
Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithmics and Complexity

Lecture 2/7 : Shortest paths algorithm

CentraleSupélec – Gif

ST2 – Gif

ST2 – Gif Algorithmics and Complexity 1/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Plan

1 Problem

2 Shortest paths algorithm

3 Priority queues

4 Complexity

5 Conclusion

6 Optimality

ST2 – Gif Algorithmics and Complexity 2/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Shortest path Optimization

Plan

1 Problem
Shortest path
Optimization

2 Shortest paths algorithm

3 Priority queues

4 Complexity

5 Conclusion

6 Optimality

ST2 – Gif Algorithmics and Complexity 3/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Shortest path Optimization

Reminder: maze problem

Searching for a path in a graph

Depth-first search and breadth-first search

Both produce a path

➜ What happens if there are many?

ST2 – Gif Algorithmics and Complexity 4/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Shortest path Optimization

Reminder: maze problem

Searching for a path in a graph

Depth-first search and breadth-first search

Both produce a path

➜ What happens if there are many?

ST2 – Gif Algorithmics and Complexity 4/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Shortest path Optimization

Application: Waze or Google Itinerary

Find the best path

➜ Optimization problem

✓ Breadth-first search in an undirected graph

➜ Produces, indeed, a path made up of the smallest number of edges

✗ Not all roads are two-ways

➜ Directed graphs

✗ Each road segment requires a different passing time

➜ Weighted edges

ST2 – Gif Algorithmics and Complexity 5/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Shortest path Optimization

Application: Waze or Google Itinerary

Find the best path

➜ Optimization problem

✓ Breadth-first search in an undirected graph

➜ Produces, indeed, a path made up of the smallest number of edges

✗ Not all roads are two-ways

➜ Directed graphs

✗ Each road segment requires a different passing time

➜ Weighted edges

ST2 – Gif Algorithmics and Complexity 5/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Shortest path Optimization

Application: Waze or Google Itinerary

Find the best path

➜ Optimization problem

✓ Breadth-first search in an undirected graph

➜ Produces, indeed, a path made up of the smallest number of edges

✗ Not all roads are two-ways

➜ Directed graphs

✗ Each road segment requires a different passing time

➜ Weighted edges

ST2 – Gif Algorithmics and Complexity 5/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Shortest path Optimization

Optimization: naive approach

Principle

Produce all possible paths and pick up the shortest one

Simplified algorithm

def all_paths(G,s,t):

C = all_paths_between_s_and_t_in_G(G,s,t)

return min(C, key=length)

Difficulty

There are up to O(|E |!) elements in C !

➜ Can we propose an efficient algorithm?

ST2 – Gif Algorithmics and Complexity 6/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Shortest path Optimization

Optimization: naive approach

Principle

Produce all possible paths and pick up the shortest one

Simplified algorithm

def all_paths(G,s,t):

C = all_paths_between_s_and_t_in_G(G,s,t)

return min(C, key=length)

Difficulty

There are up to O(|E |!) elements in C !

➜ Can we propose an efficient algorithm?

ST2 – Gif Algorithmics and Complexity 6/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Shortest path Optimization

Optimization: naive approach

Principle

Produce all possible paths and pick up the shortest one

Simplified algorithm

def all_paths(G,s,t):

C = all_paths_between_s_and_t_in_G(G,s,t)

return min(C, key=length)

Difficulty

There are up to O(|E |!) elements in C !

➜ Can we propose an efficient algorithm?

ST2 – Gif Algorithmics and Complexity 6/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Plan

1 Problem

2 Shortest paths algorithm
Definitions
Problem
Principle
Algorithm
Example
Reconstruction of the path

3 Priority queues

4 Complexity

5 Conclusion

6 Optimality

ST2 – Gif Algorithmics and Complexity 7/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Graphs: definitions

Reminder: undirected graph

We consider G = (V ,E), where:

V a set of vertices (or nodes);

E a set of edges;

An edge e ∈ E is a pair of vertices from V ;

ω : E −→ R is a weight function ();

1

4 3

8

2

7

9

ST2 – Gif Algorithmics and Complexity 8/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Graphs: definitions

Undirected weighted graph

We consider G = (V ,E), where:

V a set of vertices (or nodes);

E a set of edges;

An edge e ∈ E is a pair of vertices from V ;

ω : E −→ R is a weight function (of edges);

1

4 3

8

2

7

9

3

1

2

4 1

3
1 2

3

ST2 – Gif Algorithmics and Complexity 8/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Graphs: definitions

///UnDirected weighted graph

We consider G = (V ,E), where:

V a set of vertices (or nodes);

E a set of arcs;

An arc e ∈ E is a couple of vertices from V ;

ω : E −→ R is a weight function (of arcs);

1

4 3

8

2

7

9

3

1

2

4 1

3
1 2

3

ST2 – Gif Algorithmics and Complexity 8/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Graphs: definitions (continuation)

Path

In a directed graph:

A path from x to y is a sequence of consecutive arcs
connecting x to y .

Distance

In a weighted directed graph:

The cost of a path c is the sum of weights of the arcs on c :

cost(c) =
∑
e∈c

ω(e)

One can also say distance from x to y (for c connecting x to y).

ST2 – Gif Algorithmics and Complexity 9/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Graphs: definitions (continuation)

Path

In a directed graph:

A path from x to y is a sequence of consecutive arcs
connecting x to y .

Distance

In a weighted directed graph:

The cost of a path c is the sum of weights of the arcs on c :

cost(c) =
∑
e∈c

ω(e)

One can also say distance from x to y (for c connecting x to y).

ST2 – Gif Algorithmics and Complexity 9/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Graphs: definitions (continuation)

Path

In a directed graph:

A path from x to y is a sequence of consecutive arcs
connecting x to y .

Distance

In a weighted directed graph:

The cost of a path c is the sum of weights of the arcs on c :

cost(c) =
∑
e∈c

ω(e)

One can also say distance from x to y (for c connecting x to y).

ST2 – Gif Algorithmics and Complexity 9/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Data structure

Adjacency list

Memory space in O(|E |+ |V |)
Browsing the set of neighbours of a vertex u in O(deg(u))

Storage of weights: {a:{b:2,c:3},...}
Access to the weight of an arc in O(1)

like add an arc, delete an arc,...

Adjacency matrix

Memory space in O(|V |2)
Browsing the set of neighbours of a vertex u in O(|V |)
Storage of weights: tab[i , j] = ω(i , j)

Access to the weight of an arc in O(1)
like add an arc, delete an arc,...

ST2 – Gif Algorithmics and Complexity 10/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Data structure

Adjacency list

Memory space in O(|E |+ |V |)
Browsing the set of neighbours of a vertex u in O(deg(u))

Storage of weights: {a:{b:2,c:3},...}
Access to the weight of an arc in O(1)

like add an arc, delete an arc,...

Adjacency matrix

Memory space in O(|V |2)
Browsing the set of neighbours of a vertex u in O(|V |)
Storage of weights: tab[i , j] = ω(i , j)

Access to the weight of an arc in O(1)
like add an arc, delete an arc,...

ST2 – Gif Algorithmics and Complexity 10/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

The shortest path problem

Optimization problem

Input:

Directed graph G = (V ,E)

Weight function ω : E −→ R
Source s ∈ V and terminal t ∈ V

Question:

➜ What is the shortest path from s to t?
Let C be a set of possible solutions (connecting s to t). We are
looking for c ∈ C such that ∀c ′ ∈ C , cost(c ′) ≥ cost(c)

Observation

The problem definition also holds for undirected weighted graphs.

ST2 – Gif Algorithmics and Complexity 11/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

The shortest path problem

Optimization problem

Input:

Directed graph G = (V ,E)

Weight function ω : E −→ R
Source s ∈ V and terminal t ∈ V

Question:

➜ What is the shortest path from s to t?
Let C be a set of possible solutions (connecting s to t). We are
looking for c ∈ C such that ∀c ′ ∈ C , cost(c ′) ≥ cost(c)

Observation

The problem definition also holds for undirected weighted graphs.

ST2 – Gif Algorithmics and Complexity 11/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

The shortest path problem

Optimization problem

Input:

Directed graph G = (V ,E)

Weight function ω : E −→ R
Source s ∈ V and terminal t ∈ V

Question:

➜ What is the shortest path from s to t?
Let C be a set of possible solutions (connecting s to t). We are
looking for c ∈ C such that ∀c ′ ∈ C , cost(c ′) ≥ cost(c)

Observation

The problem definition also holds for undirected weighted graphs.

ST2 – Gif Algorithmics and Complexity 11/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

A shortest path

Idea of algorithm (inspired by Dijkstra, 1959)

Breadth-first search taking weights into account.

skipS

A

B C

1

3
1

2

S

A (1)

B (2) C (4)
etc.

ST2 – Gif Algorithmics and Complexity 12/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

A shortest path

Idea of algorithm (inspired by Dijkstra, 1959)

Breadth-first search taking weights into account.

skipS

A

B C

1

3
1

2

S

A (1)

B (2) C (4)
etc.

ST2 – Gif Algorithmics and Complexity 12/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

A shortest path

Idea of algorithm (inspired by Dijkstra, 1959)

Breadth-first search taking weights into account.

skipS

A

B C

1

3
1

2

S

A (1)

B (2) C (4)
etc.

ST2 – Gif Algorithmics and Complexity 12/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

A shortest path

Idea of algorithm (inspired by Dijkstra, 1959)

Breadth-first search taking weights into account.

skipS

A

B C

1

3
1

2

S

A (1)

B (2) C (4)
etc.

ST2 – Gif Algorithmics and Complexity 12/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

A shortest path

Idea of algorithm (inspired by Dijkstra, 1959)

Breadth-first search taking weights into account.

skipS

A

B C

1

3
1+1

2

S

A (1)

B (2) C (4)
etc.

ST2 – Gif Algorithmics and Complexity 12/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

A shortest path

Idea of algorithm (inspired by Dijkstra, 1959)

Breadth-first search taking weights into account.

skipS

A

B C

1

3
1

2

S

A (1)

B (2)

C (4)
etc.

ST2 – Gif Algorithmics and Complexity 12/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

A shortest path

Idea of algorithm (inspired by Dijkstra, 1959)

Breadth-first search taking weights into account.

skip

S

A

B C

1

3
1

2

S

A (1)

B (2) C (4)
etc.

ST2 – Gif Algorithmics and Complexity 12/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Shortest path algorithm

Data structures

The algorithm requires:

The list of vertices to be visited (as in BFS)

➜ In this context the term frontier is commonly used.

The cost s of the best path at each vertex already visited

➜ Store a distance at each vertex.

Selected arcs

➜ Store a predecessor for each vertex.

S

A

B C

1

3
1

2

(1)

(2)

ST2 – Gif Algorithmics and Complexity 13/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Shortest path algorithm in python

def shortest_path(graph ,s):

frontier = [s]

parent = {}

parent[s] = None

dist = {}

dist[s] = 0

while len(frontier)>0:

x = extract min dist(frontier,dist)

for y in neighbors(graph , x):

if y not in parent:

frontier.append(y)

update

new_dist = dist[x] + distance(graph ,x,y)

if y not in dist or dist[y] > new_dist:

dist[y] = new_dist

parent[y] = x

return parent

ST2 – Gif Algorithmics and Complexity 14/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

Node Distance Parent

A ∞ •
B ∞ •
C ∞ •
D 0 •
E ∞ •
F ∞ •

Frontier = {D}
x =

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

D

Node Distance Parent

A ∞ •
B ∞ •
C ∞ •
D 0 •
E ∞ •
F ∞ •

Frontier = {}
x = D

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

D

A

E

Node Distance Parent

A ∞ •
B ∞ •
C ∞ •
D 0 •
E ∞ •
F ∞ •

Frontier = {A,E}
x = D

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

A

E

Node Distance Parent

A 3 D

B ∞ •
C ∞ •
D 0 •
E 1 D

F ∞ •
Frontier = {A,E}

x = D

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

E

Node Distance Parent

A 3 D

B ∞ •
C ∞ •
D 0 •
E 1 D

F ∞ •
Frontier = {A}

x = E

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

E

A B

F

Node Distance Parent

A 3 D

B ∞ •
C ∞ •
D 0 •
E 1 D

F ∞ •
Frontier = {A,B,F}

x = E

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

A B

F

Node Distance Parent

A 1+1 E

B 1+2 E

C ∞ •
D 0 •
E 1 D

F 1+4 E

Frontier = {A,B,F}
x = E

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

A

Node Distance Parent

A 2 E

B 3 E

C ∞ •
D 0 •
E 1 D

F 5 E

Frontier = {B,F}
x = A

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

A B

E

Node Distance Parent

A 2 E

B 3 E

C ∞ •
D 0 •
E 1 D

F 5 E

Frontier = {B,F}
x = A

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

Node Distance Parent

A 2 E

B 3 E

C ∞ •
D 0 •
E 1 D

F 5 E

Frontier = {B,F}
x = A

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

B

Node Distance Parent

A 2 E

B 3 E

C ∞ •
D 0 •
E 1 D

F 5 E

Frontier = {F}
x = B

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

B

C

F

Node Distance Parent

A 2 E

B 3 E

C ∞ •
D 0 •
E 1 D

F 5 E

Frontier = {C ,F}
x = B

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

C

F

Node Distance Parent

A 2 E

B 3 E

C 3+3 B

D 0 •
E 1 D

F 3+1 B

Frontier = {C ,F}
x = B

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

F

Node Distance Parent

A 2 E

B 3 E

C 6 B

D 0 •
E 1 D

F 4 B

Frontier = {C}
x = F

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

F

C

Node Distance Parent

A 2 E

B 3 E

C 6 B

D 0 •
E 1 D

F 4 B

Frontier = {C}
x = F

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

C

Node Distance Parent

A 2 E

B 3 E

C 4+1 F

D 0 •
E 1 D

F 4 B

Frontier = {C}
x = F

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Complete example

skip

D

A B

E F

C

3

1

15

3

2
1

4

3

1

C

Node Distance Parent

A 2 E

B 3 E

C 5 F

D 0 •
E 1 D

F 4 B

Frontier = {}
x = C

ST2 – Gif Algorithmics and Complexity 15/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Reconstruction of the path

What is a path from s to t?

The array “distance” stores the minimum cost from s to t;

The array “parent” stores the predecessor of each visited node;

➜ How to construct the path from s to t using “parent”?

Pseudo-code

def construct_path(parent ,t):

path = [t]

current = t

while not parent[current] is None:

current = parent[current]

path.insert(0,current)

return path

ST2 – Gif Algorithmics and Complexity 16/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Reconstruction of the path

What is a path from s to t?

The array “distance” stores the minimum cost from s to t;

The array “parent” stores the predecessor of each visited node;

➜ How to construct the path from s to t using “parent”?

Pseudo-code

def construct_path(parent ,t):

path = [t]

current = t

while not parent[current] is None:

current = parent[current]

path.insert(0,current)

return path

ST2 – Gif Algorithmics and Complexity 16/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Plan

1 Problem

2 Shortest paths algorithm

3 Priority queues
Idea
Lists
Heap
Summary
Heapify

4 Complexity

5 Conclusion

6 Optimality
ST2 – Gif Algorithmics and Complexity 17/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

A concrete problem

Graph problems. . .

Find the shortest path in a graph (extract min dist)

Build the minimum spanning tree (Lecture 3)

➜ Requires a priority queue!

Priority Queues

Storage of data along some priority order

Definition

Abstract data structure specification with efficient operations on
an ordered set for:

1 Finding the minimum (or maximum) element in the set;

2 Insert an element of given priority in the set;

3 Extract the element of smallest (or greatest) priority.

ST2 – Gif Algorithmics and Complexity 18/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

A concrete problem

Graph problems. . .

Find the shortest path in a graph (extract min dist)

Build the minimum spanning tree (Lecture 3)

➜ Requires a priority queue!

Priority Queues

Storage of data along some priority order

Definition

Abstract data structure specification with efficient operations on
an ordered set for:

1 Finding the minimum (or maximum) element in the set;

2 Insert an element of given priority in the set;

3 Extract the element of smallest (or greatest) priority.

ST2 – Gif Algorithmics and Complexity 18/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: array

Unsorted array of elements

Find the smallest element ?

✗ Find the smallest elements: O(n)

✓ Insert an element (at the end when there is a place): O(1)

✗ Extract the smallest element: O(n) (shift all elements)

e3 e0 e2 e4 e9 e6

?

e5e5e5

e0

ST2 – Gif Algorithmics and Complexity 19/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: array

Unsorted array of elements

✗ Find the smallest elements: O(n)

Insert an element ?

✓ Insert an element (at the end when there is a place): O(1)

✗ Extract the smallest element: O(n) (shift all elements)

e3 e0 e2 e4 e9 e6

?

e5e5e5

e0

ST2 – Gif Algorithmics and Complexity 19/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: array

Unsorted array of elements

✗ Find the smallest elements: O(n)

✓ Insert an element (at the end when there is a place): O(1)

✗ Extract the smallest element: O(n) (shift all elements)

e3 e0 e2 e4 e9 e6

?

e5

e5e5

e0

ST2 – Gif Algorithmics and Complexity 19/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: array

Unsorted array of elements

✗ Find the smallest elements: O(n)

✓ Insert an element (at the end when there is a place): O(1)

Extract the smallest element ?

✗ Extract the smallest element: O(n) (shift all elements)

e3 e0 e2 e4 e9 e6

?

e5

e5

e5

e0

ST2 – Gif Algorithmics and Complexity 19/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: array

Unsorted array of elements

✗ Find the smallest elements: O(n)

✓ Insert an element (at the end when there is a place): O(1)

✗ Extract the smallest element: O(n) (shift all elements)

e3 e2 e4 e9 e6

?

e5e5

e5

e0

ST2 – Gif Algorithmics and Complexity 19/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: sorted array

Sorted array of elements

✓ Find the smallest element: O(1)

✗ Insert an element: O(n) (shift all elements)

✓ Extract the smallest element: O(1) (if descending order)

e9 e6 e4 e3 e2 e0

Insertion

e5

Décalage

e0e5e2e3e4 e0e2e5e3e4 e0e2e3e5e4 e0e2e3e4e5 e0e2e3e4e5

e0

e2e3e4e5

ST2 – Gif Algorithmics and Complexity 20/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: sorted array

Sorted array of elements

✓ Find the smallest element: O(1)

✗ Insert an element: O(n) (shift all elements)

✓ Extract the smallest element: O(1) (if descending order)

e9 e6 e4 e3 e2 e0

Insertion

e5

Décalage

e0e5e2e3e4 e0e2e5e3e4 e0e2e3e5e4 e0e2e3e4e5 e0e2e3e4e5

e0

e2e3e4e5

ST2 – Gif Algorithmics and Complexity 20/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: sorted array

Sorted array of elements

✓ Find the smallest element: O(1)

✗ Insert an element: O(n) (shift all elements)

✓ Extract the smallest element: O(1) (if descending order)

e9 e6 e4 e3 e2 e0

Insertion

e5

Décalage

e0e5e2e3e4 e0e2e5e3e4 e0e2e3e5e4 e0e2e3e4e5 e0e2e3e4e5

e0

e2e3e4e5

ST2 – Gif Algorithmics and Complexity 20/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: sorted array

Sorted array of elements

✓ Find the smallest element: O(1)

✗ Insert an element: O(n) (shift all elements)

✓ Extract the smallest element: O(1) (if descending order)

e9 e6

Insertion

e5

Décalage

e0e5e2e3e4

e0e2e5e3e4 e0e2e3e5e4 e0e2e3e4e5 e0e2e3e4e5

e0

e2e3e4e5

ST2 – Gif Algorithmics and Complexity 20/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: sorted array

Sorted array of elements

✓ Find the smallest element: O(1)

✗ Insert an element: O(n) (shift all elements)

✓ Extract the smallest element: O(1) (if descending order)

e9 e6

Insertion

e5

Décalage

e0e5e2e3e4

e0e2e5e3e4

e0e2e3e5e4 e0e2e3e4e5 e0e2e3e4e5

e0

e2e3e4e5

ST2 – Gif Algorithmics and Complexity 20/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: sorted array

Sorted array of elements

✓ Find the smallest element: O(1)

✗ Insert an element: O(n) (shift all elements)

✓ Extract the smallest element: O(1) (if descending order)

e9 e6

Insertion

e5

Décalage

e0e5e2e3e4 e0e2e5e3e4

e0e2e3e5e4

e0e2e3e4e5 e0e2e3e4e5

e0

e2e3e4e5

ST2 – Gif Algorithmics and Complexity 20/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: sorted array

Sorted array of elements

✓ Find the smallest element: O(1)

✗ Insert an element: O(n) (shift all elements)

✓ Extract the smallest element: O(1) (if descending order)

e9 e6

Insertion

e5

Décalage

e0e5e2e3e4 e0e2e5e3e4 e0e2e3e5e4

e0e2e3e4e5

e0e2e3e4e5

e0

e2e3e4e5

ST2 – Gif Algorithmics and Complexity 20/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: sorted array

Sorted array of elements

✓ Find the smallest element: O(1)

✗ Insert an element: O(n) (shift all elements)

✓ Extract the smallest element: O(1) (if descending order)

e9 e6

Insertion

e5

Décalage

e0e5e2e3e4 e0e2e5e3e4 e0e2e3e5e4 e0e2e3e4e5

e0e2e3e4e5

e0

e2e3e4e5

ST2 – Gif Algorithmics and Complexity 20/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: sorted array

Sorted array of elements

✓ Find the smallest element: O(1)

✗ Insert an element: O(n) (shift all elements)

✓ Extract the smallest element: O(1) (if descending order)

e9 e6

Insertion

e5

Décalage

e0e5e2e3e4 e0e2e5e3e4 e0e2e3e5e4 e0e2e3e4e5 e0e2e3e4e5

e0

e2e3e4e5

ST2 – Gif Algorithmics and Complexity 20/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: heap

Definition

A heap is an abstract data structure used to manage priority lists
in an efficient manner.

We need to:

Access the maximum priority element as quickly as possible

Find a performance tradeoff (between O(1) and O(n)) for
insertion and extraction

ST2 – Gif Algorithmics and Complexity 21/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: heap

Definition

A heap is an abstract data structure used to manage priority lists
in an efficient manner.

Tree

An undirected graph that is connected and acyclic is called a tree.

ST2 – Gif Algorithmics and Complexity 21/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation: heap

Definition

A heap is an abstract data structure used to manage priority lists
in an efficient manner.

Principle

A tree whose vertices are the priority values, such that:

min-heap : each node has a lower value than any of its children

max-heap : each node has a greater value than any of its children

➜ In a min-heap (resp. max-heap), the root is the minimum (resp. maximum)

value

5

9

14

33 17

18

27

11

19 21

ST2 – Gif Algorithmics and Complexity 21/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Binary heap

Binary heap

Quasi-complete binary tree:

The binary tree is complete at all levels, except possibly the last one. If the last
one is not complete, all available nodes are grouped onto the left most parents.

5

9

14

33 17

18

27

11

19 21

ST2 – Gif Algorithmics and Complexity 22/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation of a binary heap

Concretely

Un min-heap is an array with the following property:

5

0

9

1

14

3

33

7

17

8
18

4

27

9

11

2

19

5

21

6

5 9 11 14 18 19 21 33 17 27

0 1 2 3 4 5 6 7 8 9

tab:

root : node 0
left child of node i : node at 2i + 1
right child of node i : node at 2i + 2
parent of node i : node at ?

⌊(i − 1)/2⌋

node at i is a leaf : ?

2i + 1 ≥ n

ST2 – Gif Algorithmics and Complexity 23/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation of a binary heap

Concretely

Un min-heap is an array with the following property:

5

0

9

1

14

3

33

7

17

8
18

4

27

9

11

2

19

5

21

6

5 9 11 14 18 19 21 33 17 27

0 1 2 3 4 5 6 7 8 9

tab:

root : node 0
left child of node i : node at 2i + 1
right child of node i : node at 2i + 2
parent of node i : node at ⌊(i − 1)/2⌋
node at i is a leaf : ?

2i + 1 ≥ n

ST2 – Gif Algorithmics and Complexity 23/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation of a binary heap

Concretely

Un min-heap is an array with the following property:

5

0

9

1

14

3

33

7

17

8
18

4

27

9

11

2

19

5

21

6

5 9 11 14 18 19 21 33 17 27

0 1 2 3 4 5 6 7 8 9

tab:

root : node 0
left child of node i : node at 2i + 1
right child of node i : node at 2i + 2
parent of node i : node at ⌊(i − 1)/2⌋
node at i is a leaf : 2i + 1 ≥ n

ST2 – Gif Algorithmics and Complexity 23/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Implementation of a binary heap

Concretely

Un min-heap is an array with the following property:

5

0

9

1

14

3

33

7

17

8
18

4

27

9

11

2

19

5

21

6

5 9 11 14 18 19 21 33 17 27

0 1 2 3 4 5 6 7 8 9

tab:

tab[⌊(i − 1)/2⌋] < tab[i] pour tout i ≥ 1

ST2 – Gif Algorithmics and Complexity 23/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

How to insert in a min-heap

1 The new element v is inserted at the end of the last level of
the tree

i.e. at the end of the array

2 While the key of v is smaller than the key of v parent:

Swap v and its parent

Example

5

9

14

33 17

18

27 7

11

19 21

ST2 – Gif Algorithmics and Complexity 24/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

How to insert in a min-heap

1 The new element v is inserted at the end of the last level of
the tree

i.e. at the end of the array

2 While the key of v is smaller than the key of v parent:

Swap v and its parent

Example

5

9

14

33 17

18

27 7

11

19 21

ST2 – Gif Algorithmics and Complexity 24/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

How to insert in a min-heap

1 The new element v is inserted at the end of the last level of
the tree

i.e. at the end of the array

2 While the key of v is smaller than the key of v parent:

Swap v and its parent

Example

5

9

14

33 17

7

27 18

11

19 21

ST2 – Gif Algorithmics and Complexity 24/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

How to insert in a min-heap

1 The new element v is inserted at the end of the last level of
the tree

i.e. at the end of the array

2 While the key of v is smaller than the key of v parent:

Swap v and its parent

Example

5

7

14

33 17

9

27 18

11

19 21

ST2 – Gif Algorithmics and Complexity 24/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

How to insert in a min-heap

1 The new element v is inserted at the end of the last level of
the tree

i.e. at the end of the array

2 While the key of v is smaller than the key of v parent:

Swap v and its parent

Example

5

7

14

33 17

9

27 18

11

19 21

ST2 – Gif Algorithmics and Complexity 24/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Extract the minimum of a min-heap

To remove the root element:
1 Replace the root element with the last element v in the tree

i.e. the last element in the array

2 While v is greater than one of its children:

We swap v with the smallest of its children

Example

5

9

14

33 17

18

27

11

19 21

ST2 – Gif Algorithmics and Complexity 25/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Extract the minimum of a min-heap

To remove the root element:
1 Replace the root element with the last element v in the tree

i.e. the last element in the array

2 While v is greater than one of its children:

We swap v with the smallest of its children

Example

27

9

14

33 17

18

11

19 21

ST2 – Gif Algorithmics and Complexity 25/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Extract the minimum of a min-heap

To remove the root element:
1 Replace the root element with the last element v in the tree

i.e. the last element in the array

2 While v is greater than one of its children:

We swap v with the smallest of its children

Example

27

9

14

33 17

18

11

19 21

ST2 – Gif Algorithmics and Complexity 25/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Extract the minimum of a min-heap

To remove the root element:
1 Replace the root element with the last element v in the tree

i.e. the last element in the array

2 While v is greater than one of its children:

We swap v with the smallest of its children

Example

9

27

14

33 17

18

11

19 21

ST2 – Gif Algorithmics and Complexity 25/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Extract the minimum of a min-heap

To remove the root element:
1 Replace the root element with the last element v in the tree

i.e. the last element in the array

2 While v is greater than one of its children:

We swap v with the smallest of its children

Example

9

14

27

33 17

18

11

19 21

ST2 – Gif Algorithmics and Complexity 25/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Extract the minimum of a min-heap

To remove the root element:
1 Replace the root element with the last element v in the tree

i.e. the last element in the array

2 While v is greater than one of its children:

We swap v with the smallest of its children

Example

9

14

17

33 27

18

11

19 21

ST2 – Gif Algorithmics and Complexity 25/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Time complexity of heap operations

The height of a binary heap of n items is log2 n

Time complexity

✓ Find the smallest element: O(1)

✓ Insert an element: O(log n)

✓ Extract the smallest element: O(log n)

✓ Decrease an element key: O(log n)

we can move it up in the tree (much like insertion)
used by update in Dijkstra algorithm

ST2 – Gif Algorithmics and Complexity 26/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Time complexity of heap operations

The height of a binary heap of n items is log2 n

Time complexity

✓ Find the smallest element: O(1)

✓ Insert an element: O(log n)

✓ Extract the smallest element: O(log n)

✓ Decrease an element key: O(log n)

we can move it up in the tree (much like insertion)
used by update in Dijkstra algorithm

ST2 – Gif Algorithmics and Complexity 26/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Time complexity of heap operations

The height of a binary heap of n items is log2 n

Time complexity

✓ Find the smallest element: O(1)

✓ Insert an element: O(log n)

✓ Extract the smallest element: O(log n)

✓ Decrease an element key: O(log n)

we can move it up in the tree (much like insertion)
used by update in Dijkstra algorithm

ST2 – Gif Algorithmics and Complexity 26/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Time complexity of heap operations

The height of a binary heap of n items is log2 n

Time complexity

✓ Find the smallest element: O(1)

✓ Insert an element: O(log n)

✓ Extract the smallest element: O(log n)

✓ Decrease an element key: O(log n)

we can move it up in the tree (much like insertion)
used by update in Dijkstra algorithm

ST2 – Gif Algorithmics and Complexity 26/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Time complexity of heap operations

The height of a binary heap of n items is log2 n

Time complexity

✓ Find the smallest element: O(1)

✓ Insert an element: O(log n)

✓ Extract the smallest element: O(log n)

✓ Decrease an element key: O(log n)

we can move it up in the tree (much like insertion)
used by update in Dijkstra algorithm

ST2 – Gif Algorithmics and Complexity 26/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Priority queue: complexity summary

Operation Array Sorted Array Binary Heap

get min O(n) O(1) O(1)

insert (update) O(1) O(n) O(log n)

extract min O(n) O(1) O(log n)

Going from n to log(n) is a real win. . .

For n = 1000, log2(n) ≃ 10; for n = 109, log2(n) ≃ 30 !

ST2 – Gif Algorithmics and Complexity 27/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Building a min-heap

Question

How to build a heap from an existing array?

Warning!

To build a min-heap from a non-ordered array, it is not optimal to
simply apply the insertion method n times.
The total complexity can be better than O(n.log(n))!

Exercise

Indication: start from the end of the array and go up...

➜ In total, the complexity is
∑⌊log n⌋

h=0
n

2h+1O(h) = O(n)!
(faster than sorting)

ST2 – Gif Algorithmics and Complexity 28/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Building a min-heap

Question

How to build a heap from an existing array?

Warning!

To build a min-heap from a non-ordered array, it is not optimal to
simply apply the insertion method n times.
The total complexity can be better than O(n.log(n))!

Exercise

Indication: start from the end of the array and go up...

➜ In total, the complexity is
∑⌊log n⌋

h=0
n

2h+1O(h) = O(n)!
(faster than sorting)

ST2 – Gif Algorithmics and Complexity 28/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Idea Lists Heap Summary Heapify

Building a min-heap

Question

How to build a heap from an existing array?

Warning!

To build a min-heap from a non-ordered array, it is not optimal to
simply apply the insertion method n times.
The total complexity can be better than O(n.log(n))!

Exercise

Indication: start from the end of the array and go up...

➜ In total, the complexity is
∑⌊log n⌋

h=0
n

2h+1O(h) = O(n)!
(faster than sorting)

ST2 – Gif Algorithmics and Complexity 28/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Plan

1 Problem

2 Shortest paths algorithm

3 Priority queues

4 Complexity
Algorithm
Overall complexity
Priority queue

5 Conclusion

6 Optimality

ST2 – Gif Algorithmics and Complexity 29/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Reminder of the shortest path algorithm

def shortest_path(graph ,s):

frontier = [s]

parent = {}

parent[s] = None

dist = {}

dist[s] = 0

while len(frontier)>0:

x = extract_min_dist(frontier ,dist)

for y in neighbors(graph , x):

if y not in parent:

frontier.append(y)

new_dist = dist[x] + distance(graph ,x,y)

if y not in dist or dist[y] > new_dist:

dist[y] = new_dist

parent[y] = x

return parent

ST2 – Gif Algorithmics and Complexity 30/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Have a look at the problem differently. . .

def shortest_path(graph ,s):

Initialisation

← O(|1|)

while len(frontier)>0:

this will be done |V | times (one vertex withdrawn at each step)

x = extract_min_dist(frontier ,dist)

complexity Cextract min

for y in neighbors(graph , x):

It is more delicate ...we are only passing |E | times
(updating takes place only when a new arc is visited)

updating frontier , parent and dist

complexity Cupdate

Computing of the resulting path

← O(|V |)

ST2 – Gif Algorithmics and Complexity 31/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Have a look at the problem differently. . .

def shortest_path(graph ,s):

Initialisation ← O(|1|)

while len(frontier)>0:

this will be done |V | times (one vertex withdrawn at each step)

x = extract_min_dist(frontier ,dist)

complexity Cextract min

for y in neighbors(graph , x):

It is more delicate ...we are only passing |E | times
(updating takes place only when a new arc is visited)

updating frontier , parent and dist

complexity Cupdate

Computing of the resulting path

← O(|V |)

ST2 – Gif Algorithmics and Complexity 31/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Have a look at the problem differently. . .

def shortest_path(graph ,s):

Initialisation ← O(|1|)

while len(frontier)>0:

this will be done |V | times (one vertex withdrawn at each step)

x = extract_min_dist(frontier ,dist)

complexity Cextract min

for y in neighbors(graph , x):

It is more delicate ...we are only passing |E | times
(updating takes place only when a new arc is visited)

updating frontier , parent and dist

complexity Cupdate

Computing of the resulting path

← O(|V |)

ST2 – Gif Algorithmics and Complexity 31/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Have a look at the problem differently. . .

def shortest_path(graph ,s):

Initialisation ← O(|1|)

while len(frontier)>0:

this will be done |V | times (one vertex withdrawn at each step)

x = extract_min_dist(frontier ,dist)

complexity Cextract min

for y in neighbors(graph , x):

It is more delicate ...we are only passing |E | times
(updating takes place only when a new arc is visited)

updating frontier , parent and dist

complexity Cupdate

Computing of the resulting path

← O(|V |)

ST2 – Gif Algorithmics and Complexity 31/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Have a look at the problem differently. . .

def shortest_path(graph ,s):

Initialisation ← O(|1|)

while len(frontier)>0:

this will be done |V | times (one vertex withdrawn at each step)

x = extract_min_dist(frontier ,dist)

complexity Cextract min

for y in neighbors(graph , x):

It is more delicate ...we are only passing |E | times
(updating takes place only when a new arc is visited)

updating frontier , parent and dist

complexity Cupdate

Computing of the resulting path

← O(|V |)

ST2 – Gif Algorithmics and Complexity 31/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Have a look at the problem differently. . .

def shortest_path(graph ,s):

Initialisation ← O(|1|)

while len(frontier)>0:

this will be done |V | times (one vertex withdrawn at each step)

x = extract_min_dist(frontier ,dist)

complexity Cextract min

for y in neighbors(graph , x):

It is more delicate ...we are only passing |E | times
(updating takes place only when a new arc is visited)

updating frontier , parent and dist

complexity Cupdate

Computing of the resulting path

← O(|V |)

ST2 – Gif Algorithmics and Complexity 31/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Have a look at the problem differently. . .

def shortest_path(graph ,s):

Initialisation ← O(|1|)

while len(frontier)>0:

this will be done |V | times (one vertex withdrawn at each step)

x = extract_min_dist(frontier ,dist)

complexity Cextract min

for y in neighbors(graph , x):

It is more delicate ...we are only passing |E | times
(updating takes place only when a new arc is visited)

updating frontier , parent and dist

complexity Cupdate

Computing of the resulting path ← O(|V |)

ST2 – Gif Algorithmics and Complexity 31/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

In a nutshell. . .

Shortest path algorithm complexity

O(1 + |V | × Cextract min + |E | × Cupdate + |V |)

Implementation

The values of Cextract min and Cupdate depend on the
implementation of the frontier.

Implementation of the frontier: priority queue

naive implementation with a simple list

implementation with binary heap

ST2 – Gif Algorithmics and Complexity 32/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

In a nutshell. . .

Shortest path algorithm complexity

O(

1 +

|V | × Cextract min + |E | × Cupdate

+ |V |

)

Implementation

The values of Cextract min and Cupdate depend on the
implementation of the frontier.

Implementation of the frontier: priority queue

naive implementation with a simple list

implementation with binary heap

ST2 – Gif Algorithmics and Complexity 32/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

In a nutshell. . .

Shortest path algorithm complexity

O(

1 +

|V | × Cextract min + |E | × Cupdate

+ |V |

)

Implementation

The values of Cextract min and Cupdate depend on the
implementation of the frontier.

Implementation of the frontier: priority queue

naive implementation with a simple list

implementation with binary heap

ST2 – Gif Algorithmics and Complexity 32/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

In a nutshell. . .

Shortest path algorithm complexity

O(

1 +

|V | × Cextract min + |E | × Cupdate

+ |V |

)

Implementation

The values of Cextract min and Cupdate depend on the
implementation of the frontier.

Implementation of the frontier: priority queue

naive implementation with a simple list

implementation with binary heap

ST2 – Gif Algorithmics and Complexity 32/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Naive implementation

Complexity: O(|V | × Cextract min + |E | × Cupdate)

where:

Cextract min = O(|frontier |)
Cupdate = O(1)

The frontier contains at most |V | elements.

Complexity: O(|V | × |V | + |E |)
where |E | is between 0 and |V |2 (dense graphs)

In practice. . .

➜ Shortest path algorithm complexity is in O(|V |2)
But for sparse graphs we may improve the complexity!

ST2 – Gif Algorithmics and Complexity 33/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Naive implementation

Complexity: O(|V | × Cextract min + |E | × Cupdate)

where:

Cextract min = O(|frontier |)
Cupdate = O(1)

The frontier contains at most |V | elements.

Complexity: O(|V | × |V | + |E |)
where |E | is between 0 and |V |2 (dense graphs)

In practice. . .

➜ Shortest path algorithm complexity is in O(|V |2)
But for sparse graphs we may improve the complexity!

ST2 – Gif Algorithmics and Complexity 33/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Naive implementation

Complexity: O(|V | × Cextract min + |E | × Cupdate)

where:

Cextract min = O(|frontier |)
Cupdate = O(1)

The frontier contains at most |V | elements.

Complexity: O(|V | × |V | + |E |)
where |E | is between 0 and |V |2 (dense graphs)

In practice. . .

➜ Shortest path algorithm complexity is in O(|V |2)

But for sparse graphs we may improve the complexity!

ST2 – Gif Algorithmics and Complexity 33/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Naive implementation

Complexity: O(|V | × Cextract min + |E | × Cupdate)

where:

Cextract min = O(|frontier |)
Cupdate = O(1)

The frontier contains at most |V | elements.

Complexity: O(|V | × |V | + |E |)
where |E | is between 0 and |V |2 (dense graphs)

In practice. . .

➜ Shortest path algorithm complexity is in O(|V |2)
But for sparse graphs we may improve the complexity!

ST2 – Gif Algorithmics and Complexity 33/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Implementation with binary heap

using a tree-based data structure (binary heap) we have:

Cextract min = O(log(|V |))

Cupdate = O(log(|V |))

The complexity of the shortest path algorithm becomes:

O((|V | + |E |)× log(|V |))

ST2 – Gif Algorithmics and Complexity 34/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Simple list vs Binary heap

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

C
o
m

p
le

x
it

y

|E|

Complexity depending on |E| (with |V|=10)

binary heap
simple list

(a) Linear scale

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.1 1 10 100

C
o
m

p
le

x
it

y

|E|

Complexity depending on |E| (with |V|=10)

binary heap
simple list

(b) Logarithmic scale

Figure: Comparison of complexities depending on the graph density
(function of |E |) for |V | = 10 fixed.

ST2 – Gif Algorithmics and Complexity 35/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Simple list vs Binary heap

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

C
o
m

p
le

x
it

y

|E|

Complexity depending on |E| (with |V|=10)

binary heap
simple list

(a) Linear scale

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.1 1 10 100

C
o
m

p
le

x
it

y

|E|

Complexity depending on |E| (with |V|=10)

binary heap
simple list

(b) Logarithmic scale

Figure: Comparison of complexities depending on the graph density
(function of |E |) for |V | = 10 fixed.

In theory

➜ When |V |2 + |E | is less advantageous than
(|V |+ |E |)× log(|V |)?

It depends on the graph density : (|E | in relation to |V |)

ST2 – Gif Algorithmics and Complexity 35/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Algorithm Overall complexity Priority queue

Simple list vs Binary heap

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

C
o
m

p
le

x
it

y

|E|

Complexity depending on |E| (with |V|=10)

binary heap
simple list

(a) Linear scale

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.1 1 10 100

C
o
m

p
le

x
it

y

|E|

Complexity depending on |E| (with |V|=10)

binary heap
simple list

(b) Logarithmic scale

Figure: Comparison of complexities depending on the graph density
(function of |E |) for |V | = 10 fixed.

In practice

We will see in lab session that O(|E |) for the update is very
overestimated. . . and that the binary heap is doing better than
expected!

ST2 – Gif Algorithmics and Complexity 35/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Plan

1 Problem

2 Shortest paths algorithm

3 Priority queues

4 Complexity

5 Conclusion

6 Optimality

ST2 – Gif Algorithmics and Complexity 36/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

What you should remember

Directed graph: G = (V ,E) with weight function ω : E → R
Shortest paths algorithm

Slightly modified BFS;
The shortest paths between s and all other vertices;

Complexity depends on data structures chosen for
implementation

Naive complexity (with a simple list) in O(|V |2 + |E |)
Complexity (with binary heap) in O((|V |+ |E |)× log(|V |))

➜ The gain varies depending on instances.

The correctness of the algorithm and the optimality of the
result it produces are proven

ST2 – Gif Algorithmics and Complexity 37/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Plan

1 Problem

2 Shortest paths algorithm

3 Priority queues

4 Complexity

5 Conclusion

6 Optimality
Property
General idea
Details

ST2 – Gif Algorithmics and Complexity 38/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Optimality

Property

A vertex leaving the frontier has already its distance/path fixed.
Example: distance of E won’t be updated when visiting A

D

A B

E F

C

3

1

15

3

2
1

4

3

1

ST2 – Gif Algorithmics and Complexity 39/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Optimality

Property

A vertex leaving the frontier has already its distance/path fixed.
Example: distance of E won’t be updated when visiting A

More formally. . .

Loop invariant is determined: Let Sn denote a set of vertices which

have been already visited at step n. (by construction |Sn| = n)

1 ∀x ∈ Sn, distance(x) is the length of the shortest path in G

2 ∀x /∈ Sn, distance(x) is the length of the shortest path in
subgraph Sn ∪ {x}

The property is a collorary of this invariant

ST2 – Gif Algorithmics and Complexity 39/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Proof idea

Proof by recursion

The loop invariant is proven recursively over n

ST2 – Gif Algorithmics and Complexity 40/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Proof idea

Proof by recursion

The loop invariant is proven recursively over n

What does mean the invariant?

All vertices in Sn have their final value for distance(x)

All the neighbors x of Sn (i.e. the frontier) have their
minimum distance in Sn ∪ {x}

d
y x

z

→ The path passing through z is longer (this part of the proof is more

tricky; it works for non-negative weights only)

The others are +∞

ST2 – Gif Algorithmics and Complexity 40/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Proof idea

Proof by recursion

The loop invariant is proven recursively over n

Invariant conclusion

Vertices in Sn (after having left the frontier) know their shortest
path.

skip details

ST2 – Gif Algorithmics and Complexity 40/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Optimality proof I

Proof by recurrence

The loop invariant is proven recursively over n

n = 1

For S1 = {d} and its neighbors have the arc weight for
distance(x).

1 distance(d) = 0 is minimal (positive distances)

2 ∀v a neighbor of d , distance(v) = ω((d , v)) is minimal in the
sub-graph {d , v}

ST2 – Gif Algorithmics and Complexity 41/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Optimality proof II

General case

We suppose that the hypothesis holds at step n. Let x be the
vertex chosen by the algorithm at step n + 1:

It is a successor of Sn (otherwise distance(x) = ∞: it would
not have been chosen)

It has the smallest distance(.)

Its predecessor in Sn is denoted by y

d

y x

Vertices already visited (Sn)

ST2 – Gif Algorithmics and Complexity 42/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Optimality proof II

Proof ad absurdum

We now consider another path towards x and denote the first non
visited vertex on this path as z :

d

y x

z

This path is at least as long as the previous one.

ST2 – Gif Algorithmics and Complexity 43/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Optimality proof II

distance(z) is minimal

cost([d , . . . , z]) ≥ distance(z) because according to the recurrence
hypothese 2, distance(z) is minimal in Sn ∪ {z}

distance(x) is minimal

By definition, distance(z) ≥ distance(x) as x has been chosen, not
z

d

y x

z

cost([d , . . . , z]) ≥ distance(x)

ST2 – Gif Algorithmics and Complexity 44/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Optimality proof III

Total cost

We have cost([d , . . . , z , . . . , x]) = cost([d , . . . , z])+ cost([z , . . . , x]
by definition. By this way
cost([d , . . . , z , . . . , x]) ≥ cost([d , . . . , z]) ≥ distance(x) in the case
where cost([z , . . . , x] ≥ 0 (if this cost is negative, the proof will
not work here!).

d

y x

z

Any path outgoing Sn is at least as long as the one found.

ST2 – Gif Algorithmics and Complexity 45/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Optimality proof IV

Proof by recurrence

If the hypothesis holds at step n, then the vertex x attached
satisfies the property distance(x) = dist(d , x).
Invariant:

✓ ∀x ∈ Sn+1, distance(x) is minimal in G

➜ ∀y /∈ Sn+1, distance(y) is minimal in Sn+1 ∪ {y}

Second part

All successors y of x which are outside Sn should be considered.

ST2 – Gif Algorithmics and Complexity 46/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Optimality proof V

Second part (continuation)

We consider the shortest path to y in Sn+1:

If it traverses x , vertex x is at the end (as x has already its
shortest path in Sn+1).
Therefore distance(y) = distance(x) + ω((x , y)) is minimal

Otherwise, distance(y) has been already correctly fixed at the
previous step. Thus distance(y) ≤ distance(x) + ω((x , y))
(otherwise it would be that the shortest path passes through x) and
distance(y) would not be modified; consequently the property
remains satisfied in Sn+1

d x
y

d

x

y

ST2 – Gif Algorithmics and Complexity 47/48

Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Optimality proof VI

Conclusion

If the hypothesis holds at step n, then it will also hold at step n+1
Invariant:

✓ ∀x ∈ Sn+1, distance(x) is minimal in G

✓ ∀y /∈ Sn+1, distance(y) is minimal in Sn+1 ∪ {y}

ST2 – Gif Algorithmics and Complexity 48/48

	Problem
	Shortest path
	Optimization

	Shortest paths algorithm
	Definitions
	Problem
	Principle
	Algorithm
	Example
	Reconstruction of the path

	Priority queues
	Idea
	Lists
	Heap
	Summary
	Heapify

	Complexity
	Algorithm
	Overall complexity
	Priority queue

	Conclusion
	Optimality
	Property
	General idea
	Details

