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Shortest path Optimization

Reminder: maze problem

Searching for a path in a graph

Depth-first search and breadth-first search

Both produce a path

➜ What happens if there are many?
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Shortest path Optimization

Application: Waze or Google Itinerary

Find the best path

➜ Optimization problem

✓ Breadth-first search in an undirected graph

➜ Produces, indeed, a path made up of the smallest number of edges

✗ Not all roads are two-ways

➜ Directed graphs

✗ Each road segment requires a different passing time

➜ Weighted edges
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Shortest path Optimization

Optimization: naive approach

Principle

Produce all possible paths and pick up the shortest one

Simplified algorithm

def all_paths(G,s,t):

C = all_paths_between_s_and_t_in_G(G,s,t)

return min(C, key=length)

Difficulty

There are up to O(|E |!) elements in C !

➜ Can we propose an efficient algorithm?
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Definitions Problem Principle Algorithm Example Reconstruction of the path

Graphs: definitions

Reminder: undirected graph

We consider G = (V ,E ), where:

V a set of vertices (or nodes);

E a set of edges;

An edge e ∈ E is a pair of vertices from V ;

ω : E −→ R is a weight function ();
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Undirected weighted graph

We consider G = (V ,E ), where:

V a set of vertices (or nodes);

E a set of edges;

An edge e ∈ E is a pair of vertices from V ;

ω : E −→ R is a weight function (of edges);
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Graphs: definitions

///UnDirected weighted graph

We consider G = (V ,E ), where:

V a set of vertices (or nodes);

E a set of arcs;

An arc e ∈ E is a couple of vertices from V ;

ω : E −→ R is a weight function (of arcs);
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Graphs: definitions (continuation)

Path

In a directed graph:

A path from x to y is a sequence of consecutive arcs
connecting x to y .

Distance

In a weighted directed graph:

The cost of a path c is the sum of weights of the arcs on c :

cost(c) =
∑
e∈c

ω(e)

One can also say distance from x to y (for c connecting x to y).

ST2 – Gif Algorithmics and Complexity 9/48



Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Graphs: definitions (continuation)

Path

In a directed graph:

A path from x to y is a sequence of consecutive arcs
connecting x to y .

Distance

In a weighted directed graph:

The cost of a path c is the sum of weights of the arcs on c :

cost(c) =
∑
e∈c

ω(e)

One can also say distance from x to y (for c connecting x to y).

ST2 – Gif Algorithmics and Complexity 9/48



Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Graphs: definitions (continuation)

Path

In a directed graph:

A path from x to y is a sequence of consecutive arcs
connecting x to y .

Distance

In a weighted directed graph:

The cost of a path c is the sum of weights of the arcs on c :

cost(c) =
∑
e∈c

ω(e)

One can also say distance from x to y (for c connecting x to y).

ST2 – Gif Algorithmics and Complexity 9/48



Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality
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Data structure

Adjacency list

Memory space in O(|E |+ |V |)
Browsing the set of neighbours of a vertex u in O(deg(u))

Storage of weights: {a:{b:2,c:3},...}
Access to the weight of an arc in O(1)

like add an arc, delete an arc,...

Adjacency matrix

Memory space in O(|V |2)
Browsing the set of neighbours of a vertex u in O(|V |)
Storage of weights: tab[i , j ] = ω(i , j)

Access to the weight of an arc in O(1)
like add an arc, delete an arc,...

ST2 – Gif Algorithmics and Complexity 10/48



Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

Data structure

Adjacency list

Memory space in O(|E |+ |V |)
Browsing the set of neighbours of a vertex u in O(deg(u))

Storage of weights: {a:{b:2,c:3},...}
Access to the weight of an arc in O(1)

like add an arc, delete an arc,...

Adjacency matrix

Memory space in O(|V |2)
Browsing the set of neighbours of a vertex u in O(|V |)
Storage of weights: tab[i , j ] = ω(i , j)

Access to the weight of an arc in O(1)
like add an arc, delete an arc,...

ST2 – Gif Algorithmics and Complexity 10/48



Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Definitions Problem Principle Algorithm Example Reconstruction of the path

The shortest path problem

Optimization problem

Input:

Directed graph G = (V ,E )

Weight function ω : E −→ R
Source s ∈ V and terminal t ∈ V

Question:

➜ What is the shortest path from s to t?
Let C be a set of possible solutions (connecting s to t). We are
looking for c ∈ C such that ∀c ′ ∈ C , cost(c ′) ≥ cost(c)

Observation

The problem definition also holds for undirected weighted graphs.
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A shortest path

Idea of algorithm (inspired by Dijkstra, 1959)

Breadth-first search taking weights into account.

skipS
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A (1)

B (2) C (4)
etc.
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Shortest path algorithm

Data structures

The algorithm requires:

The list of vertices to be visited (as in BFS)

➜ In this context the term frontier is commonly used.

The cost s of the best path at each vertex already visited

➜ Store a distance at each vertex.

Selected arcs

➜ Store a predecessor for each vertex.
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Shortest path algorithm in python

def shortest_path(graph ,s):

frontier = [s]

parent = {}

parent[s] = None

dist = {}

dist[s] = 0

while len(frontier )>0:

x = extract min dist(frontier,dist)

for y in neighbors(graph , x):

if y not in parent:

frontier.append(y)

# update

new_dist = dist[x] + distance(graph ,x,y)

if y not in dist or dist[y] > new_dist:

dist[y] = new_dist

parent[y] = x

return parent
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Complete example
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Reconstruction of the path

What is a path from s to t?

The array “distance” stores the minimum cost from s to t;

The array “parent” stores the predecessor of each visited node;

➜ How to construct the path from s to t using “parent”?

Pseudo-code

def construct_path(parent ,t):

path = [t]

current = t

while not parent[current] is None:

current = parent[current]

path.insert(0,current)

return path
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Idea Lists Heap Summary Heapify

A concrete problem

Graph problems. . .

Find the shortest path in a graph (extract min dist)

Build the minimum spanning tree (Lecture 3)

➜ Requires a priority queue!

Priority Queues

Storage of data along some priority order

Definition

Abstract data structure specification with efficient operations on
an ordered set for:

1 Finding the minimum (or maximum) element in the set;

2 Insert an element of given priority in the set;

3 Extract the element of smallest (or greatest) priority.
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Implementation: array

Unsorted array of elements

Find the smallest element ?

✗ Find the smallest elements: O(n)

✓ Insert an element (at the end when there is a place): O(1)

✗ Extract the smallest element: O(n) (shift all elements)

e3 e0 e2 e4 e9 e6

?

e5e5e5

e0
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Implementation: heap

Definition

A heap is an abstract data structure used to manage priority lists
in an efficient manner.

We need to:

Access the maximum priority element as quickly as possible

Find a performance tradeoff (between O(1) and O(n)) for
insertion and extraction
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Implementation: heap

Definition

A heap is an abstract data structure used to manage priority lists
in an efficient manner.

Tree

An undirected graph that is connected and acyclic is called a tree.
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Implementation: heap

Definition

A heap is an abstract data structure used to manage priority lists
in an efficient manner.

Principle

A tree whose vertices are the priority values, such that:

min-heap : each node has a lower value than any of its children

max-heap : each node has a greater value than any of its children

➜ In a min-heap (resp. max-heap), the root is the minimum (resp. maximum)

value
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Binary heap

Binary heap

Quasi-complete binary tree:

The binary tree is complete at all levels, except possibly the last one. If the last
one is not complete, all available nodes are grouped onto the left most parents.
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Implementation of a binary heap

Concretely

Un min-heap is an array with the following property:
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tab:

root : node 0
left child of node i : node at 2i + 1
right child of node i : node at 2i + 2
parent of node i : node at ?

⌊(i − 1)/2⌋

node at i is a leaf : ?

2i + 1 ≥ n
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How to insert in a min-heap

1 The new element v is inserted at the end of the last level of
the tree

i.e. at the end of the array

2 While the key of v is smaller than the key of v parent:

Swap v and its parent

Example
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Extract the minimum of a min-heap

To remove the root element:
1 Replace the root element with the last element v in the tree

i.e. the last element in the array

2 While v is greater than one of its children:

We swap v with the smallest of its children

Example
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Time complexity of heap operations

The height of a binary heap of n items is log2 n

Time complexity

✓ Find the smallest element: O(1)

✓ Insert an element: O(log n)

✓ Extract the smallest element: O(log n)

✓ Decrease an element key: O(log n)

we can move it up in the tree (much like insertion)
used by update in Dijkstra algorithm
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Priority queue: complexity summary

Operation Array Sorted Array Binary Heap

get min O(n) O(1) O(1)

insert (update) O(1) O(n) O(log n)

extract min O(n) O(1) O(log n)

Going from n to log(n) is a real win. . .

For n = 1000, log2(n) ≃ 10; for n = 109, log2(n) ≃ 30 !
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Building a min-heap

Question

How to build a heap from an existing array?

Warning!

To build a min-heap from a non-ordered array, it is not optimal to
simply apply the insertion method n times.
The total complexity can be better than O(n.log(n))!

Exercise

Indication: start from the end of the array and go up...

➜ In total, the complexity is
∑⌊log n⌋

h=0
n

2h+1O(h) = O(n)!
(faster than sorting)
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Reminder of the shortest path algorithm

def shortest_path(graph ,s):

frontier = [s]

parent = {}

parent[s] = None

dist = {}

dist[s] = 0

while len(frontier )>0:

x = extract_min_dist(frontier ,dist)

for y in neighbors(graph , x):

if y not in parent:

frontier.append(y)

new_dist = dist[x] + distance(graph ,x,y)

if y not in dist or dist[y] > new_dist:

dist[y] = new_dist

parent[y] = x

return parent
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Have a look at the problem differently. . .

def shortest_path(graph ,s):

# Initialisation

← O(|1|)

while len(frontier )>0:

this will be done |V | times (one vertex withdrawn at each step)

x = extract_min_dist(frontier ,dist)

complexity Cextract min

for y in neighbors(graph , x):

It is more delicate ...we are only passing |E | times
(updating takes place only when a new arc is visited)

# updating frontier , parent and dist

complexity Cupdate

# Computing of the resulting path

← O(|V |)
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(updating takes place only when a new arc is visited)

# updating frontier , parent and dist

complexity Cupdate

# Computing of the resulting path ← O(|V |)
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Algorithm Overall complexity Priority queue

In a nutshell. . .

Shortest path algorithm complexity

O( 1 + |V | × Cextract min + |E | × Cupdate + |V | )

Implementation

The values of Cextract min and Cupdate depend on the
implementation of the frontier.

Implementation of the frontier: priority queue

naive implementation with a simple list

implementation with binary heap
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Algorithm Overall complexity Priority queue

Naive implementation

Complexity: O(|V | × Cextract min + |E | × Cupdate)

where:

Cextract min = O(|frontier |)
Cupdate = O(1)

The frontier contains at most |V | elements.

Complexity: O(|V | × |V | + |E |)
where |E | is between 0 and |V |2 (dense graphs)

In practice. . .

➜ Shortest path algorithm complexity is in O(|V |2)
But for sparse graphs we may improve the complexity!
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Algorithm Overall complexity Priority queue

Implementation with binary heap

using a tree-based data structure (binary heap) we have:

Cextract min = O(log(|V |))

Cupdate = O(log(|V |))

The complexity of the shortest path algorithm becomes:

O((|V | + |E |)× log(|V |))
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Algorithm Overall complexity Priority queue

Simple list vs Binary heap
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Figure: Comparison of complexities depending on the graph density
(function of |E |) for |V | = 10 fixed.
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Figure: Comparison of complexities depending on the graph density
(function of |E |) for |V | = 10 fixed.

In theory

➜ When |V |2 + |E | is less advantageous than
(|V |+ |E |)× log(|V |)?

It depends on the graph density : (|E | in relation to |V |)
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In practice

We will see in lab session that O(|E |) for the update is very
overestimated. . . and that the binary heap is doing better than
expected!
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What you should remember

Directed graph: G = (V ,E ) with weight function ω : E → R
Shortest paths algorithm

Slightly modified BFS;
The shortest paths between s and all other vertices;

Complexity depends on data structures chosen for
implementation

Naive complexity (with a simple list) in O(|V |2 + |E |)
Complexity (with binary heap) in O((|V |+ |E |)× log(|V |))

➜ The gain varies depending on instances.

The correctness of the algorithm and the optimality of the
result it produces are proven
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Property General idea Details

Optimality

Property

A vertex leaving the frontier has already its distance/path fixed.
Example: distance of E won’t be updated when visiting A
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Property General idea Details

Optimality

Property

A vertex leaving the frontier has already its distance/path fixed.
Example: distance of E won’t be updated when visiting A

More formally. . .

Loop invariant is determined: Let Sn denote a set of vertices which

have been already visited at step n. (by construction |Sn| = n)

1 ∀x ∈ Sn, distance(x) is the length of the shortest path in G

2 ∀x /∈ Sn, distance(x) is the length of the shortest path in
subgraph Sn ∪ {x}

The property is a collorary of this invariant
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Property General idea Details

Proof idea

Proof by recursion

The loop invariant is proven recursively over n
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Property General idea Details

Proof idea

Proof by recursion

The loop invariant is proven recursively over n

What does mean the invariant?

All vertices in Sn have their final value for distance(x)

All the neighbors x of Sn (i.e. the frontier) have their
minimum distance in Sn ∪ {x}

d
y x

z

→ The path passing through z is longer (this part of the proof is more

tricky; it works for non-negative weights only)

The others are +∞
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Property General idea Details

Proof idea

Proof by recursion

The loop invariant is proven recursively over n

Invariant conclusion

Vertices in Sn (after having left the frontier) know their shortest
path.

skip details

ST2 – Gif Algorithmics and Complexity 40/48



Problem Shortest paths algorithm Priority queues Complexity Conclusion Optimality

Property General idea Details

Optimality proof I

Proof by recurrence

The loop invariant is proven recursively over n

n = 1

For S1 = {d} and its neighbors have the arc weight for
distance(x).

1 distance(d) = 0 is minimal (positive distances)

2 ∀v a neighbor of d , distance(v) = ω((d , v)) is minimal in the
sub-graph {d , v}
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Property General idea Details

Optimality proof II

General case

We suppose that the hypothesis holds at step n. Let x be the
vertex chosen by the algorithm at step n + 1:

It is a successor of Sn (otherwise distance(x) = ∞: it would
not have been chosen)

It has the smallest distance(.)

Its predecessor in Sn is denoted by y

d

y x

Vertices already visited (Sn)
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Property General idea Details

Optimality proof II

Proof ad absurdum

We now consider another path towards x and denote the first non
visited vertex on this path as z :

d

y x

z

This path is at least as long as the previous one.
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Property General idea Details

Optimality proof II

distance(z) is minimal

cost([d , . . . , z ]) ≥ distance(z) because according to the recurrence
hypothese 2, distance(z) is minimal in Sn ∪ {z}

distance(x) is minimal

By definition, distance(z) ≥ distance(x) as x has been chosen, not
z

d

y x

z

cost([d , . . . , z ]) ≥ distance(x)
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Property General idea Details

Optimality proof III

Total cost

We have cost([d , . . . , z , . . . , x ]) = cost([d , . . . , z ])+ cost([z , . . . , x ]
by definition. By this way
cost([d , . . . , z , . . . , x ]) ≥ cost([d , . . . , z ]) ≥ distance(x) in the case
where cost([z , . . . , x ] ≥ 0 (if this cost is negative, the proof will
not work here!).

d

y x

z

Any path outgoing Sn is at least as long as the one found.
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Property General idea Details

Optimality proof IV

Proof by recurrence

If the hypothesis holds at step n, then the vertex x attached
satisfies the property distance(x) = dist(d , x).
Invariant:

✓ ∀x ∈ Sn+1, distance(x) is minimal in G

➜ ∀y /∈ Sn+1, distance(y) is minimal in Sn+1 ∪ {y}

Second part

All successors y of x which are outside Sn should be considered.
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Property General idea Details

Optimality proof V

Second part (continuation)

We consider the shortest path to y in Sn+1:

If it traverses x , vertex x is at the end (as x has already its
shortest path in Sn+1).
Therefore distance(y) = distance(x) + ω((x , y)) is minimal

Otherwise, distance(y) has been already correctly fixed at the
previous step. Thus distance(y) ≤ distance(x) + ω((x , y))
(otherwise it would be that the shortest path passes through x) and
distance(y) would not be modified; consequently the property
remains satisfied in Sn+1

d x
y

d

x

y
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Property General idea Details

Optimality proof VI

Conclusion

If the hypothesis holds at step n, then it will also hold at step n+1
Invariant:

✓ ∀x ∈ Sn+1, distance(x) is minimal in G

✓ ∀y /∈ Sn+1, distance(y) is minimal in Sn+1 ∪ {y}
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