |V |+ |E |
ST2 – Gif Algorithmics and Complexity 15/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Solving algorithm

Definition : algorithm

An algorithm is a finite and non ambiguous series of operations or
instructions that can be used to solve a problem.

Example : existence of a chain

1 Starting from s, select a vertex connected to the currently
selected vertex

2 Continue as long as the currently selected vertex is not t

3 Answer ”yes” when t is reached

ST2 – Gif Algorithmics and Complexity 16/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Solving algorithm

Definition : algorithm

An algorithm is a finite and non ambiguous series of operations or
instructions that can be used to solve a problem.

Example : existence of a chain

1 Starting from s, select a vertex connected to the currently
selected vertex

2 Continue as long as the currently selected vertex is not t

3 Answer ”yes” when t is reached

Remarks

This algorithm never answers ”no”

This algorithm might not terminate.
→ One cannot always predict whether an algorithm terminates or not

ST2 – Gif Algorithmics and Complexity 16/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Solving algorithm

Algorithm

In Computer Science, an algorithm is a finite series of instructions
using :

variables, data structures,

control instructions (loops, conditional instructions, function calls,

etc).

that can be executed step by step by a deterministic computer.

Can we write this algorithm in Python ?

def exists chain(V,E,s,t): ... (to be continued)

We assume that there exists a function neighbours(x,E) that returns
the list of neighbouring vertices

ST2 – Gif Algorithmics and Complexity 17/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Solving algorithm

Algorithm

In Computer Science, an algorithm is a finite series of instructions
using :

variables, data structures,

control instructions (loops, conditional instructions, function calls,

etc).

that can be executed step by step by a deterministic computer.

Can we write this algorithm in Python ?

def exists chain(V,E,s,t): ... (to be continued)

We assume that there exists a function neighbours(x,E) that returns
the list of neighbouring vertices

ST2 – Gif Algorithmics and Complexity 17/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Back to mazes

Find the exit = existence of a chain !

s

a

b

cd

f

u

w

t

→ Graph traversal algorithms.

Beware of cycles !

➜ We must store the visited vertices to avoid a loop.
(unlike the previous algorithm. . .)

ST2 – Gif Algorithmics and Complexity 18/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Back to mazes

Find the exit = existence of a chain !

s

a

b

cd

f

u

w

t

→ Graph traversal algorithms.

Beware of cycles !

➜ We must store the visited vertices to avoid a loop.
(unlike the previous algorithm. . .)

ST2 – Gif Algorithmics and Complexity 18/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Concret problems Graph-based modeling Problems’ family Solving Algorithm

Back to mazes

Find the exit = existence of a chain !

s

a

b

cd

f

u

w

t

→ Graph traversal algorithms.

Beware of cycles !

➜ We must store the visited vertices to avoid a loop.
(unlike the previous algorithm. . .)

ST2 – Gif Algorithmics and Complexity 18/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Plan

1 Graph-based problems

2 Depth-First Search
Principle
Recursive implementation
Iterative implementation

3 Breadth-First Search

4 Complexity

5 Connectivity

6 Conclusion

ST2 – Gif Algorithmics and Complexity 19/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search

General idea of the algorithm. . .

Always select the first connected vertex (not already visited) with
respect to the current one and retrace its steps

Skip

s

a

b

cd

f

u

w

t
Lexical order on neighbours

Stop when t is reached

ST2 – Gif Algorithmics and Complexity 20/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search

General idea of the algorithm. . .

Always select the first connected vertex (not already visited) with
respect to the current one and retrace its steps

Skip

s

a

b

cd

f

u

w

t
Lexical order on neighbours

Stop when t is reached

ST2 – Gif Algorithmics and Complexity 20/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search

General idea of the algorithm. . .

Always select the first connected vertex (not already visited) with
respect to the current one and retrace its steps

Skip

s

a

b

cd

f

u

w

t
Lexical order on neighbours

Stop when t is reached

ST2 – Gif Algorithmics and Complexity 20/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search

General idea of the algorithm. . .

Always select the first connected vertex (not already visited) with
respect to the current one and retrace its steps

Skip

s

a

b

cd

f

u

w

t
Lexical order on neighbours

Stop when t is reached

ST2 – Gif Algorithmics and Complexity 20/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search

General idea of the algorithm. . .

Always select the first connected vertex (not already visited) with
respect to the current one and retrace its steps

Skip

s

a

b

cd

f

u

w

t
Lexical order on neighbours

Stop when t is reached

ST2 – Gif Algorithmics and Complexity 20/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search

General idea of the algorithm. . .

Always select the first connected vertex (not already visited) with
respect to the current one and retrace its steps

Skip

s

a

b

cd

f

u

w

t
Lexical order on neighbours

Stop when t is reached

ST2 – Gif Algorithmics and Complexity 20/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search

General idea of the algorithm. . .

Always select the first connected vertex (not already visited) with
respect to the current one and retrace its steps

Skip

s

a

b

cd

f

u

w

t
Lexical order on neighbours

Stop when t is reached

ST2 – Gif Algorithmics and Complexity 20/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search

General idea of the algorithm. . .

Always select the first connected vertex (not already visited) with
respect to the current one and retrace its steps

Skip

s

a

b

cd

f

u

w

t
Lexical order on neighbours

Stop when t is reached

ST2 – Gif Algorithmics and Complexity 20/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search

General idea of the algorithm. . .

Always select the first connected vertex (not already visited) with
respect to the current one and retrace its steps

Skip

s

a

b

cd

f

u

w

t
Lexical order on neighbours

Stop when t is reached

ST2 – Gif Algorithmics and Complexity 20/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

How to implement this idea

i.e. turn it into an algorithm. . .

What do we need ?
1 Knowing the neigbours of a vertex (to select the first one)

➜ neighbours(x,E) function that returns the list of neighbours

2 Knowing if a vertex was already visited (to avoid looping)

➜ An array visited that associates nodes with a boolean value.

➜ Python dictionary

3 Select systematically the first non-visited neighbour

4 If this is not t, repeat from the current node

➜ Recursive function

ST2 – Gif Algorithmics and Complexity 21/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

How to implement this idea

i.e. turn it into an algorithm. . .

What do we need ?
1 Knowing the neigbours of a vertex (to select the first one)

➜ neighbours(x,E) function that returns the list of neighbours

2 Knowing if a vertex was already visited (to avoid looping)

➜ An array visited that associates nodes with a boolean value.

➜ Python dictionary

3 Select systematically the first non-visited neighbour

4 If this is not t, repeat from the current node

➜ Recursive function

ST2 – Gif Algorithmics and Complexity 21/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

How to implement this idea

i.e. turn it into an algorithm. . .

What do we need ?
1 Knowing the neigbours of a vertex (to select the first one)

➜ neighbours(x,E) function that returns the list of neighbours

2 Knowing if a vertex was already visited (to avoid looping)

➜ An array visited that associates nodes with a boolean value.

➜ Python dictionary

3 Select systematically the first non-visited neighbour

4 If this is not t, repeat from the current node

➜ Recursive function

ST2 – Gif Algorithmics and Complexity 21/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

How to implement this idea

i.e. turn it into an algorithm. . .

What do we need ?
1 Knowing the neigbours of a vertex (to select the first one)

➜ neighbours(x,E) function that returns the list of neighbours

2 Knowing if a vertex was already visited (to avoid looping)

➜ An array visited that associates nodes with a boolean value.
➜ Python dictionary

3 Select systematically the first non-visited neighbour

4 If this is not t, repeat from the current node

➜ Recursive function

ST2 – Gif Algorithmics and Complexity 21/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

How to implement this idea

i.e. turn it into an algorithm. . .

What do we need ?
1 Knowing the neigbours of a vertex (to select the first one)

➜ neighbours(x,E) function that returns the list of neighbours

2 Knowing if a vertex was already visited (to avoid looping)

➜ An array visited that associates nodes with a boolean value.
➜ Python dictionary

3 Select systematically the first non-visited neighbour

4 If this is not t, repeat from the current node

➜ Recursive function

ST2 – Gif Algorithmics and Complexity 21/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Reminder : Python dictionaries

Set of (key,value) data structure

dico = { key:value, ... }

The data structure associates a value to a name (the key),
using : dico[key]=value

Keys are often character strings

Values are accessed using : dico[key]

We can iterate over the keys :

for k in dico: ...

We can test if a key exists :

if k in dico: ...

ST2 – Gif Algorithmics and Complexity 22/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search : recursive implementation

1. Initialization of the dictionary : visited = { }

2. Recursive function DFS rec(V,E,n,t)

def DFS_rec(V,E,n,t): # n : the current node

visited[n] = True

if n==t: return True

for v in neighbours(n,E):

if not v in visited:

if DFS_rec(V,E,v,t):

return True

return False

3. Calling the function : DFS_rec(V,E,s,t)

Remarks
The list of nodes V is not used in DFS rec

This algorithm does not return the path, only True or False depending on
whether it reaches t or not.

ST2 – Gif Algorithmics and Complexity 23/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search : recursive implementation

1. Initialization of the dictionary : visited = { }

2. Recursive function DFS rec(V,E,n,t)

def DFS_rec(V,E,n,t): # n : the current node

visited[n] = True

if n==t: return True

for v in neighbours(n,E):

if not v in visited:

if DFS_rec(V,E,v,t):

return True

return False

3. Calling the function : DFS_rec(V,E,s,t)

Remarks
The list of nodes V is not used in DFS rec

This algorithm does not return the path, only True or False depending on
whether it reaches t or not.

ST2 – Gif Algorithmics and Complexity 23/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search : recursive implementation

1. Initialization of the dictionary : visited = { }

2. Recursive function DFS rec(V,E,n,t)

def DFS_rec(V,E,n,t): # n : the current node

visited[n] = True

if n==t: return True

for v in neighbours(n,E):

if not v in visited:

if DFS_rec(V,E,v,t):

return True

return False

3. Calling the function : DFS_rec(V,E,s,t)

Remarks
The list of nodes V is not used in DFS rec

This algorithm does not return the path, only True or False depending on
whether it reaches t or not.

ST2 – Gif Algorithmics and Complexity 23/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search : recursive implementation

1. Initialization of the dictionary : visited = { }

2. Recursive function DFS rec(V,E,n,t)

def DFS_rec(V,E,n,t): # n : the current node

visited[n] = True

if n==t: return True

for v in neighbours(n,E):

if not v in visited:

if DFS_rec(V,E,v,t):

return True

return False

3. Calling the function : DFS_rec(V,E,s,t)

Remarks
The list of nodes V is not used in DFS rec

This algorithm does not return the path, only True or False depending on
whether it reaches t or not.

ST2 – Gif Algorithmics and Complexity 23/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’b’,’t’)

: False

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’b’,’t’)

: False

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’b’,’t’) : False

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’d’,’t’)

: False

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’d’,’t’)

: False

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’d’,’t’) : False

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’f’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’f’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’f’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’f’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’f’,’t’)

: True

↪→ DFS rec(V,E,’u’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

True

t
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’f’,’t’)

: True

↪→ DFS rec(V,E,’u’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet

True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’f’,’t’)

: True

↪→ DFS rec(V,E,’u’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet

True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’f’,’t’)

: True

↪→ DFS rec(V,E,’u’,’t’)

: True

↪→ DFS rec(V,E,’t’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’f’,’t’)

: True

↪→ DFS rec(V,E,’u’,’t’)

: True

↪→ DFS rec(V,E,’t’,’t’)

: True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’f’,’t’)

: True

↪→ DFS rec(V,E,’u’,’t’)

: True

↪→ DFS rec(V,E,’t’,’t’) : True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’f’,’t’)

: True

↪→ DFS rec(V,E,’u’,’t’) : True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’)

: True

↪→ DFS rec(V,E,’f’,’t’) : True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’)

: True

↪→ DFS rec(V,E,’c’,’t’) : True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’)

: True

↪→ DFS rec(V,E,’a’,’t’) : True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’) : True

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

visited

a :

b :
c :

d :

f :
s :

t :
u :

w :

s

True

a

True

b

True

c

True

d

True

f

True

u

Truet
True

DFS rec(V,E,’s’,’t’) : True

Remark
All vertices marked to True in visited are accessible from s.

We will come back to that property later on. . .

ST2 – Gif Algorithmics and Complexity 24/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Remove the recursion ?

Introduction of a stack

✓ Turns a recursive algorithm into an iterative one using a stack.

➜ The next vertices to be explored are stored in the stack.

Reminder : stack

Data structure.

Sequence of elements in which one adds and retrieves
elements always on the same end.

Objects pop out of the stack in reverse order (Last In First
Out).

ST2 – Gif Algorithmics and Complexity 25/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Remove the recursion ?
Introduction of a stack

✓ Turns a recursive algorithm into an iterative one using a stack.

➜ The next vertices to be explored are stored in the stack.

Reminder : stack

Data structure.

Sequence of elements in which one adds and retrieves
elements always on the same end.

Objects pop out of the stack in reverse order (Last In First
Out).

ST2 – Gif Algorithmics and Complexity 25/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Remove the recursion ?
Introduction of a stack

✓ Turns a recursive algorithm into an iterative one using a stack.

➜ The next vertices to be explored are stored in the stack.

Reminder : stack

Data structure.

Sequence of elements in which one adds and retrieves
elements always on the same end.

Objects pop out of the stack in reverse order (Last In First
Out).

ST2 – Gif Algorithmics and Complexity 25/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Stack in Python

In Python

Methods append and pop on a list

In the Algorithmics and Complexity course

We use two ad-hoc functions that “hide” the implementation :

def add_end(x,l):

l.append(x)

def pop_end(l):

return l.pop()

In computer science

Push and pop methods on stack

ST2 – Gif Algorithmics and Complexity 26/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Depth-First Search : iterative implementation

def DFS_iter(V,E,s,t):

lnext = [s] # the stack

reached = { s: True } # avoid adding multiple times

while len(lnext)>0:

n = pop_end(lnext)

if n==t:

return True

for v in neighbours(n,E):

if not v in reached:

reached[v] = True

add_end(v,lnext) # recursion -> add to stack

return False

Remark : Does not return the founded path → see first tutorial

ST2 – Gif Algorithmics and Complexity 27/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

cd

True

d

f

u

True

u

w

t
True

True

t

lnext = [’s’]

n =

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

cd

True

d

f

u

True

u

w

t
True

True

t

lnext = []

n = ’s’

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

cd

True

d

f

u

True

u

w

t
True

True

t

lnext = [’f’, ’a’]

n = ’s’

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

cd

True

d

f

u

True

u

w

t
True

True

t

lnext = [’f’]

n = ’a’

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

cd

True

d

f

u

True

u

w

t
True

True

t

lnext = [’f’, ’c’, ’b’]

n = ’a’

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

cd

True

d

f

u

True

u

w

t
True

True

t

lnext = [’f’, ’c’]

n = ’b’

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

c

d

True

d

f

u

True

u

w

t
True

True

t

lnext = [’f’]

n = ’c’

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

cd

True

d

f

u

True

u

w

t
True

True

t

lnext = [’f’, ’d’]

n = ’c’

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

cd

True

d

f

u

True

u

w

t
True

True

t

lnext = [’f’]

n = ’d’

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

cd

True

d

f

u

True

u

w

t
True

True

t

lnext = []

n = ’f’

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

cd

True

d

f

u

True

u

w

t
True

True

t

lnext = [’u’]

n = ’f’

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

cd

True

d

f

u

True

u

w

t
True

True

t

lnext = []

n = ’u’

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

cd

True

d

f

u

True

u

w

t
True

True

t

lnext = [’w’, ’t’]

n = ’u’

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

b

cd

True

d

f

u

True

u

w

t
True

True

t

lnext = [’w’]

n = ’t’

ST2 – Gif Algorithmics and Complexity 28/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : remarks

Order on the neighbours

To obtain the same traversal as in the recursive version, we added the
neighbours in the inversed lexical order !

➜ Exercise : Run the algorithm with the lexical order on neighbours

Visited/reachable nodes (the remark of the recursive version is always

valid)

The nodes with True in reached are reachable from s.

ST2 – Gif Algorithmics and Complexity 29/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : remarks

Order on the neighbours

To obtain the same traversal as in the recursive version, we added the
neighbours in the inversed lexical order !

➜ Exercise : Run the algorithm with the lexical order on neighbours

Visited/reachable nodes (the remark of the recursive version is always

valid)

The nodes with True in reached are reachable from s.

ST2 – Gif Algorithmics and Complexity 29/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Recursive implementation Iterative implementation

Iterative implementation : remarks

Order on the neighbours

To obtain the same traversal as in the recursive version, we added the
neighbours in the inversed lexical order !

➜ Exercise : Run the algorithm with the lexical order on neighbours

Visited/reachable nodes (the remark of the recursive version is always

valid)

The nodes with True in reached are reachable from s.

ST2 – Gif Algorithmics and Complexity 29/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Plan

1 Graph-based problems

2 Depth-First Search

3 Breadth-First Search
Principle
Algorithm

4 Complexity

5 Connectivity

6 Conclusion

ST2 – Gif Algorithmics and Complexity 30/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Breadth-First Search

Principle

Visit nodes by order of proximity with the starting vertex.

Implementation using a queue instead of a stack.

Difficult to implement in a recursive manner.

Definition of a queue

Data structure.

Sequence of elements in which one adds elements in one end
and retrieves them from the other.

Objects pop out of the queue in the same order as they
entered (First In First Out).

ST2 – Gif Algorithmics and Complexity 31/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Queues in Python

In Python

Methods append and pop(0) on a list

➜ with a parameter to remove in the begining instead of the end !

In Algorithmics and Complexity course

Two fonctions “hiding” the implementation :

def add_end(x,l):

l.append(x)

def pop_begin(l):

return l.pop(0)

In computer science

Methods enqueue and dequeue on a queue

ST2 – Gif Algorithmics and Complexity 32/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Breadth-First Search

def BFS(V,E,s,t):

lnext = [s] # the queue

reached = { s : True }

while len(lnext)>0:

n = pop_begin(lnext)

if n==t:

return True

for v in neighbours(n,E):

if not v in reached:

reached[v] = True

add_end(v,lnext)

return False

ST2 – Gif Algorithmics and Complexity 33/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

cd

Trueu

w

t
True

True

d

t

lnext = [’s’]

n =

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

cd

Trueu

w

t
True

True

d

t

lnext = []

n = ’s’

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

cd

Trueu

w

t
True

True

d

t

lnext = [’a’, ’f’]

n = ’s’

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

cd

Trueu

w

t
True

True

d

t

lnext = [’f’]

n = ’a’

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

cd

Trueu

w

t
True

True

d

t

lnext = [’f’, ’b’, ’c’]

n = ’a’

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

cd

Trueu

w

t
True

True

d

t

lnext = [’b’, ’c’]

n = ’f’

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

cd

Trueu

w

t
True

True

d

t

lnext = [’b’, ’c’, ’u’]

n = ’f’

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

cd

Trueu

w

t
True

True

d

t

lnext = [’c’, ’u’]

n = ’b’

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

c

d

Trueu

w

t
True

True

d

t

lnext = [’u’]

n = ’c’

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

cd

True

u

w

t
True

True

d

t

lnext = [’u’, ’d’]

n = ’c’

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

cd

Trueu

w

t
True

True

d

t

lnext = [’d’]

n = ’u’

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

cd

Trueu

w

t
True

True

d

t

lnext = [’d’, ’t’, ’w’]

n = ’u’

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

cd

Trueu

w

t
True

True

d

t

lnext = [’t’, ’w’]

n = ’d’

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Algorithm

Iterative implementation : demo

Skip Demo

s

a

b

cd

f

u

w

t

reached

a :

b :
c :

d :

f :
s :

t :
u :

w :

True

s

a

f

True

True

a

b

c

True

True

f

u

True

b

cd

Trueu

w

t
True

True

d

t

lnext = [’w’]

n = ’t’

ST2 – Gif Algorithmics and Complexity 34/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Plan

1 Graph-based problems

2 Depth-First Search

3 Breadth-First Search

4 Complexity
Principle
Complexity of iterative search
Complexity with data structures

5 Connectivity

6 Conclusion

ST2 – Gif Algorithmics and Complexity 35/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

How to evaluate the algorithm ?

Complexity analysis

Complexity analysis of a algorithm consists in studying the amount
of resources (time and space) required to run the algorithm.

Warning

Not to be confused with complexity theory, which studies the
inherent difficulty of problems (and see later in this algorithmics
course).

Utilization

Compare algorithms independently from the implementation, the
processor, the memory, the programming language. . .

ST2 – Gif Algorithmics and Complexity 36/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

How to evaluate the algorithm ?

Complexity analysis

Complexity analysis of a algorithm consists in studying the amount
of resources (time and space) required to run the algorithm.

Warning

Not to be confused with complexity theory, which studies the
inherent difficulty of problems (and see later in this algorithmics
course).

Utilization

Compare algorithms independently from the implementation, the
processor, the memory, the programming language. . .

ST2 – Gif Algorithmics and Complexity 36/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Calculation of complexity

The complexity of an algorithm depends on the size of an instance.

Number of elements in a list, number of vertices and edges in a graph. . .

Count the number of elementary operations, i.e. whose cost does
not depend on the size of the instance.

def contains(T,x):

i = 0

while i<len(T) and T[i]!=x:

i = i + 1

return i<len(T)

⇒ at minimum 0 additions and 2 comparisons (if T is empty)
at maximum n additions and 2n + 2 cmp with n=len(T)

It is an asymptotic measure, most often a domination, in this case
O(n).

ST2 – Gif Algorithmics and Complexity 37/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Calculation of complexity

The complexity of an algorithm depends on the size of an instance.

Number of elements in a list, number of vertices and edges in a graph. . .

Count the number of elementary operations, i.e. whose cost does
not depend on the size of the instance.

def contains(T,x):

i = 0

while i<len(T) and T[i]!=x:

i = i + 1

return i<len(T)

⇒ at minimum 0 additions and 2 comparisons (if T is empty)
at maximum n additions and 2n + 2 cmp with n=len(T)

It is an asymptotic measure, most often a domination, in this case
O(n).

ST2 – Gif Algorithmics and Complexity 37/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Calculation of complexity

The complexity of an algorithm depends on the size of an instance.

Number of elements in a list, number of vertices and edges in a graph. . .

Count the number of elementary operations, i.e. whose cost does
not depend on the size of the instance.

def contains(T,x):

i = 0

while i<len(T) and T[i]!=x:

i = i + 1

return i<len(T)

⇒ at minimum 0 additions and 2 comparisons (if T is empty)
at maximum n additions and 2n + 2 cmp with n=len(T)

It is an asymptotic measure, most often a domination, in this case
O(n).

ST2 – Gif Algorithmics and Complexity 37/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Asymptotical dominance

Definition : asymptotically dominated

A function f : N → R is asymptotically dominated by another
function g : N → R if and only if :

∃c ∈ R+,∃n0 ∈ N,∀n > n0. f (n) ≤ c g(n)

We write : f ∈ O(g)

n0

N

R

f (n)

c g(n)

ST2 – Gif Algorithmics and Complexity 38/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Complexity of DFS iter or BFS iter in the worst case

def DFS_iter(V,E,s,t):

lnext = [s]

reached = { s: True }

while len(lnext)>0:

n = pop_ ...(lnext)

if n==t:

return True

for v in neighbours(n,E):

if not v in reached:

reached[v] = True

add_end(v,lnext)

return False

O(1)
O(1)
×?
O(1)
O(1)

×?
O(1)
O(1)

O(1)

We know how to construct add end, pop begin and pop end in O(1)

The existence checking and writing in a dictionary is in O(1)

How many loops ?
a → at worst |V | times if all vertices are added in lnext

b → as many additions as edge number ! as we only add the neighbors.

➜ Complexity of the algorithm in O(|V |+ |E |) ≈ O(|E |) (if G sufficiently dense)

ST2 – Gif Algorithmics and Complexity 39/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Complexity of DFS iter or BFS iter in the worst case

def DFS_iter(V,E,s,t):

lnext = [s]

reached = { s: True }

while len(lnext)>0:

n = pop_ ...(lnext)

if n==t:

return True

for v in neighbours(n,E):

if not v in reached:

reached[v] = True

add_end(v,lnext)

return False

O(1)
O(1)
×a
O(1)×a
O(1)×a

×b
O(1)×b
O(1)×b

O(1)×b

We know how to construct add end, pop begin and pop end in O(1)

The existence checking and writing in a dictionary is in O(1)

How many loops ?

a → at worst |V | times if all vertices are added in lnext

b → as many additions as edge number ! as we only add the neighbors.

➜ Complexity of the algorithm in O(|V |+ |E |) ≈ O(|E |) (if G sufficiently dense)

ST2 – Gif Algorithmics and Complexity 39/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Complexity of DFS iter or BFS iter in the worst case

def DFS_iter(V,E,s,t):

lnext = [s]

reached = { s: True }

while len(lnext)>0:

n = pop_ ...(lnext)

if n==t:

return True

for v in neighbours(n,E):

if not v in reached:

reached[v] = True

add_end(v,lnext)

return False

O(1)
O(1)
×|V |
O(1)×|V |
O(1)×|V |

×b
O(1)×b
O(1)×b

O(1)×b

We know how to construct add end, pop begin and pop end in O(1)

The existence checking and writing in a dictionary is in O(1)

How many loops ?
a → at worst |V | times if all vertices are added in lnext

b → as many additions as edge number ! as we only add the neighbors.

➜ Complexity of the algorithm in O(|V |+ |E |) ≈ O(|E |) (if G sufficiently dense)

ST2 – Gif Algorithmics and Complexity 39/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Complexity of DFS iter or BFS iter in the worst case

def DFS_iter(V,E,s,t):

lnext = [s]

reached = { s: True }

while len(lnext)>0:

n = pop_ ...(lnext)

if n==t:

return True

for v in neighbours(n,E):

if not v in reached:

reached[v] = True

add_end(v,lnext)

return False

O(1)
O(1)
×|V |
O(1)×|V |
O(1)×|V |

×|E |
O(1)×|E |
O(1)×|E |
O(1)×|E |

We know how to construct add end, pop begin and pop end in O(1)

The existence checking and writing in a dictionary is in O(1)

How many loops ?
a → at worst |V | times if all vertices are added in lnext

b → as many additions as edge number ! as we only add the neighbors.

➜ Complexity of the algorithm in O(|V |+ |E |) ≈ O(|E |) (if G sufficiently dense)

ST2 – Gif Algorithmics and Complexity 39/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Complexity of DFS iter or BFS iter in the worst case

def DFS_iter(V,E,s,t):

lnext = [s]

reached = { s: True }

while len(lnext)>0:

n = pop_ ...(lnext)

if n==t:

return True

for v in neighbours(n,E):

if not v in reached:

reached[v] = True

add_end(v,lnext)

return False

O(1)
O(1)
×|V |
O(1)×|V |
O(1)×|V |

×|E |
O(1)×|E |
O(1)×|E |
O(1)×|E |

We know how to construct add end, pop begin and pop end in O(1)

The existence checking and writing in a dictionary is in O(1)

How many loops ?
a → at worst |V | times if all vertices are added in lnext

b → as many additions as edge number ! as we only add the neighbors.

➜ Complexity of the algorithm in O(|V |+ |E |) ≈ O(|E |) (if G sufficiently dense)

ST2 – Gif Algorithmics and Complexity 39/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Data Structures

Attention

It depends on the implementation !

Example : Check if element is in list
if not v in reached

With a list : O(|list|)
With a dictionary : O(1)
➜ See lab session next week. . .

Everything is important !

✓ List for successors

✓ Dictionary for visited vertices (reached)

➜ And for the graph (edges E) ?

ST2 – Gif Algorithmics and Complexity 40/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Data Structures

Attention

It depends on the implementation !

Example : Check if element is in list
if not v in reached

With a list : O(|list|)
With a dictionary : O(1)
➜ See lab session next week. . .

Everything is important !

✓ List for successors

✓ Dictionary for visited vertices (reached)

➜ And for the graph (edges E) ?

ST2 – Gif Algorithmics and Complexity 40/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

What implementation(s) for graphs ?

Data structures

A grah is an abstract data structure.

➜ How to implement it ?

What representation for vertices and edges ?
What data structure groups vertices and edges ?

➜ What are the consequences on the time complexity of
algorithms ?

Many possible implementations

1 Adjacency list

2 Adjacency matrix

3 Incidence matrix (we won’t see them)

ST2 – Gif Algorithmics and Complexity 41/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

What implementation(s) for graphs ?

Data structures

A grah is an abstract data structure.

➜ How to implement it ?

What representation for vertices and edges ?
What data structure groups vertices and edges ?

➜ What are the consequences on the time complexity of
algorithms ?

Many possible implementations

1 Adjacency list

2 Adjacency matrix

3 Incidence matrix (we won’t see them)

ST2 – Gif Algorithmics and Complexity 41/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Representation 1 : adjacency list

Idea

For each vertex, store in memory the direct list of its neighbours
(the neighbouring function is often denoted by Γ) :

Γ : V → P(V), x 7→ Γ(x) = {y ∈ V | (x , y) ∈ E}

by using a key-value table.

x Γ(x)

a {b, d}
b {a, c, e}
c {b, e, g}
d {a, e}
e {b, c, d , g , h}
f {}
g {c, e}
h {e}

a

b

c

d

e

f

g

h

ST2 – Gif Algorithmics and Complexity 42/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Representation 1 : adjacency list

Idea

For each vertex, store in memory the direct list of its neighbours
(the neighbouring function is often denoted by Γ) :

Γ : V → P(V), x 7→ Γ(x) = {y ∈ V | (x , y) ∈ E}

by using a key-value table.

x Γ(x)

a {b, d}
b {a, c, e}
c {b, e, g}
d {a, e}
e {b, c, d , g , h}
f {}
g {c, e}
h {e}

a

b

c

d

e

f

g

h

ST2 – Gif Algorithmics and Complexity 42/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Representation 1 : adjacency list

Memory space in O(|E |+ |V |)

Browsing the set of neighbours of a vertex u in O(deg(u)) 1

Useful for BFS/DFS, Dijkstra (Lecture 2), Prim (Lecture 3). . .

Facilitate edge storage in the structure (existence by the value 1)

{a:{b:1,c:1},...}

Check existence of an edge (u, v) in O(1) 2

Add an edge in O(1) 2

Delete an edge in O(1) 2

1. Degree of a node = number of adjacent edges
worst case : deg(u) = |V | − 1 when u is connected to all.

2. See lab session for the dictionary

ST2 – Gif Algorithmics and Complexity 43/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Representation 2 : adjacency matrix

Idea

2D array indexed by the set |V | of vertices ;

tab[i , j] = 1 if the vertices are linked by an edge else 0.

a b c d e f g h

a 0 1 0 1 0 0 0 0
b 1 0 1 0 1 0 0 0
c 0 1 0 0 1 0 1 0
d 1 0 0 0 1 0 0 0
e 0 1 1 1 0 0 1 1
f 0 0 0 0 0 0 0 0
g 0 0 1 0 1 0 0 0
h 0 0 0 0 1 0 0 0

a

b

c

d

e

f

g

h

ST2 – Gif Algorithmics and Complexity 44/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Representation 2 : adjacency matrix

Idea

2D array indexed by the set |V | of vertices ;

tab[i , j] = 1 if the vertices are linked by an edge else 0.

a b c d e f g h

a 0 1 0 1 0 0 0 0
b 1 0 1 0 1 0 0 0
c 0 1 0 0 1 0 1 0
d 1 0 0 0 1 0 0 0
e 0 1 1 1 0 0 1 1
f 0 0 0 0 0 0 0 0
g 0 0 1 0 1 0 0 0
h 0 0 0 0 1 0 0 0

a

b

c

d

e

f

g

h

ST2 – Gif Algorithmics and Complexity 44/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Representation 2 : adjacency matrix

✗ Memory space in O(|V | × |V |)

✗ Browsing the set of neighbours of a vertex u in O(|V |)
You need to walk the whole line of the matrix. . .

✓ Check existence of an edge (u, v) in O(1)

And this writes tab[i][j] in Python !

✓ Add an edge in O(1)

✓ Delete an edge in O(1)

ST2 – Gif Algorithmics and Complexity 45/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

A concrete example

BFS algorithm with two different implementations

➜ only the neighbours function changes !

def BFS(g,s,t,neighbours):

lnext = [s] # la file

reached = { s : True }

while len(lnext)>0:

n = pop_begin(lnext)

if n==t:

return True

for v in neighbours(n,E):

if not v in reached:

reached[v] = True

add_end(v,lnext)

return False

def neighbours_mat(i,g):

l=[]

for j in range(len(g[i])):

if g[i][j]:

l.append(j)

return l

def neighbours_list(i,g):

return g[i]

vertices and indexes are identical. . .

➜ Compare the time of BFS(mat,0,neighbours mat) and
BFS(list,0,neighbours list) on a reasonably large graph. . .

ST2 – Gif Algorithmics and Complexity 46/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Complexity of graph search algorithms

Complexity

How to iterate over neighbours ?

➜ The running time complexity of a graph search algorithm
depends on the graph implementation !

Adjacency matrix

We iterate over neighbours in O(|V |)
➜ Time complexity of the algorithm is O(|V |2)

Adjacency list

We iterate over neighbours of u in O(deg(u))

➜ Time complexity of the algorithm is O(|E |) as

2|E | =
∑

u∈V deg(u)

ST2 – Gif Algorithmics and Complexity 47/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Complexity of graph search algorithms

Complexity

How to iterate over neighbours ?

➜ The running time complexity of a graph search algorithm
depends on the graph implementation !

Adjacency matrix

We iterate over neighbours in O(|V |)
➜ Time complexity of the algorithm is O(|V |2)

Adjacency list

We iterate over neighbours of u in O(deg(u))

➜ Time complexity of the algorithm is O(|E |) as

2|E | =
∑

u∈V deg(u)

ST2 – Gif Algorithmics and Complexity 47/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

Complexity of graph search algorithms

Complexity

How to iterate over neighbours ?

➜ The running time complexity of a graph search algorithm
depends on the graph implementation !

Adjacency matrix

We iterate over neighbours in O(|V |)
➜ Time complexity of the algorithm is O(|V |2)

Adjacency list

We iterate over neighbours of u in O(deg(u))

➜ Time complexity of the algorithm is O(|E |) as

2|E | =
∑

u∈V deg(u)

ST2 – Gif Algorithmics and Complexity 47/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

To be remembered about DFS and BFS

Two similar algorithms

Find out whether there exists a chain between two vertices
(decision)
and to build one in this case (construction) → TD1 !

Can detect cycles in the graph(when a neighbour is already visited).

DFS can be implemented by a recursive or an iterative
function with a stack.

BFS uses an Iterative implementation with a queue.

Theoretical time-complexity in O(|E |)
(O(|V |2) with matrix and O(|E |) with list).

Connected subgraph

Both algorithms (DFS and BFS) can be used to compute a
connected subgraph. . .

ST2 – Gif Algorithmics and Complexity 48/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Principle Complexity of iterative search Complexity with data structures

To be remembered about DFS and BFS

Two similar algorithms

Find out whether there exists a chain between two vertices
(decision)
and to build one in this case (construction) → TD1 !

Can detect cycles in the graph(when a neighbour is already visited).

DFS can be implemented by a recursive or an iterative
function with a stack.

BFS uses an Iterative implementation with a queue.

Theoretical time-complexity in O(|E |)
(O(|V |2) with matrix and O(|E |) with list).

Connected subgraph

Both algorithms (DFS and BFS) can be used to compute a
connected subgraph. . .

ST2 – Gif Algorithmics and Complexity 48/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Connected subgraph Algorithm Application

Plan

1 Graph-based problems

2 Depth-First Search

3 Breadth-First Search

4 Complexity

5 Connectivity
Connected subgraph
Algorithm
Application

6 Conclusion

ST2 – Gif Algorithmics and Complexity 49/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Connected subgraph Algorithm Application

Identify connected subgraphs

Remark

If t cannot be reached from s, the algorithm returns False.

➜ The dictionary reached gives the set of nodes that can be
reached from s. This is called a connected subgraph.

Definition : connected subgraph

In a graph G = (V ,E), any maximal subset V ′ ⊆ V of vertices is
called a connected subgraph of G if there exists a chain between
any pair of vertices in V ′.

Idea ?

➜ Could we modifier BFS/DFS to compute a connected
subgraph ?

ST2 – Gif Algorithmics and Complexity 50/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Connected subgraph Algorithm Application

Identify connected subgraphs

Remark

If t cannot be reached from s, the algorithm returns False.

➜ The dictionary reached gives the set of nodes that can be
reached from s. This is called a connected subgraph.

Definition : connected subgraph

In a graph G = (V ,E), any maximal subset V ′ ⊆ V of vertices is
called a connected subgraph of G if there exists a chain between
any pair of vertices in V ′.

Idea ?

➜ Could we modifier BFS/DFS to compute a connected
subgraph ?

ST2 – Gif Algorithmics and Complexity 50/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Connected subgraph Algorithm Application

Identify connected subgraphs

Remark

If t cannot be reached from s, the algorithm returns False.

➜ The dictionary reached gives the set of nodes that can be
reached from s. This is called a connected subgraph.

Definition : connected subgraph

In a graph G = (V ,E), any maximal subset V ′ ⊆ V of vertices is
called a connected subgraph of G if there exists a chain between
any pair of vertices in V ′.

Idea ?

➜ Could we modifier BFS/DFS to compute a connected
subgraph ?

ST2 – Gif Algorithmics and Complexity 50/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Connected subgraph Algorithm Application

Connected subgraph – Construction

Problem definition

Input : Given a graph G = (V ,E) and a starting vertex s ∈ V

Question : Build connected subgraph of G that contains s.

Solution

We simply need to modify the depth-first search or breadth-first
search algorithm so that it does not stop when reaching a given
vertex but continues until the stack/queue is empty.

ST2 – Gif Algorithmics and Complexity 51/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Connected subgraph Algorithm Application

Connected subgraph – Construction

Problem definition

Input : Given a graph G = (V ,E) and a starting vertex s ∈ V

Question : Build connected subgraph of G that contains s.

Solution

We simply need to modify the depth-first search or breadth-first
search algorithm so that it does not stop when reaching a given
vertex but continues until the stack/queue is empty.

ST2 – Gif Algorithmics and Complexity 51/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Connected subgraph Algorithm Application

Connected subgraph with BFS

def BFS_connex(V,E,s):

lnext = [s]

reached = {s}

while len(lnext)>0:

n = pop_begin(lnext)

we delete the test n==t

for m in neighbours(n,E):

if m not in reached:

reached.add(m)

lnext.append(m)

we return the list of reachable nodes

return reached

Exercise

Modify the DFS and DFS iter algorithms presented earlier to
compute a connected subgraph.

ST2 – Gif Algorithmics and Complexity 52/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Connected subgraph Algorithm Application

Connected subgraph with BFS

def BFS_connex(V,E,s):

lnext = [s]

reached = {s}

while len(lnext)>0:

n = pop_begin(lnext)

we delete the test n==t

for m in neighbours(n,E):

if m not in reached:

reached.add(m)

lnext.append(m)

we return the list of reachable nodes

return reached

Exercise

Modify the DFS and DFS iter algorithms presented earlier to
compute a connected subgraph.

ST2 – Gif Algorithmics and Complexity 52/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Connected subgraph Algorithm Application

Identify all connected subgraphs of a graph

a

b c

d e

f

g

h

Problem definition

Input : Given a graph G = (V ,E)

Question : Build a data structure that associates each vertex
in V with an integer such that two different vertices s and t
are associated to the same value if and only if they are in the
same connected subgraph.

ST2 – Gif Algorithmics and Complexity 53/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Connected subgraph Algorithm Application

Algorithm identifying subgraphs

def ident_CC(V,E):

res={v:-1 for v in V}

i=0

for v in res:

if res[v]== -1:

cc=BFS_connex(V,E,v)

for c in cc:

res[c]=i

i = i+1

return res

The time complexity of this algorithm is also O(|V |+ |E |)
➜ Each subgraph is visited only once

ST2 – Gif Algorithmics and Complexity 54/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Connected subgraph Algorithm Application

Algorithm identifying subgraphs

def ident_CC(V,E):

res={v:-1 for v in V}

i=0

for v in res:

if res[v]== -1:

cc=BFS_connex(V,E,v)

for c in cc:

res[c]=i

i = i+1

return res

The time complexity of this algorithm is also O(|V |+ |E |)
➜ Each subgraph is visited only once

ST2 – Gif Algorithmics and Complexity 54/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Connected subgraph Algorithm Application

Counting chromosomes

7,7

7,6

8,7

8,6

9,7

9,6

Algorithm to identify chromosomes

1 Load the grey-scaled image.

2 Apply a threshold to obtain a black-and-white image.

3 Turn the image into a graph where each white pixel is a
vertex. Edges connect vertices that correspond to two
adjacent white pixels.

4 Use the subgraph identification algorithm

ST2 – Gif Algorithmics and Complexity 55/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

Plan

1 Graph-based problems

2 Depth-First Search

3 Breadth-First Search

4 Complexity

5 Connectivity

6 Conclusion

ST2 – Gif Algorithmics and Complexity 56/57

Graph-based problems Depth-First Search Breadth-First Search Complexity Connectivity Conclusion

To be remembered

Definition of a graph, notation

Decision, construction and optimization problems

Instance of a problem

Definition of an algorithm

Breadth-First Search and Depth-First Search

General algorithm
Implementation with a queue or a stack
Properties

Complexity

General complexity
Complexity with adjacency list
Complexity with adjacency matrix

Application to a concrete problem

ST2 – Gif Algorithmics and Complexity 57/57

	Graph-based problems
	Concret problems
	Graph-based modeling
	Problems' family
	Solving Algorithm

	Depth-First Search
	Principle
	Recursive implementation
	Iterative implementation

	Breadth-First Search
	Principle
	Algorithm

	Complexity
	Principle
	Complexity of iterative search
	Complexity with data structures

	Connectivity
	Connected subgraph
	Algorithm
	Application

	Conclusion

