
Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Algorithmics and Complexity
Lecture 3/7 : Minimum Spanning Tree

CentraleSupélec – Gif

ST2 – Gif

ST2 – Gif Algorithmics and Complexity 1/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Plan

1 Introduction to the problem

2 Problem solving

3 Implementation of Kruskal algorithm

4 Clustering

ST2 – Gif Algorithmics and Complexity 2/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Plan

1 Introduction to the problem
Practical problem
Problem modelling
Definition of the MST problem

2 Problem solving

3 Implementation of Kruskal algorithm

4 Clustering

5 Conclusion

ST2 – Gif Algorithmics and Complexity 3/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Internet access provider

Problem
Connect n sites with optical fiber.

→ We know the cost for threading a cable between two sites vi
and vj , i , j ∈ 1, 2, . . . , n
(it is not always possible to connect two sites directly).

Gif Optical Fiber Network - source : ARCEP

ST2 – Gif Algorithmics and Complexity 4/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Internet access provider

Problem
Connect n sites with optical fiber.

→ We know the cost for threading a cable between two sites vi
and vj , i , j ∈ 1, 2, . . . , n
(it is not always possible to connect two sites directly).

Goal
Install a new optical network infrastructure at the lowest cost.

ST2 – Gif Algorithmics and Complexity 4/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Internet access provider

Problem
Connect n sites with optical fiber.

→ We know the cost for threading a cable between two sites vi
and vj , i , j ∈ 1, 2, . . . , n
(it is not always possible to connect two sites directly).

Goal
Install a new optical network infrastructure at the lowest cost.

Type of the problem
This is an optimization problem.

ST2 – Gif Algorithmics and Complexity 4/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Problem modelling

Network → graph
Sites → vertices of an undirected graph
Possible connection → edge between two vertices
Threading cost → weight of the edge

ST2 – Gif Algorithmics and Complexity 5/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Problem modelling

Network → graph
Sites → vertices of an undirected graph
Possible connection → edge between two vertices
Threading cost → weight of the edge

Instance of the problem
An undirected graph G with n vertices which is connected and has
positive weights.

We consider the weight function ω : E →]0, +∞[

ST2 – Gif Algorithmics and Complexity 5/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Problem modelling

Sub-graph
Let G = (V , E) be a weighted graph. A sub-graph of G is a tuple
(V ′, E ′) such that:

V ′ ⊆ V (no additional nodes)

E ′ ⊆ E (no additional edges)

E ′ ⊆ V ′ × V ′ (edges between nodes from V ′)

ST2 – Gif Algorithmics and Complexity 6/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Problem modelling

Sub-graph
Let G = (V , E) be a weighted graph. A sub-graph of G is a tuple
(V ′, E ′) such that:

V ′ ⊆ V (no additional nodes)

E ′ ⊆ E (no additional edges)

E ′ ⊆ V ′ × V ′ (edges between nodes from V ′)

Objective?
Find a sub-graph T = (V ′, E ′) of G :

It has all vertices of G (without all edges)
It is connected
The value of the sum of edge weights

∑
e∈E ′ w(e) is minimal.

ST2 – Gif Algorithmics and Complexity 6/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Some definitions

Tree (recall)
An undirected graph that is connected and acyclic is called a tree.

Example:

Definition: Forest
A forest is a finite set of trees.

ST2 – Gif Algorithmics and Complexity 7/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Property

Theorem
T , the search sub-graph, is a tree.

ST2 – Gif Algorithmics and Complexity 8/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Property

Theorem
T , the search sub-graph, is a tree.

proof
Reminder: a tree is a connected and acyclic graph.
T is a connected undirected graph by definition

Acyclic: proof by contradiction

Assume that T has a cycle. Remove one edge e
(anyone) from the cycle and consider T1 the
sub-graph of T that does not contain e.∑

a∈ET1
w(a) =

∑
a∈ET

w(a) − w(e)

Thus T1 has a lower cost than T (supposed to be
the minimum).

e

ST2 – Gif Algorithmics and Complexity 8/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Property

Theorem
T , the search sub-graph, is a tree.

proof
Reminder: a tree is a connected and acyclic graph.
T is a connected undirected graph by definition

Acyclic: proof by contradiction

Assume that T has a cycle. Remove one edge e
(anyone) from the cycle and consider T1 the
sub-graph of T that does not contain e.∑

a∈ET1
w(a) =

∑
a∈ET

w(a) − w(e)

Thus T1 has a lower cost than T (supposed to be
the minimum).

e

ST2 – Gif Algorithmics and Complexity 8/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Minimum Spanning Tree (MST)

Data
G = (V , E) an undirected and connected graph with |V | = n
ω : E −→ R∗

+ the weight function

Goal
Find a tree T = (V , ET), ET ⊆ E such that T is a spanning tree
and

∑
e∈ET

ω(e) is minimum.

Brute-force approach : enumerate all possible T and compare
their total weight

Complexity : O
(|E |

|V |−1
)
. Undesirable

ST2 – Gif Algorithmics and Complexity 9/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Practical problem Problem modelling Definition of the MST problem

Minimum Spanning Tree (MST)

Data
G = (V , E) an undirected and connected graph with |V | = n
ω : E −→ R∗

+ the weight function

Goal
Find a tree T = (V , ET), ET ⊆ E such that T is a spanning tree
and

∑
e∈ET

ω(e) is minimum.

Brute-force approach : enumerate all possible T and compare
their total weight

Complexity : O
(|E |

|V |−1
)
. Undesirable

ST2 – Gif Algorithmics and Complexity 9/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Plan

1 Introduction to the problem

2 Problem solving
Greedy approaches
Prim algorithm
Kruskal algorithm
Optimality

3 Implementation of Kruskal algorithm

4 Clustering

5 Conclusion

ST2 – Gif Algorithmics and Complexity 10/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Greedy Algorithms

Definition
A greedy algorithm is an algorithm that:

Builds a solution one step at a time;
e.g. Lego construction or line-by-line multiplication

Makes a choice at each step to optimize a local criteria;
i.e. evaluation of the current situation

Never revokes a previous choice.

The best solution is chosen locally: no guarantee on finding the
global optimum

No going back: the algorithm goes directly toward a solution.

Example ?

ST2 – Gif Algorithmics and Complexity 11/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Greedy Algorithms

Definition
A greedy algorithm is an algorithm that:

Builds a solution one step at a time;
e.g. Lego construction or line-by-line multiplication

Makes a choice at each step to optimize a local criteria;
i.e. evaluation of the current situation

Never revokes a previous choice.

The best solution is chosen locally: no guarantee on finding the
global optimum

No going back: the algorithm goes directly toward a solution.

Example ?

ST2 – Gif Algorithmics and Complexity 11/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Greedy Algorithms

Definition
A greedy algorithm is an algorithm that:

Builds a solution one step at a time;
e.g. Lego construction or line-by-line multiplication

Makes a choice at each step to optimize a local criteria;
i.e. evaluation of the current situation

Never revokes a previous choice.

The best solution is chosen locally: no guarantee on finding the
global optimum

No going back: the algorithm goes directly toward a solution.

Example : Shortest path
local criteria: node of the frontier with minimum distance

ST2 – Gif Algorithmics and Complexity 11/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Minimum spanning tree : generic approach

Goal
Given G = (V , E) and w : E −→ R∗

+

➜ We must build, step by step, a subset of E .

General principle
We start with ET = ∅
At each step, a new edge (u, v) is chosen such that
ET ∪ (u, v) is always a sub-set of a minimum spanning tree of
G.

➜ We say that (u, v) is a safe edge for ET

This greedy algorithm reaches a global optimum. . .

ST2 – Gif Algorithmics and Complexity 12/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Minimum spanning tree : generic approach

General algorithm

def MST(V,E):
E_T = []
while ! isSolution (E_T ,V,E):

e = safeEdge(E_T,V,E)
E_T. append (e)

return E_T

How can we find a safe edge?
We shall discover it soon. . .
Let us first discover two algorithms that adopt this schema.

ST2 – Gif Algorithmics and Complexity 13/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Minimum spanning tree : generic approach

General algorithm

def MST(V,E):
E_T = []
while ! isSolution (E_T ,V,E):

e = safeEdge(E_T,V,E)
E_T. append (e)

return E_T

How can we find a safe edge?
We shall discover it soon. . .
Let us first discover two algorithms that adopt this schema.

ST2 – Gif Algorithmics and Complexity 13/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Kruskal method (1956)

Overview
Initialization: a graph T with all vertices of G but without
any edges
Iteration: add to T an edge with the minimum weight
without creating a cycle
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 14/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Kruskal method (1956)

Overview
Initialization: a graph T with all vertices of G but without
any edges
Iteration: add to T an edge with the minimum weight
without creating a cycle
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 14/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Kruskal method (1956)

Overview
Initialization: a graph T with all vertices of G but without
any edges
Iteration: add to T an edge with the minimum weight
without creating a cycle
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 14/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Kruskal method (1956)

Overview
Initialization: a graph T with all vertices of G but without
any edges
Iteration: add to T an edge with the minimum weight
without creating a cycle
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 14/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Kruskal method (1956)

Overview
Initialization: a graph T with all vertices of G but without
any edges
Iteration: add to T an edge with the minimum weight
without creating a cycle
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 14/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Kruskal method (1956)

Overview
Initialization: a graph T with all vertices of G but without
any edges
Iteration: add to T an edge with the minimum weight
without creating a cycle
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 14/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Kruskal method (1956)

Overview
Initialization: a graph T with all vertices of G but without
any edges
Iteration: add to T an edge with the minimum weight
without creating a cycle
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 14/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Prim method (1957)

Overview
Initialization: a tree T that contains one vertex from G
(anyone)
Iteration: add to T an edge with the minimum weight
to connect a new node (i.e. not already in T)
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 15/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Prim method (1957)

Overview
Initialization: a tree T that contains one vertex from G
(anyone)
Iteration: add to T an edge with the minimum weight
to connect a new node (i.e. not already in T)
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 15/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Prim method (1957)

Overview
Initialization: a tree T that contains one vertex from G
(anyone)
Iteration: add to T an edge with the minimum weight
to connect a new node (i.e. not already in T)
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 15/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Prim method (1957)

Overview
Initialization: a tree T that contains one vertex from G
(anyone)
Iteration: add to T an edge with the minimum weight
to connect a new node (i.e. not already in T)
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 15/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Prim method (1957)

Overview
Initialization: a tree T that contains one vertex from G
(anyone)
Iteration: add to T an edge with the minimum weight
to connect a new node (i.e. not already in T)
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 15/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Prim method (1957)

Overview
Initialization: a tree T that contains one vertex from G
(anyone)
Iteration: add to T an edge with the minimum weight
to connect a new node (i.e. not already in T)
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 15/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Prim method (1957)

Overview
Initialization: a tree T that contains one vertex from G
(anyone)
Iteration: add to T an edge with the minimum weight
to connect a new node (i.e. not already in T)
Stop: after adding n − 1 edges

1

3
4

4
5

5

6
4

8
5

ST2 – Gif Algorithmics and Complexity 15/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Remarks

Comparison of both approaches
Kruskal maintains full coverage (forest) and builds up connexity

Prim maintains T connected (sub-tree) and makes it a covering tree

Both ensure the absence of cycle

Both stop n − 1 edges. Why?

1

3
4

4
5

5
64

8
5

1

3
4

4
5

5

6
4

8
5

Theorem
If T is a graph of n vertices, then the three statements are
equivalent:

T is a tree : acyclic and connected
T is connected and has n − 1 edges
T is acyclic and has n − 1 edges

Will you be able to prove this?

ST2 – Gif Algorithmics and Complexity 16/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Remarks

Comparison of both approaches
Kruskal maintains full coverage (forest) and builds up connexity

Prim maintains T connected (sub-tree) and makes it a covering tree

Both ensure the absence of cycle
Both stop n − 1 edges. Why?

Theorem
If T is a graph of n vertices, then the three statements are
equivalent:

T is a tree : acyclic and connected
T is connected and has n − 1 edges
T is acyclic and has n − 1 edges

Will you be able to prove this?

ST2 – Gif Algorithmics and Complexity 16/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Remarks

Comparison of both approaches
Kruskal maintains full coverage (forest) and builds up connexity

Prim maintains T connected (sub-tree) and makes it a covering tree

Both ensure the absence of cycle
Both stop n − 1 edges. Why?

Theorem
If T is a graph of n vertices, then the three statements are
equivalent:

T is a tree : acyclic and connected
T is connected and has n − 1 edges
T is acyclic and has n − 1 edges

Will you be able to prove this?
ST2 – Gif Algorithmics and Complexity 16/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Prim algorithm details

Principle
Maintain a structure nextnodes containing the remaining nodes
while updating their distance to the current tree:

dist(x , T) = min{ω((x , u)) | u ∈ T}

Iteration
1 Extract the vertex from nextnodes of minimum distance to the

current tree T
2 Add it to the tree T with the corresponding minimal edge
3 Update distances of its neighbors

➜ It is very similar to SP (BFS)!

At the end
nextnodes is empty and T is a minimum spanning tree

ST2 – Gif Algorithmics and Complexity 17/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Prim algorithm details

Principle
Maintain a structure nextnodes containing the remaining nodes
while updating their distance to the current tree:

dist(x , T) = min{ω((x , u)) | u ∈ T}

Iteration
1 Extract the vertex from nextnodes of minimum distance to the

current tree T
2 Add it to the tree T with the corresponding minimal edge
3 Update distances of its neighbors

➜ It is very similar to SP (BFS)!

At the end
nextnodes is empty and T is a minimum spanning tree

ST2 – Gif Algorithmics and Complexity 17/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Prim algorithm details

Principle
Maintain a structure nextnodes containing the remaining nodes
while updating their distance to the current tree:

dist(x , T) = min{ω((x , u)) | u ∈ T}

Iteration
1 Extract the vertex from nextnodes of minimum distance to the

current tree T
2 Add it to the tree T with the corresponding minimal edge
3 Update distances of its neighbors

➜ It is very similar to SP (BFS)!

At the end
nextnodes is empty and T is a minimum spanning tree

ST2 – Gif Algorithmics and Complexity 17/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Prim algorithm details

Principle
Maintain a structure nextnodes containing the remaining nodes
while updating their distance to the current tree:

dist(x , T) = min{ω((x , u)) | u ∈ T}

Iteration
1 Extract the vertex from nextnodes of minimum distance to the

current tree T
2 Add it to the tree T with the corresponding minimal edge
3 Update distances of its neighbors

➜ It is very similar to SP (BFS)!

At the end
nextnodes is empty and T is a minimum spanning tree

ST2 – Gif Algorithmics and Complexity 17/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Prim algorithm

def Prim_MST (graph ,s):
nextnodes = nodes(graph)
parent = {}
dist = {}
dist[s] = 0
For the first step, s will always be selected

while len(nextnodes)>0:
x = extract_min_dist (nextnodes ,dist)

update the neighbors:
for y in neighbors (graph , x):

new_dist = distance (graph ,x,y)
if (y in nextnodes) and \

(y not in dist or new_dist < dist[y]):
dist[y] = new_dist
parent [y] = x

return parent
ST2 – Gif Algorithmics and Complexity 18/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

SP vs Prim
Prim
def Prim_MST (graph ,s):

nextnodes = nodes(graph)
parent = {}
dist = {}; dist[s] = 0
while len(nextnodes) >0:

x = extract_min_dist (nextnodes ,dist)
for y in neighbors (graph , x):

new_dist = distance (graph ,x,y)

if (y in nextnodes) and \
(y not in dist or \
new_dist < dist[y]):

dist[y] = new_dist
parent [y] = x

return parent

SP
def shortest_path (graph ,s):

frontier = [s]
parent = {}; parent[s] = None
dist = {}; dist[s] = 0
while len(frontier) >0:

x = extract_min_dist (frontier ,dist)
for y in neighbors (graph , x):

if y not in parent:
frontier.append(y)

new_dist = dist[x] + \
distance(graph,x,y)

if y not in dist or \
dist[y] > new_dist :

dist[y] = new_dist
parent [y] = x

return parent

The difference comes from the storage in the queue
BFS: elements ordered by number of edges from s
SP: elements ordered by distance to s
Prim: elements ordered by distance to the tree under
construction

ST2 – Gif Algorithmics and Complexity 19/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

SP vs Prim
Prim
def Prim_MST (graph ,s):

nextnodes = nodes(graph)
parent = {}
dist = {}; dist[s] = 0
while len(nextnodes) >0:

x = extract_min_dist (nextnodes ,dist)
for y in neighbors (graph , x):

new_dist = distance (graph ,x,y)

if (y in nextnodes) and \
(y not in dist or \
new_dist < dist[y]):

dist[y] = new_dist
parent [y] = x

return parent

SP
def shortest_path (graph ,s):

frontier = [s]
parent = {}; parent[s] = None
dist = {}; dist[s] = 0
while len(frontier) >0:

x = extract_min_dist (frontier ,dist)
for y in neighbors (graph , x):

if y not in parent:
frontier.append(y)

new_dist = dist[x] + \
distance(graph,x,y)

if y not in dist or \
dist[y] > new_dist :

dist[y] = new_dist
parent [y] = x

return parent

The difference comes from the storage in the queue
BFS: elements ordered by number of edges from s
SP: elements ordered by distance to s
Prim: elements ordered by distance to the tree under
construction

ST2 – Gif Algorithmics and Complexity 19/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Kruskal algorithm details

At the beginning
The forest F (set of trees) is composed of n isolated vertices (n singleton
trees).

Iteration
Merge two neighbouring trees, connected by a new edge (of minimal
weight) that is added to T .

Invariant : F is a forest (without cycle)

At the end
There is only one remaining tree T = (V , ET) in F and it is a minimum
spanning tree.

ST2 – Gif Algorithmics and Complexity 20/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Kruskal algorithm details

At the beginning
The forest F (set of trees) is composed of n isolated vertices (n singleton
trees).

Iteration
Merge two neighbouring trees, connected by a new edge (of minimal
weight) that is added to T .

Invariant : F is a forest (without cycle)

At the end
There is only one remaining tree T = (V , ET) in F and it is a minimum
spanning tree.

ST2 – Gif Algorithmics and Complexity 20/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Kruskal algorithm details

At the beginning
The forest F (set of trees) is composed of n isolated vertices (n singleton
trees).

Iteration
Merge two neighbouring trees, connected by a new edge (of minimal
weight) that is added to T .

Invariant : F is a forest (without cycle)

At the end
There is only one remaining tree T = (V , ET) in F and it is a minimum
spanning tree.

ST2 – Gif Algorithmics and Complexity 20/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Forest =⇒ Tree

1
2

3

4 5

6

7

1 2 3 4 5 6 7

3

6

ST2 – Gif Algorithmics and Complexity 21/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Forest =⇒ Tree

1
2

3

4 5

6

7

1 2 3 4 5 7

6

3

6

ST2 – Gif Algorithmics and Complexity 21/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Forest =⇒ Tree

1
2

3

4 5

6

7

2 3 4 5 7

61

3

6

ST2 – Gif Algorithmics and Complexity 21/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Forest =⇒ Tree

1
2

3

4 5

6

7

2 4 5 7

1

3

6

ST2 – Gif Algorithmics and Complexity 21/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Forest =⇒ Tree

1
2

3

4 5

6

7

2 4 5

1

3

6 7

ST2 – Gif Algorithmics and Complexity 21/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Kruskal algorithm
def Kruskal_MST (graph):

max = len(nodes(graph))-1
MST = [] # list of selected edges
forest = {} # set of trees
for v in nodes(graph):

tree = create_tree (v)
forest .add(tree)

cpt = 0
for (u, v) in sort_by_weight(edges(graph)):

if find_tree(u, forest) != find_tree(v, forest):
MST. append ((u, v))
merge_trees(u, v, forest)

cpt = cpt + 1
if cpt == max:

break

return MST

ST2 – Gif Algorithmics and Complexity 22/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Complexity

Kruskal Algorithm (more details later)
The Kruskal algorithm is of complexity O(|E | log |E |)
➜ with |E | ≈ |V |2 we obtain a complexity in O(|V |2 log |V |)

Prim Algorithm
The complexity of Prim’s algorithm is the same as the complexity
of SP (Dijkstra) algorithm:
➜ With |E | ≈ |V | we get a complexity O(|V | log(|V |)) binary heap
➜ With |E | ≈ |V |2 we get a complexity O(|V |2) list

Corollary
An optimal solution of the MST problem can be computed in
polynomial time!

ST2 – Gif Algorithmics and Complexity 23/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Complexity

Kruskal Algorithm (more details later)
The Kruskal algorithm is of complexity O(|E | log |E |)
➜ with |E | ≈ |V |2 we obtain a complexity in O(|V |2 log |V |)

Prim Algorithm
The complexity of Prim’s algorithm is the same as the complexity
of SP (Dijkstra) algorithm:
➜ With |E | ≈ |V | we get a complexity O(|V | log(|V |)) binary heap
➜ With |E | ≈ |V |2 we get a complexity O(|V |2) list

Corollary
An optimal solution of the MST problem can be computed in
polynomial time!

ST2 – Gif Algorithmics and Complexity 23/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Complexity

Kruskal Algorithm (more details later)
The Kruskal algorithm is of complexity O(|E | log |E |)
➜ with |E | ≈ |V |2 we obtain a complexity in O(|V |2 log |V |)

Prim Algorithm
The complexity of Prim’s algorithm is the same as the complexity
of SP (Dijkstra) algorithm:
➜ With |E | ≈ |V | we get a complexity O(|V | log(|V |)) binary heap
➜ With |E | ≈ |V |2 we get a complexity O(|V |2) list

Corollary
An optimal solution of the MST problem can be computed in
polynomial time!

ST2 – Gif Algorithmics and Complexity 23/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Optimality

How can we be certain that Prim’s and Kruskal’s algorithms build
a minimum spanning tree?

Reminder
Greedy algorithm to build a MST T from G = (V , E):

Start with E ′ = ∅
At each step, select a new safe edge (u, v)
➜ E ′ = E ′ ∪ (u, v) must always be a subset of a MST of G
At the end when |E ′| = |V | − 1, we obtain a MST T = (V , ET = E ′)

Definition: cut
➜ A cut is a partition of all vertices in
two non-empty sets S and (V \S)
(disjoint)

S

V \ S

ST2 – Gif Algorithmics and Complexity 24/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Optimality

How can we be certain that Prim’s and Kruskal’s algorithms build
a minimum spanning tree?

Reminder
Greedy algorithm to build a MST T from G = (V , E):

Start with E ′ = ∅
At each step, select a new safe edge (u, v)
➜ E ′ = E ′ ∪ (u, v) must always be a subset of a MST of G
At the end when |E ′| = |V | − 1, we obtain a MST T = (V , ET = E ′)

Definition: cut
➜ A cut is a partition of all vertices in
two non-empty sets S and (V \S)
(disjoint)

S

V \ S

ST2 – Gif Algorithmics and Complexity 24/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Property: safe edge and cut
Definitions
Let us consider S ⊂ V and E ′ ⊆ E . We say that:

an edge crosses the cut (S, V \S) if one of its endpoints is in S and
the other in (V \S)

the cut (S, V \S) respects E ′ if no edge in E ′ crosses the cut

Property of the greedy algorithm
E ′ a subset of a MST T of G E ′ ⊆ ET ⊆ E

(S, V \S) a cut that respects E ′

(u, v) an edge of minimal weight which crosses the cut (S, V \S)

➜ then (u, v) is a safe edge for E ′.
i.e. E ′ ∪ (u, v) will always be a subset of a MST of G

That is exactly what Kruskal and Prim do. . .

ST2 – Gif Algorithmics and Complexity 25/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Property: safe edge and cut
Definitions
Let us consider S ⊂ V and E ′ ⊆ E . We say that:

an edge crosses the cut (S, V \S) if one of its endpoints is in S and
the other in (V \S)

the cut (S, V \S) respects E ′ if no edge in E ′ crosses the cut

Property of the greedy algorithm
E ′ a subset of a MST T of G E ′ ⊆ ET ⊆ E

(S, V \S) a cut that respects E ′

(u, v) an edge of minimal weight which crosses the cut (S, V \S)

➜ then (u, v) is a safe edge for E ′.
i.e. E ′ ∪ (u, v) will always be a subset of a MST of G

That is exactly what Kruskal and Prim do. . .

ST2 – Gif Algorithmics and Complexity 25/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Property: safe edge and cut
Definitions
Let us consider S ⊂ V and E ′ ⊆ E . We say that:

an edge crosses the cut (S, V \S) if one of its endpoints is in S and
the other in (V \S)

the cut (S, V \S) respects E ′ if no edge in E ′ crosses the cut

Property of the greedy algorithm
E ′ a subset of a MST T of G E ′ ⊆ ET ⊆ E

(S, V \S) a cut that respects E ′

(u, v) an edge of minimal weight which crosses the cut (S, V \S)

➜ then (u, v) is a safe edge for E ′.
i.e. E ′ ∪ (u, v) will always be a subset of a MST of G

That is exactly what Kruskal and Prim do. . .

ST2 – Gif Algorithmics and Complexity 25/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Proof Let T be a MST of G = (V , E)

, including
E ′ ⊆ ET ⊆ E
Let (S, V \S), be a cut that respects E ′

Let e be the minimum weight edge that
crosses the cut: suppose that T does not
contain e

We will show that it is possible to build a tree T ′,
including E ′ ∪ {e}

S

V \ S

e

f

Adding e to T implies a cycle (denoted C).
Let f ̸= e be an edge of C between S and V − S.

➜ By definition of e, we have ω(e) ≤ ω(f)
➜ The cut respects E ′, thus f is not in E ′.

Let T ′ be the tree passing through e instead of f ET ′ = (ET \{f }) ∪ {e}.
➜ T ′ is covering
➜ T ′ is minimal Ω(T ′) = Ω(T) − ω(f) + ω(e) ≤ Ω(T)
➜ T ′ includes E ′ ∪ {e} E ′ ∪ {e} ⊆ ET ′

➜ Selecting e with the minimum weight amongst all edges that cross a cut respecting
E ′ always provides a safe edge!

ST2 – Gif Algorithmics and Complexity 26/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Proof Let T be a MST of G = (V , E), including
E ′ ⊆ ET ⊆ E

Let (S, V \S), be a cut that respects E ′

Let e be the minimum weight edge that
crosses the cut: suppose that T does not
contain e

We will show that it is possible to build a tree T ′,
including E ′ ∪ {e}

S

V \ S

e

f

Adding e to T implies a cycle (denoted C).
Let f ̸= e be an edge of C between S and V − S.

➜ By definition of e, we have ω(e) ≤ ω(f)
➜ The cut respects E ′, thus f is not in E ′.

Let T ′ be the tree passing through e instead of f ET ′ = (ET \{f }) ∪ {e}.
➜ T ′ is covering
➜ T ′ is minimal Ω(T ′) = Ω(T) − ω(f) + ω(e) ≤ Ω(T)
➜ T ′ includes E ′ ∪ {e} E ′ ∪ {e} ⊆ ET ′

➜ Selecting e with the minimum weight amongst all edges that cross a cut respecting
E ′ always provides a safe edge!

ST2 – Gif Algorithmics and Complexity 26/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Proof Let T be a MST of G = (V , E), including
E ′ ⊆ ET ⊆ E
Let (S, V \S), be a cut that respects E ′

Let e be the minimum weight edge that
crosses the cut: suppose that T does not
contain e

We will show that it is possible to build a tree T ′,
including E ′ ∪ {e}

S

V \ S

e

f

Adding e to T implies a cycle (denoted C).
Let f ̸= e be an edge of C between S and V − S.

➜ By definition of e, we have ω(e) ≤ ω(f)
➜ The cut respects E ′, thus f is not in E ′.

Let T ′ be the tree passing through e instead of f ET ′ = (ET \{f }) ∪ {e}.
➜ T ′ is covering
➜ T ′ is minimal Ω(T ′) = Ω(T) − ω(f) + ω(e) ≤ Ω(T)
➜ T ′ includes E ′ ∪ {e} E ′ ∪ {e} ⊆ ET ′

➜ Selecting e with the minimum weight amongst all edges that cross a cut respecting
E ′ always provides a safe edge!

ST2 – Gif Algorithmics and Complexity 26/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Proof Let T be a MST of G = (V , E), including
E ′ ⊆ ET ⊆ E
Let (S, V \S), be a cut that respects E ′

Let e be the minimum weight edge that
crosses the cut: suppose that T does not
contain e

We will show that it is possible to build a tree T ′,
including E ′ ∪ {e}

S

V \ S

e

f

Adding e to T implies a cycle (denoted C).
Let f ̸= e be an edge of C between S and V − S.

➜ By definition of e, we have ω(e) ≤ ω(f)
➜ The cut respects E ′, thus f is not in E ′.

Let T ′ be the tree passing through e instead of f ET ′ = (ET \{f }) ∪ {e}.
➜ T ′ is covering
➜ T ′ is minimal Ω(T ′) = Ω(T) − ω(f) + ω(e) ≤ Ω(T)
➜ T ′ includes E ′ ∪ {e} E ′ ∪ {e} ⊆ ET ′

➜ Selecting e with the minimum weight amongst all edges that cross a cut respecting
E ′ always provides a safe edge!

ST2 – Gif Algorithmics and Complexity 26/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Proof Let T be a MST of G = (V , E), including
E ′ ⊆ ET ⊆ E
Let (S, V \S), be a cut that respects E ′

Let e be the minimum weight edge that
crosses the cut: suppose that T does not
contain e

We will show that it is possible to build a tree T ′,
including E ′ ∪ {e}

S

V \ S

e

f

Adding e to T implies a cycle (denoted C).
Let f ̸= e be an edge of C between S and V − S.

➜ By definition of e, we have ω(e) ≤ ω(f)
➜ The cut respects E ′, thus f is not in E ′.

Let T ′ be the tree passing through e instead of f ET ′ = (ET \{f }) ∪ {e}.
➜ T ′ is covering
➜ T ′ is minimal Ω(T ′) = Ω(T) − ω(f) + ω(e) ≤ Ω(T)
➜ T ′ includes E ′ ∪ {e} E ′ ∪ {e} ⊆ ET ′

➜ Selecting e with the minimum weight amongst all edges that cross a cut respecting
E ′ always provides a safe edge!

ST2 – Gif Algorithmics and Complexity 26/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Proof Let T be a MST of G = (V , E), including
E ′ ⊆ ET ⊆ E
Let (S, V \S), be a cut that respects E ′

Let e be the minimum weight edge that
crosses the cut: suppose that T does not
contain e

We will show that it is possible to build a tree T ′,
including E ′ ∪ {e}

S

V \ S

f

e

f

Adding e to T implies a cycle (denoted C).
Let f ̸= e be an edge of C between S and V − S.

➜ By definition of e, we have ω(e) ≤ ω(f)
➜ The cut respects E ′, thus f is not in E ′.

Let T ′ be the tree passing through e instead of f ET ′ = (ET \{f }) ∪ {e}.
➜ T ′ is covering
➜ T ′ is minimal Ω(T ′) = Ω(T) − ω(f) + ω(e) ≤ Ω(T)
➜ T ′ includes E ′ ∪ {e} E ′ ∪ {e} ⊆ ET ′

➜ Selecting e with the minimum weight amongst all edges that cross a cut respecting
E ′ always provides a safe edge!

ST2 – Gif Algorithmics and Complexity 26/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Proof Let T be a MST of G = (V , E), including
E ′ ⊆ ET ⊆ E
Let (S, V \S), be a cut that respects E ′

Let e be the minimum weight edge that
crosses the cut: suppose that T does not
contain e

We will show that it is possible to build a tree T ′,
including E ′ ∪ {e}

S

V \ S

f

e

f

Adding e to T implies a cycle (denoted C).
Let f ̸= e be an edge of C between S and V − S.

➜ By definition of e, we have ω(e) ≤ ω(f)
➜ The cut respects E ′, thus f is not in E ′.

Let T ′ be the tree passing through e instead of f ET ′ = (ET \{f }) ∪ {e}.
➜ T ′ is covering
➜ T ′ is minimal Ω(T ′) = Ω(T) − ω(f) + ω(e) ≤ Ω(T)
➜ T ′ includes E ′ ∪ {e} E ′ ∪ {e} ⊆ ET ′

➜ Selecting e with the minimum weight amongst all edges that cross a cut respecting
E ′ always provides a safe edge!

ST2 – Gif Algorithmics and Complexity 26/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Proof Let T be a MST of G = (V , E), including
E ′ ⊆ ET ⊆ E
Let (S, V \S), be a cut that respects E ′

Let e be the minimum weight edge that
crosses the cut: suppose that T does not
contain e

We will show that it is possible to build a tree T ′,
including E ′ ∪ {e}

S

V \ S

e

f

Adding e to T implies a cycle (denoted C).
Let f ̸= e be an edge of C between S and V − S.

➜ By definition of e, we have ω(e) ≤ ω(f)
➜ The cut respects E ′, thus f is not in E ′.

Let T ′ be the tree passing through e instead of f ET ′ = (ET \{f }) ∪ {e}.
➜ T ′ is covering
➜ T ′ is minimal Ω(T ′) = Ω(T) − ω(f) + ω(e) ≤ Ω(T)
➜ T ′ includes E ′ ∪ {e} E ′ ∪ {e} ⊆ ET ′

➜ Selecting e with the minimum weight amongst all edges that cross a cut respecting
E ′ always provides a safe edge!

ST2 – Gif Algorithmics and Complexity 26/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Proof Let T be a MST of G = (V , E), including
E ′ ⊆ ET ⊆ E
Let (S, V \S), be a cut that respects E ′

Let e be the minimum weight edge that
crosses the cut: suppose that T does not
contain e

We will show that it is possible to build a tree T ′,
including E ′ ∪ {e}

S

V \ S

e

f

Adding e to T implies a cycle (denoted C).
Let f ̸= e be an edge of C between S and V − S.

➜ By definition of e, we have ω(e) ≤ ω(f)
➜ The cut respects E ′, thus f is not in E ′.

Let T ′ be the tree passing through e instead of f ET ′ = (ET \{f }) ∪ {e}.
➜ T ′ is covering
➜ T ′ is minimal Ω(T ′) = Ω(T) − ω(f) + ω(e) ≤ Ω(T)
➜ T ′ includes E ′ ∪ {e} E ′ ∪ {e} ⊆ ET ′

➜ Selecting e with the minimum weight amongst all edges that cross a cut respecting
E ′ always provides a safe edge!

ST2 – Gif Algorithmics and Complexity 26/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion
Greedy approaches Prim algorithm Kruskal algorithm Optimality

Prim and Kruskal
Choice of a safe edge

Prim
Cut: S = set of all vertice that are endpoints of one edge in E ′

Kruskal
Minimal edge → defines the cut!

➜ Cut between the two subgraphs that we will regroup

1

3
4

4
5

5
64

8
5

1

3
4

4
5

5
64

8
5

ST2 – Gif Algorithmics and Complexity 27/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Plan

1 Introduction to the problem

2 Problem solving

3 Implementation of Kruskal algorithm

4 Clustering

5 Conclusion

ST2 – Gif Algorithmics and Complexity 28/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Implementation of Kruskal algorithm

Choosing the data structure
We need to store T and its sub-trees.

Constraints
We have to perform the following operations:

Initialize the data structure (singletons)
For each vertex v , find the set that contains v
Merge two sets

ST2 – Gif Algorithmics and Complexity 29/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Naive approach

Most simple structure
An array Kruskal_tab of n integer values giving the number of
the set that contains the vertex i .

Kruskal_tab = [1,1,1,4,5,1,5]

and we keep the array of selected edges [(3,6),(1,2),...]

Complexity
Initialization : O(|V |)
Find the set containing a vertex
: O(1)
Merge : O(|V |)

1
2

3

4 5

6

7

ST2 – Gif Algorithmics and Complexity 30/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Naive approach

Most simple structure
An array Kruskal_tab of n integer values giving the number of
the set that contains the vertex i .

Kruskal_tab = [1,1,1,4,5,1,5]

and we keep the array of selected edges [(3,6),(1,2),...]

Complexity
Initialization : O(|V |)
Find the set containing a vertex
: O(1)
Merge : O(|V |)

1
2

3

4 5

6

7

ST2 – Gif Algorithmics and Complexity 30/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Union-Find approach

Principle
A data structure to implement a partition with two primitives:

Find the set of the partition containing a given element
Union to merge 2 sets of the partition

2 concrete implementations
Linked lists
Trees

Best complexity : Trees
Initialization : O(|V |)
Find the set containing a vertex : O(log |V |) (the tree height)

Merge : O(log |V |) (to balance the tree)

ST2 – Gif Algorithmics and Complexity 31/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Union-Find approach

Principle
A data structure to implement a partition with two primitives:

Find the set of the partition containing a given element
Union to merge 2 sets of the partition

2 concrete implementations
Linked lists
Trees

Best complexity : Trees
Initialization : O(|V |)
Find the set containing a vertex : O(log |V |) (the tree height)

Merge : O(log |V |) (to balance the tree)

ST2 – Gif Algorithmics and Complexity 31/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Union-Find approach

Principle
A data structure to implement a partition with two primitives:

Find the set of the partition containing a given element
Union to merge 2 sets of the partition

2 concrete implementations
Linked lists
Trees

Best complexity : Trees
Initialization : O(|V |)
Find the set containing a vertex : O(log |V |) (the tree height)

Merge : O(log |V |) (to balance the tree)

ST2 – Gif Algorithmics and Complexity 31/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Complexity of the Kruskal algorithm

total cost
Initial sorting of edges : O(|E | log |E |)

so O(|E | log |V |) as |E | ≤ |V |2

Initializing the T structure: O(|V |)
Find the set containing a vertex called at most 2 × |E | times

With a naive array : O(|E |)
With trees : O(|E | log |V |)

Merge called in the worst case |V | − 1 times
With a naive array : O(|V |2)
With trees : O(|V | log |V |)

ST2 – Gif Algorithmics and Complexity 32/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Plan

1 Introduction to the problem

2 Problem solving

3 Implementation of Kruskal algorithm

4 Clustering

5 Conclusion

ST2 – Gif Algorithmics and Complexity 33/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Motivation for Clustering

Given a set of objects and distances between them.
Objects can be images, web pages, people, documents

Distance function
Increasing distance corresponds to decreasing similarity.

Clustering Goal
Group objects into clusters, where each cluster is a set of similar
objects.

ST2 – Gif Algorithmics and Complexity 34/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Motivation for Clustering

Given a set of objects and distances between them.
Objects can be images, web pages, people, documents

Distance function
Increasing distance corresponds to decreasing similarity.

Clustering Goal
Group objects into clusters, where each cluster is a set of similar
objects.

ST2 – Gif Algorithmics and Complexity 34/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Formalizing the Clustering Problem

Let O be the set of n objects labeled o1, o2, . . . , on.
For every pair oi and oj , we have a positive distance d(oi , oj).

Given a positive integer k, a k-clustering of O is a partition of
O into k non-empty subsets C1, C2, . . . Ck called clusters.
The spacing of a clustering is the smallest distance between
objects in two different clusters:

spacing(C1, C2, . . . Ck) = min{d(a, b), i ̸= j ∧a ∈ Ci ∧b ∈ Cj}

Clustering of Maximum Spacing Problem
Find a k-clustering of O whose spacing is maximum over all
possible k-clusterings.

ST2 – Gif Algorithmics and Complexity 35/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Formalizing the Clustering Problem

Let O be the set of n objects labeled o1, o2, . . . , on.
For every pair oi and oj , we have a positive distance d(oi , oj).
Given a positive integer k, a k-clustering of O is a partition of
O into k non-empty subsets C1, C2, . . . Ck called clusters.

The spacing of a clustering is the smallest distance between
objects in two different clusters:

spacing(C1, C2, . . . Ck) = min{d(a, b), i ̸= j ∧a ∈ Ci ∧b ∈ Cj}

Clustering of Maximum Spacing Problem
Find a k-clustering of O whose spacing is maximum over all
possible k-clusterings.

ST2 – Gif Algorithmics and Complexity 35/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Formalizing the Clustering Problem

Let O be the set of n objects labeled o1, o2, . . . , on.
For every pair oi and oj , we have a positive distance d(oi , oj).
Given a positive integer k, a k-clustering of O is a partition of
O into k non-empty subsets C1, C2, . . . Ck called clusters.
The spacing of a clustering is the smallest distance between
objects in two different clusters:

spacing(C1, C2, . . . Ck) = min{d(a, b), i ̸= j ∧a ∈ Ci ∧b ∈ Cj}

Clustering of Maximum Spacing Problem
Find a k-clustering of O whose spacing is maximum over all
possible k-clusterings.

ST2 – Gif Algorithmics and Complexity 35/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Formalizing the Clustering Problem

Let O be the set of n objects labeled o1, o2, . . . , on.
For every pair oi and oj , we have a positive distance d(oi , oj).
Given a positive integer k, a k-clustering of O is a partition of
O into k non-empty subsets C1, C2, . . . Ck called clusters.
The spacing of a clustering is the smallest distance between
objects in two different clusters:

spacing(C1, C2, . . . Ck) = min{d(a, b), i ̸= j ∧a ∈ Ci ∧b ∈ Cj}

Clustering of Maximum Spacing Problem
Find a k-clustering of O whose spacing is maximum over all
possible k-clusterings.

ST2 – Gif Algorithmics and Complexity 35/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Algorithm for Clustering of Maximum Spacing

Intuition?

Apply Kruskal’s algorithm but do not add last k − 1 edges in MST.

What is the spacing value?
It is the weight of the (k − 1)st most expensive edge in the
MST generated by Kruskal’s algorithm.

ST2 – Gif Algorithmics and Complexity 36/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Algorithm for Clustering of Maximum Spacing

Intuition?

Apply Kruskal’s algorithm but do not add last k − 1 edges in MST.

What is the spacing value?
It is the weight of the (k − 1)st most expensive edge in the
MST generated by Kruskal’s algorithm.

ST2 – Gif Algorithmics and Complexity 36/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Algorithm for Clustering of Maximum Spacing

Intuition?

Apply Kruskal’s algorithm but do not add last k − 1 edges in MST.

What is the spacing value?

It is the weight of the (k − 1)st most expensive edge in the
MST generated by Kruskal’s algorithm.

ST2 – Gif Algorithmics and Complexity 36/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Algorithm for Clustering of Maximum Spacing

Intuition?

Apply Kruskal’s algorithm but do not add last k − 1 edges in MST.

What is the spacing value?
It is the weight of the (k − 1)st most expensive edge in the
MST generated by Kruskal’s algorithm.

ST2 – Gif Algorithmics and Complexity 36/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Clustering Example

Consider a complete graph, weights are the Cartesian distances

ST2 – Gif Algorithmics and Complexity 37/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Clustering Example

The minimum spanning tree : Kruskal Algorithm

ST2 – Gif Algorithmics and Complexity 37/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Clustering Example

2 clusters by dropping the last Kruskal edge

ST2 – Gif Algorithmics and Complexity 37/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Clustering Example

3 clusters by dropping the 2 last Kruskal edges

ST2 – Gif Algorithmics and Complexity 37/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Clustering Example

So on . . .

ST2 – Gif Algorithmics and Complexity 37/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Clustering Example

So on . . .

ST2 – Gif Algorithmics and Complexity 37/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Clustering Example

So on . . .

ST2 – Gif Algorithmics and Complexity 37/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Clustering Example

So on . . .

ST2 – Gif Algorithmics and Complexity 37/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Clustering Example

So on . . .

ST2 – Gif Algorithmics and Complexity 37/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Clustering Example

So on . . .

ST2 – Gif Algorithmics and Complexity 37/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Clustering Example

10 clusters of maximum spacing!

ST2 – Gif Algorithmics and Complexity 37/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

Plan

1 Introduction to the problem

2 Problem solving

3 Implementation of Kruskal algorithm

4 Clustering

5 Conclusion

ST2 – Gif Algorithmics and Complexity 38/39

Introduction to the problem Problem solving Implementation of Kruskal algorithm Clustering Conclusion

To keep in mind

There are efficient algorithms to compute a minimum
spanning tree

Kruskal → adds an edge of minimal weight
Prim → adds the closest neighbor to the current tree

➜ They may not give the same solution. . .
. . . but both are optimal!

Data structure to implement the algorithm
➜ Impact on computing time (time complexity)
➜ Structure of type union-find

Many applications to computing problems (example:
clustering)

ST2 – Gif Algorithmics and Complexity 39/39

	Introduction to the problem
	Practical problem
	Problem modelling
	Definition of the MST problem

	Problem solving
	Greedy approaches
	Prim algorithm
	Kruskal algorithm
	Optimality

	Implementation of Kruskal algorithm
	Clustering
	Conclusion

