

Algorithmics and Complexity Lecture 2/7 : Shortest paths algorithm

CentraleSupélec – Gif

ST2 - Gif

Plan

O Priority queues

Plan

- Problem
 Shortest path
 Optimization
 - 2 Shortest paths algorithm
- 3 Priority queues
- 4 Complexity
- 5 Conclusion

6 Optimality

Reminder: maze problem

Searching for a path in a graph

- Depth-first search and breadth-first search
- Both produce a path

Reminder: maze problem

Searching for a path in a graph

- Depth-first search and breadth-first search
- Both produce a path
- → What happens if there are many?

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality Shortest path Optimization

Application: Waze or Google Itinerary

Find the **best** path

→ Optimization problem

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality Shortest path **Optimization**

Application: Waze or Google Itinerary

Find the **best** path

- → Optimization problem
- ✓ Breadth-first search in an undirected graph
 - ➔ Produces, indeed, a path made up of the smallest number of edges

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality Shortest path **Optimization**

Application: Waze or Google Itinerary

Find the **best** path

- → Optimization problem
- Breadth-first search in an undirected graph
 - ➔ Produces, indeed, a path made up of the smallest number of edges
- X Not all roads are two-ways
 - ➔ Directed graphs
- X Each road segment requires a different passing time
 - ➔ Weighted edges

Optimization: naive approach

Principle

Produce all possible paths and pick up the shortest one

Optimization: naive approach

Principle

Produce all possible paths and pick up the shortest one

```
Simplified algorithm
```

```
def all_paths(G,s,t):
    C = all_paths_between_s_and_t_in_G(G,s,t)
    return min(C, key=length)
```


Optimization: naive approach

Principle

Produce all possible paths and pick up the shortest one

Simplified algorithm

```
def all_paths(G,s,t):
    C = all_paths_between_s_and_t_in_G(G,s,t)
    return min(C, key=length)
```

Difficulty

There are up to $\mathcal{O}(|E|!)$ elements in C!

→ Can we propose an efficient algorithm?

Plan

Problem

- 2 Shortest paths algorithm
 - Definitions
 - Problem
 - Principle
 - Algorithm
 - Example
 - Reconstruction of the path

4 Complexity

Graphs: definitions

Reminder: undirected graph

We consider G = (V, E), where:

- V a set of vertices (or nodes);
- E a set of edges;
- An edge $e \in E$ is a pair of vertices from V;

Graphs: definitions

Undirected weighted graph

We consider G = (V, E), where:

- V a set of vertices (or nodes);
- E a set of edges;
- An edge $e \in E$ is a pair of vertices from V;

• $\omega: E \longrightarrow \mathbb{R}$ is a weight function (of edges);

Graphs: definitions

W Directed weighted graph

We consider G = (V, E), where:

- V a set of vertices (or nodes);
- E a set of arcs;
- An arc $e \in E$ is a couple of vertices from V;

• $\omega: E \longrightarrow \mathbb{R}$ is a weight function (of arcs);

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality Definitions Problem Principle Algorithm Example Reconstruction of the path

Graphs: definitions (continuation)

Path

In a directed graph:

• A path from x to y is a sequence of consecutive arcs connecting x to y.

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality Definitions Problem Principle Algorithm Example Reconstruction of the path

Graphs: definitions (continuation)

Path

- In a directed graph:
 - A path from x to y is a sequence of consecutive arcs connecting x to y.

Distance

In a weighted directed graph:

• The cost of a path c is the sum of weights of the arcs on c:

$$cost(c) = \sum_{e \in c} \omega(e)$$

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality Definitions Problem Principle Algorithm Example Reconstruction of the path

Graphs: definitions (continuation)

Path

- In a directed graph:
 - A path from x to y is a sequence of consecutive arcs connecting x to y.

Distance

In a weighted directed graph:

• The cost of a path c is the sum of weights of the arcs on c:

$$cost(c) = \sum_{e \in c} \omega(e)$$

• One can also say distance from x to y (for c connecting x to y).

Data structure

Adjacency list

- Memory space in $\mathcal{O}(|E| + |V|)$
- Browsing the set of neighbours of a vertex u in $\mathcal{O}(deg(u))$
- Storage of weights: {a:{b:2,c:3},...}
- Access to the weight of an arc in $\mathcal{O}(1)$ like add an arc, delete an arc,...

Data structure

Adjacency list

- Memory space in $\mathcal{O}(|E| + |V|)$
- Browsing the set of neighbours of a vertex u in $\mathcal{O}(deg(u))$
- Storage of weights: {a:{b:2,c:3},...}
- Access to the weight of an arc in $\mathcal{O}(1)$ like add an arc, delete an arc,...

Adjacency matrix

- Memory space in $\mathcal{O}(|V|^2)$
- Browsing the set of neighbours of a vertex u in $\mathcal{O}(|V|)$
- Storage of weights: $tab[i,j] = \omega(i,j)$
- Access to the weight of an arc in $\mathcal{O}(1)$

like add an arc, delete an arc,...

The shortest path problem

Optimization problem

Input:

- Directed graph G = (V, E)
- Weight function $\omega: E \longrightarrow \mathbb{R}$
- Source $s \in V$ and terminal $t \in V$

The shortest path problem

Optimization problem

Input:

- Directed graph G = (V, E)
- Weight function $\omega: E \longrightarrow \mathbb{R}$
- Source $s \in V$ and terminal $t \in V$

Question:

→ What is the shortest path from s to t? Let C be a set of possible solutions (connecting s to t). We are looking for c ∈ C such that ∀c' ∈ C, cost(c') ≥ cost(c)

The shortest path problem

Optimization problem

Input:

- Directed graph G = (V, E)
- Weight function $\omega: \mathbf{E} \longrightarrow \mathbb{R}$
- Source $s \in V$ and terminal $t \in V$

Question:

```
→ What is the shortest path from s to t?
Let C be a set of possible solutions (connecting s to t). We are
looking for c ∈ C such that ∀c' ∈ C, cost(c') ≥ cost(c)
```

Observation

The problem definition also holds for undirected weighted graphs.

Shortest path algorithm

Data structures

The algorithm requires:

- The list of vertices to be visited (as in BFS)
 - → In this context the term frontier is commonly used.
- The cost s of the best path at each vertex already visited
 - → Store a distance at each vertex.
- Selected arcs
 - → Store a predecessor for each vertex.

Shortest path algorithm in python

```
def shortest_path(graph,s):
    frontier = [s]
    parent = \{\}
    parent[s] = None
    dist = \{\}
    dist[s] = 0
    while len(frontier)>0:
        x = extract_min_dist(frontier,dist)
        for y in neighbors(graph, x):
             if y not in parent:
                 frontier.append(y)
            # update
            new_dist = dist[x] + distance(graph,x,y)
             if y not in dist or dist[y] > new_dist:
                 dist[y] = new_dist
                 parent[y] = x
```

```
return parent
```


Node	Distance	Parent	
A	∞	•	
В	∞	•	
С	∞	•	
D	0	•	
E	∞	•	
F	∞	•	
Frontier = $\{D\}$			
x =			

Node	Distance	Parent
A	∞	•
В	∞	•
С	∞	•
D	0	•
E	∞	•
F	∞	٠
Frontier = {}		
	x = D	

Node	Distance	Parent
A	∞	•
В	∞	•
С	∞	٠
D	0	٠
E	∞	•
F	∞	•
Frontier = $\{A, E\}$		
	x = D	

Node	Distance	Parent
А	3	D
В	∞	•
С	∞	٠
D	0	٠
E	1	D
F	∞	٠
Frontier = $\{A, E\}$		
x = D		

Node	Distance	Parent
A	3	D
В	∞	•
С	∞	٠
D	0	•
E	1	D
F	∞	•
Frontier = $\{A\}$		
	x = E	

Node	Distance	Parent
A	3	D
В	∞	•
С	∞	•
D	0	•
E	1	D
F	∞	•
Frontier = $\{A, B, F\}$		A, B, F }
	x = E	

Node	Distance	Parent
А	1 + 1	E
В	1+2	E
С	∞	٠
D	0	•
E	1	D
F	1+4	E
Frontier = $\{A, B, F\}$		
	x = E	

Node	Distance	Parent
А	2	E
В	3	E
С	∞	•
D	0	•
E	1	D
F	5	E
Frontier = $\{B, F\}$		
	x = A	

Node	Distance	Parent
А	2	E
В	3	E
С	∞	•
D	0	•
E	1	D
F	5	E
Frontier = $\{B, F\}$		8, F}
	x = A	

Node	Distance	Parent
Α	2	E
В	3	E
С	∞	•
D	0	•
E	1	D
F	5	E
Frontier = $\{B, F\}$		8, F }
	x = A	

Node	Distance	Parent
A	2	E
В	3	E
С	∞	•
D	0	•
E	1	D
F	5	E
Frontier = $\{F\}$		
	x = B	

Node	Distance	Parent
A	2	E
В	3	E
C	∞	٠
D	0	•
E	1	D
F	5	E
Frontier = $\{C, F\}$		
	x = B	

Node	Distance	Parent
A	2	E
В	3	E
С	3+3	В
D	0	•
E	1	D
F	3+1	В
Frontier = $\{C, F\}$		
x = B		

Node	Distance	Parent
А	2	E
В	3	E
С	6	В
D	0	•
E	1	D
F	4	В
Frontier = $\{C\}$		
	x = F	

Node	Distance	Parent
A	2	E
В	3	E
С	6	В
D	0	•
E	1	D
F	4	В
Frontier = $\{C\}$		
	x = F	

Node	Distance	Parent
A	2	E
В	3	E
С	4+1	F
D	0	•
E	1	D
F	4	В
Frontier = $\{C\}$		
x = F		

Node Distance Parent									
A	E								
В	E								
С	5	F							
D	0	٠							
E	1	D							
F	4	В							
Frontier = {}									
	x = C								

Reconstruction of the path

What is a path from s to t?

- The array "distance" stores the minimum cost from s to t;
- The array "parent" stores the predecessor of each visited node;
- → How to construct the path from s to t using "parent"?

Reconstruction of the path

What is a path from s to t?

- The array "distance" stores the minimum cost from s to t;
- The array "parent" stores the predecessor of each visited node;
- → How to construct the path from s to t using "parent"?

Pseudo-code

```
def construct_path(parent,t):
    path = [t]
    current = t
    while not parent[current] is None:
        current = parent[current]
        path.insert(0,current)
    return path
```


Plan

Priority queues

- Idea
- Lists
- Heap
- Summary
- Heapify

Conclusion

A concrete problem

Graph problems...

- Find the shortest path in a graph (extract_min_dist)
- Build the minimum spanning tree (Lecture 3)
- → Requires a priority queue!

Priority Queues

Storage of data along some priority order

A concrete problem

Graph problems...

- Find the shortest path in a graph (extract_min_dist)
- Build the minimum spanning tree (Lecture 3)
- → Requires a priority queue!

Priority Queues

Storage of data along some priority order

Definition

Abstract data structure specification with efficient operations on an ordered set for:

- Inding the minimum (or maximum) element in the set;
- Insert an element of given priority in the set;
- S Extract the element of smallest (or greatest) priority.

Unsorted array of elements

• Find the smallest element ?

e ₃	(e ₀)	e ₂	e ₄	eg	e ₆			
----------------	-------------------	----------------	----------------	----	----------------	--	--	--

- **X** Find the smallest elements: $\mathcal{O}(n)$
- Insert an element ?

e ₃	<i>e</i> 0	e ₂	e ₄	<i>e</i> 9	e ₆				
----------------	------------	----------------	----------------	------------	----------------	--	--	--	--

- **X** Find the smallest elements: $\mathcal{O}(n)$
- ✓ Insert an element (at the end when there is a place): O(1)

- **X** Find the smallest elements: $\mathcal{O}(n)$
- ✓ Insert an element (at the end when there is a place): O(1)
- Extract the smallest element ?

<i>e</i> ₃	e ₀	<i>e</i> ₂	e ₄	e9	<i>e</i> ₆	<i>e</i> 5			1
-----------------------	----------------	-----------------------	----------------	----	-----------------------	------------	--	--	---

- **X** Find the smallest elements: $\mathcal{O}(n)$
- ✓ Insert an element (at the end when there is a place): O(1)
- **X** Extract the smallest element: $\mathcal{O}(n)$ (shift all elements)

|--|

Sorted array of elements

✓ Find the smallest element: O(1)

Sorted array of elements

- ✓ Find the smallest element: O(1)
- **X** Insert an element: $\mathcal{O}(n)$ (shift all elements)

Insertion

Sorted array of elements

- ✓ Find the smallest element: O(1)
- **X** Insert an element: $\mathcal{O}(n)$ (shift all elements)

Décalage

Sorted array of elements

- ✓ Find the smallest element: O(1)
- **X** Insert an element: $\mathcal{O}(n)$ (shift all elements)

Décalage

- ✓ Find the smallest element: O(1)
- **X** Insert an element: $\mathcal{O}(n)$ (shift all elements)

				\sim			
e ₉	e ₆	e ₄	<i>e</i> ₅	e ₃	e ₂	<i>e</i> 0	

- ✓ Find the smallest element: O(1)
- **X** Insert an element: $\mathcal{O}(n)$ (shift all elements)

- ✓ Find the smallest element: O(1)
- **X** Insert an element: $\mathcal{O}(n)$ (shift all elements)

<i>e</i> 9	e ₆	<i>e</i> 5	e ₄	e ₃	e ₂	e ₀	

- ✓ Find the smallest element: O(1)
- **X** Insert an element: $\mathcal{O}(n)$ (shift all elements)
- ✓ Extract the smallest element: O(1) (if descending order)

Implementation: heap

Definition

A heap is an abstract data structure used to manage priority lists in an efficient manner.

We need to:

- Access the maximum priority element as quickly as possible
- Find a performance tradeoff (between O(1) and O(n)) for insertion and extraction

Implementation: heap

Definition

A heap is an abstract data structure used to manage priority lists in an efficient manner.

Tree

An undirected graph that is connected and acyclic is called a tree.

Implementation: heap

Definition

A heap is an abstract data structure used to manage priority lists in an efficient manner.

Principle

A tree whose vertices are the priority values, such that:

- min-heap : each node has a lower value than any of its children
- max-heap : each node has a greater value than any of its children

→ In a min-heap (resp. max-heap), the root is the minimum (resp. maximum) value

Binary heap

Binary heap

Quasi-complete binary tree:

The binary tree is complete at all levels, except possibly the last one. If the last one is not complete, all available nodes are grouped onto the left most parents.

Implementation of a binary heap

Concretely

Un min-heap is an array with the following property:

Implementation of a binary heap

Concretely

Un min-heap is an array with the following property:

Implementation of a binary heap

Concretely

Un min-heap is an array with the following property:

Problem Shortest paths algorithm **Priority queues** Complexity Conclusion Optimality Idea Lists **Heap** Summary Heapify

Implementation of a binary heap

Concretely

Un min-heap is an array with the following property:

 $ab[\lfloor (i-1)/2 \rfloor] < ab[i]$ pour tout $i \ge 1$

- The new element v is inserted at the end of the last level of the tree
 - i.e. at the end of the array

- The new element v is inserted at the end of the last level of the tree
 - i.e. at the end of the array
- ② While the key of v is smaller than the key of v parent:
 - Swap v and its parent
- Example

- The new element v is inserted at the end of the last level of the tree
 - i.e. at the end of the array
- ② While the key of v is smaller than the key of v parent:
 - Swap v and its parent
- Example

- The new element v is inserted at the end of the last level of the tree
 - i.e. at the end of the array
- ② While the key of v is smaller than the key of v parent:
 - Swap v and its parent
- Example

- The new element v is inserted at the end of the last level of the tree
 - i.e. at the end of the array
- ② While the key of v is smaller than the key of v parent:
 - Swap v and its parent
- Example

- **(**) Replace the root element with the last element v in the tree
 - i.e. the last element in the array

- **(**) Replace the root element with the last element v in the tree
 - i.e. the last element in the array

- **(**) Replace the root element with the last element v in the tree
 - i.e. the last element in the array
- **2** While v is greater than one of its children:
 - We swap v with the smallest of its children
- Example

- **(**) Replace the root element with the last element v in the tree
 - i.e. the last element in the array
- **2** While v is greater than one of its children:
 - We swap v with the smallest of its children
- Example

- **(**) Replace the root element with the last element v in the tree
 - i.e. the last element in the array
- **2** While v is greater than one of its children:
 - We swap v with the smallest of its children
- Example

- **(**) Replace the root element with the last element v in the tree
 - i.e. the last element in the array
- **2** While v is greater than one of its children:
 - We swap v with the smallest of its children
- Example

Problem Shortest paths algorithm **Priority queues** Complexity Conclusion Optimality Idea Lists **Heap** Summary Heapify

Time complexity of heap operations

The height of a binary heap of n items is $\log_2 n$

The height of a binary heap of n items is $\log_2 n$

Time complexity

✓ Find the smallest element: O(1)

The height of a binary heap of n items is $\log_2 n$

- ✓ Find the smallest element: O(1)
- ✓ Insert an element: $O(\log n)$

The height of a binary heap of n items is $\log_2 n$

- ✓ Find the smallest element: O(1)
- ✓ Insert an element: $O(\log n)$
- ✓ Extract the smallest element: $O(\log n)$

The height of a binary heap of n items is $\log_2 n$

- ✓ Find the smallest element: O(1)
- ✓ Insert an element: $O(\log n)$
- ✓ Extract the smallest element: $O(\log n)$
- ✓ Decrease an element key: $O(\log n)$
 - we can move it up in the tree (much like insertion)
 - used by update in Dijkstra algorithm

Priority queue: complexity summary

Operation	Array	Sorted Array	Binary Heap
get min	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
insert (update)	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$
extract min	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$

Going from n to log(n) is a real win...

For n = 1000, $log_2(n) \simeq 10$; for $n = 10^9$, $log_2(n) \simeq 30$!

Building a min-heap

Question

How to build a heap from an existing array?

Building a min-heap

Question

How to build a heap from an existing array?

Warning!

To build a min-heap from a non-ordered array, it is not optimal to simply apply the insertion method n times. The total complexity can be better than O(n.log(n))!

Building a min-heap

Question

How to build a heap from an existing array?

Warning!

To build a min-heap from a non-ordered array, it is not optimal to simply apply the insertion method n times. The total complexity can be better than O(n.log(n))!

Exercise

- Indication: start from the end of the array and go up...
- → In total, the complexity is $\sum_{h=0}^{\lfloor \log n \rfloor} \frac{n}{2^{h+1}} \mathcal{O}(h) = \mathcal{O}(n)!$ (faster than sorting)

Plan

1 Problem

- 2 Shortest paths algorithm
- 3 Priority queues
- 4 Complexity
 - Algorithm
 - Overall complexity
 - Priority queue

5 Conclusion

Problem Shortest paths algorithm Priority queues **Complexity** Conclusion Optimality **Algorithm** Overall complexity Priority queue

Reminder of the shortest path algorithm

```
def shortest_path(graph,s):
    frontier = [s]
    parent = \{\}
    parent[s] = None
    dist = \{\}
    dist[s] = 0
    while len(frontier)>0:
        x = extract_min_dist(frontier,dist)
        for y in neighbors(graph, x):
            if y not in parent:
                frontier.append(y)
            new_dist = dist[x] + distance(graph,x,y)
            if y not in dist or dist[y] > new_dist:
                dist[y] = new_dist
                parent[y] = x
```

return parent


```
def shortest_path(graph,s):
```

```
# Initialisation
```

```
while len(frontier)>0:
```

x = extract_min_dist(frontier,dist)

for y in neighbors(graph, x):

updating frontier, parent and dist

```
# Computing of the resulting path
```



```
def shortest_path(graph,s):
    # Initialisation
                                               \leftarrow \mathcal{O}(|1|)
    while len(frontier)>0:
         x = extract_min_dist(frontier,dist)
         for y in neighbors(graph, x):
         # updating frontier, parent and dist
```

Computing of the resulting path


```
Have a look at the problem differently...
```

```
def shortest_path(graph,s):
```

```
# Initialisation \leftarrow \mathcal{O}(|1|)
```

```
while len(frontier)>0:
this will be done |V| times (one vertex withdrawn at each step)
    x = extract_min_dist(frontier,dist)
    for y in neighbors(graph, x):
    # updating frontier, parent and dist
# Computing of the resulting path
```



```
Have a look at the problem differently...
```

```
def shortest_path(graph,s):
```

```
# Initialisation \leftarrow \mathcal{O}(|1|)
```

```
# Computing of the resulting path
```



```
def shortest_path(graph,s):
```

```
# Initialisation \leftarrow \mathcal{O}(|1|)
```

Computing of the resulting path


```
def shortest_path(graph,s):
```

```
# Initialisation \leftarrow \mathcal{O}(|1|)
```

Computing of the resulting path


```
def shortest_path(graph,s):
```

```
# Initialisation \leftarrow \mathcal{O}(|1|)
```

```
# Computing of the resulting path \leftarrow \mathcal{O}(|V|)
```


In a nutshell...

Shortest path algorithm complexity $O(1 + |V| \times C_{extract_min} + |E| \times C_{update} + |V|)$

In a nutshell...

Shortest path algorithm complexity

$$\mathcal{O}($$
 $|V| \times C_{extract_min} + |E| \times C_{update}$

In a nutshell...

Shortest path algorithm complexity

$$\mathcal{O}($$
 $|V| \times C_{extract_min} + |E| \times C_{update}$

Implementation

The values of $C_{extract_min}$ and C_{update} depend on the implementation of the frontier.

In a nutshell...

Shortest path algorithm complexity

$$\mathcal{O}($$
 $|V| \times C_{extract_min} + |E| \times C_{update}$

Implementation

The values of $C_{extract_min}$ and C_{update} depend on the implementation of the frontier.

Implementation of the frontier: priority queue

- naive implementation with a simple list
- implementation with binary heap

$$\mathsf{Complexity:} \ \mathcal{O}(|V| \times C_{\mathsf{extract}_min} + |E| \times C_{\mathsf{update}})$$

where:

•
$$C_{\text{extract}_{\min}} = \mathcal{O}(|\text{frontier}|)$$

•
$$C_{update} = \mathcal{O}(1)$$

The frontier contains at most |V| elements.

$$\mathsf{Complexity:} \ \mathcal{O}(|V| \times C_{\mathsf{extract_min}} + |E| \times C_{\mathsf{update}})$$

where:

•
$$C_{\text{extract}_min} = \mathcal{O}(|\text{frontier}|)$$

•
$$C_{update} = \mathcal{O}(1)$$

The frontier contains at most |V| elements.

Complexity: $\mathcal{O}(|V| \times |V| + |E|)$

where |E| is between 0 and $|V|^2$ (dense graphs)

$$\mathsf{Complexity:} \ \mathcal{O}(|V| \times C_{\mathsf{extract_min}} + |E| \times C_{\mathsf{update}})$$

where:

•
$$C_{\text{extract}_min} = \mathcal{O}(|\text{frontier}|)$$

•
$$C_{update} = \mathcal{O}(1)$$

The frontier contains at most |V| elements.

Complexity: $\mathcal{O}(|V| \times |V| + |E|)$

where |E| is between 0 and $|V|^2$ (dense graphs)

In practice...

→ Shortest path algorithm complexity is in $\mathcal{O}(|V|^2)$

$$\mathsf{Complexity:} \ \mathcal{O}(|V| \times C_{\mathsf{extract_min}} + |E| \times C_{\mathsf{update}})$$

where:

•
$$C_{\text{extract}_min} = \mathcal{O}(|\text{frontier}|)$$

•
$$C_{update} = \mathcal{O}(1)$$

The frontier contains at most |V| elements.

Complexity: $\mathcal{O}(|V| \times |V| + |E|)$

where |E| is between 0 and $|V|^2$ (dense graphs)

In practice...

→ Shortest path algorithm complexity is in $\mathcal{O}(|V|^2)$

But for sparse graphs we may improve the complexity!

Implementation with binary heap

using a tree-based data structure (binary heap) we have:

•
$$C_{\text{extract}_min} = \mathcal{O}(\log(|V|))$$

•
$$C_{update} = \mathcal{O}(log(|V|))$$

The complexity of the shortest path algorithm becomes:

 $\mathcal{O}((|V| + |E|) \times log(|V|))$

Simple list vs Binary heap

Figure: Comparison of complexities depending on the graph density (function of |E|) for |V| = 10 fixed.

Simple list vs Binary heap

Figure: Comparison of complexities depending on the graph density (function of |E|) for |V| = 10 fixed.

In theory

→ When $|V|^2 + |E|$ is less advantageous than $(|V| + |E|) \times log(|V|)?$

It depends on the graph density : (|E| in relation to |V|)

Simple list vs Binary heap

Figure: Comparison of complexities depending on the graph density (function of |E|) for |V| = 10 fixed.

In practice

We will see in lab session that O(|E|) for the update is very overestimated...and that the binary heap is doing better than expected!

Plan

- 2 Shortest paths algorithm
- 3 Priority queues

What you should remember

- Directed graph: G = (V, E) with weight function $\omega : E \to \mathbb{R}$
- Shortest paths algorithm
 - Slightly modified BFS;
 - The shortest paths between s and all other vertices;
- Complexity depends on data structures chosen for implementation
 - Naive complexity (with a simple list) in $\mathcal{O}(|V|^2 + |E|)$
 - Complexity (with binary heap) in $\mathcal{O}((|V| + |E|) \times log(|V|))$
 - → The gain varies depending on instances.
- The correctness of the algorithm and the optimality of the result it produces are proven

Plan

1 Problem

- 2 Shortest paths algorithm
- 3 Priority queues
- 4 Complexity

- Property
- General idea
- Details

Optimality

Property

A vertex leaving the frontier has already its distance/path fixed. Example: distance of E won't be updated when visiting A

Optimality

Property

A vertex leaving the frontier has already its distance/path fixed. Example: distance of E won't be updated when visiting A

More formally...

Loop invariant is determined: Let S_n denote a set of vertices which have been already visited at step n. (by construction $|S_n| = n$)

- $\forall x \in S_n$, distance(x) is the length of the shortest path in G
- Q ∀x ∉ S_n, distance(x) is the length of the shortest path in subgraph S_n ∪ {x}

The property is a collorary of this invariant

Proof idea

Proof by recursion

The loop invariant is proven recursively over n

Proof idea

Proof by recursion

The loop invariant is proven recursively over n

What does mean the invariant?

- All vertices in S_n have their final value for distance(x)
- All the neighbors x of S_n (*i.e.* the frontier) have their minimum distance in S_n ∪ {x}

 \rightarrow The path passing through z is longer (this part of the proof is more tricky; it works for non-negative weights only)

• The others are $+\infty$

Proof idea

Proof by recursion

The loop invariant is proven recursively over n

Invariant conclusion

Vertices in S_n (after having left the frontier) know their shortest path.

➡ skip details

Optimality proof I

Proof by recurrence

The loop invariant is proven recursively over n

n = 1

For $S_1 = \{d\}$ and its neighbors have the arc weight for distance(x).

- distance(d) = 0 is minimal (positive distances)
- ∀v a neighbor of d, distance(v) = ω((d, v)) is minimal in the sub-graph {d, v}

Optimality proof II

General case

We suppose that the hypothesis holds at step n. Let x be the vertex chosen by the algorithm at step n + 1:

- It is a successor of S_n (otherwise distance(x) = ∞: it would not have been chosen)
- It has the smallest distance(.)
- Its predecessor in S_n is denoted by y

Optimality proof II

Proof ad absurdum

We now consider another path towards x and denote the first non visited vertex on this path as z:

This path is at least as long as the previous one.

Optimality proof II

distance(z) is minimal

 $cost([d,...,z]) \ge distance(z)$ because according to the recurrence hypothese 2, distance(z) is minimal in $S_n \cup \{z\}$

distance(x) is minimal

By definition, $distance(z) \ge distance(x)$ as x has been chosen, not z

$$cost([d, \dots, z]) \geq distance(x)$$

Optimality proof III

Total cost

We have cost([d, ..., z, ..., x]) = cost([d, ..., z]) + cost([z, ..., x])by definition. By this way $cost([d, ..., z, ..., x]) \ge cost([d, ..., z]) \ge distance(x)$ in the case where $cost([z, ..., x] \ge 0$ (if this cost is negative, the proof will not work here!).

Any path outgoing S_n is at least as long as the one found.

Optimality proof IV

Proof by recurrence

If the hypothesis holds at step n, then the vertex x attached satisfies the property distance(x) = dist(d, x). Invariant:

✓
$$\forall x \in S_{n+1}$$
, *distance*(x) is minimal in G

→
$$\forall y \notin S_{n+1}$$
, distance(y) is minimal in $S_{n+1} \cup \{y\}$

Second part

All successors y of x which are outside S_n should be considered.

Optimality proof V

Second part (continuation)

We consider the shortest path to y in S_{n+1} :

- If it traverses x, vertex x is at the end (as x has already its shortest path in S_{n+1}).
 Therefore distance(y) = distance(x) + ω((x, y)) is minimal
- Otherwise, distance(y) has been already correctly fixed at the previous step. Thus $distance(y) \leq distance(x) + \omega((x, y))$ (otherwise it would be that the shortest path passes through x) and distance(y) would not be modified; consequently the property remains satisfied in S_{n+1}

Optimality proof VI

Conclusion

If the hypothesis holds at step n, then it will also hold at step n+1Invariant:

✓ $\forall x \in S_{n+1}$, *distance*(x) is minimal in G

✓ $\forall y \notin S_{n+1}$, distance(y) is minimal in $S_{n+1} \cup \{y\}$