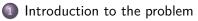


Algorithmics and Complexity Lecture 3/7 : Minimum Spanning Tree

CentraleSupélec – Gif

ST2 - Gif

Plan



- Problem solving
- Implementation of Kruskal algorithm

4 Clustering

Plan

- Introduction to the problem
 - Practical problem
 - Problem modelling
 - Definition of the MST problem

Problem solving

Implementation of Kruskal algorithm

4 Clustering

5 Conclusion

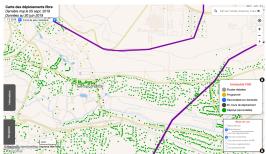
Internet access provider

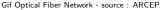
Problem

Connect n sites with optical fiber.

 \rightarrow We know the cost for threading a cable between two sites v_i and $v_j,~i,j\in 1,2,\ldots,n$

(it is not always possible to connect two sites directly).





Internet access provider

Problem

Connect n sites with optical fiber.

 \rightarrow We know the cost for threading a cable between two sites v_i and v_j , $i, j \in 1, 2, ..., n$ (it is not always possible to connect two sites directly).

Goal

Install a new optical network infrastructure at the lowest cost.

Internet access provider

Problem

Connect n sites with optical fiber.

 \rightarrow We know the cost for threading a cable between two sites v_i and v_j , $i, j \in 1, 2, ..., n$ (it is not always possible to connect two sites directly).

Goal

Install a new optical network infrastructure at the lowest cost.

Type of the problem

This is an optimization problem.

$\mathsf{Network} \to \mathsf{graph}$

- $\bullet~\mbox{Sites} \rightarrow \mbox{vertices}$ of an undirected graph
- ${\ensuremath{\, \bullet }}$ Possible connection \rightarrow edge between two vertices
- $\bullet~\mbox{Threading cost} \rightarrow \mbox{weight of the edge}$

$\mathsf{Network} \to \mathsf{graph}$

- $\bullet~\mbox{Sites} \rightarrow \mbox{vertices}$ of an undirected graph
- ${\ \bullet \ }$ Possible connection \rightarrow edge between two vertices
- $\bullet~\mbox{Threading cost} \rightarrow \mbox{weight of the edge}$

Instance of the problem

An undirected graph G with n vertices which is connected and has positive weights.

We consider the weight function $\omega : E \rightarrow]0, +\infty[$

Sub-graph

Let G = (V, E) be a weighted graph. A sub-graph of G is a tuple (V', E') such that:

- $V'\subseteq V$ (no additional nodes)
- $E' \subseteq E$ (no additional edges)
- $E'\subseteq V' imes V'$ (edges between nodes from V')

Sub-graph

Let G = (V, E) be a weighted graph. A sub-graph of G is a tuple (V', E') such that:

- $V'\subseteq V$ (no additional nodes)
- $E' \subseteq E$ (no additional edges)
- $E'\subseteq V' imes V'$ (edges between nodes from V')

Objective?

Find a sub-graph T = (V', E') of G:

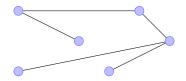
- It has all vertices of G (without all edges)
- It is connected
- The value of the sum of edge weights $\sum_{e \in E'} w(e)$ is minimal.

Some definitions

Tree (recall)

An undirected graph that is connected and acyclic is called a tree.

Example:



Definition: Forest

A forest is a finite set of trees.

Property

Theorem

T, the search sub-graph, is a tree.

Property

Theorem

T, the search sub-graph, is a tree.

proof

Reminder: a tree is a connected and acyclic graph.

 $\ensuremath{\mathcal{T}}$ is a connected undirected graph by definition

Property

Theorem

T, the search sub-graph, is a tree.

proof

Reminder: a tree is a connected and acyclic graph.

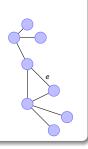
 ${\cal T}$ is a connected undirected graph by definition

Acyclic: proof by contradiction

Assume that T has a cycle. Remove one edge e (anyone) from the cycle and consider T_1 the sub-graph of T that does not contain e.

$$\sum_{a \in E_{\tau_1}} w(a) = \sum_{a \in E_{\tau}} w(a) - w(e)$$

Thus T_1 has a lower cost than T (supposed to be the minimum).



Minimum Spanning Tree (MST)

Data

- G = (V, E) an undirected and connected graph with |V| = n
- $\omega: E \longrightarrow \mathbb{R}^*_+$ the weight function

Goal

Find a tree $T = (V, E_T), E_T \subseteq E$ such that T is a spanning tree and $\sum_{e \in E_T} \omega(e)$ is minimum.

Minimum Spanning Tree (MST)

Data

- G = (V, E) an undirected and connected graph with |V| = n
- $\omega: E \longrightarrow \mathbb{R}^*_+$ the weight function

Goal

Find a tree $T = (V, E_T), E_T \subseteq E$ such that T is a spanning tree and $\sum_{e \in E_T} \omega(e)$ is minimum.

Brute-force approach : enumerate all possible \mathcal{T} and compare their total weight

Complexity : $\mathcal{O}(|\mathcal{F}|)$. Undesirable

Plan

- Problem solving
 - Greedy approaches
 - Prim algorithm
 - Kruskal algorithm
 - Optimality

Implementation of Kruskal algorithm

4 Clustering

5 Conclusion

Greedy Algorithms

Definition

A greedy algorithm is an algorithm that:

• Builds a solution one step at a time;

e.g. Lego construction or line-by-line multiplication

• Makes a choice at each step to optimize a local criteria;

i.e. evaluation of the current situation

• Never revokes a previous choice.

Greedy Algorithms

Definition

A greedy algorithm is an algorithm that:

• Builds a solution one step at a time;

e.g. Lego construction or line-by-line multiplication

• Makes a choice at each step to optimize a local criteria;

i.e. evaluation of the current situation

- Never revokes a previous choice.
- The best solution is chosen locally: no guarantee on finding the global optimum
- No going back: the algorithm goes directly toward a solution.
- Example ?

Greedy Algorithms

Definition

A greedy algorithm is an algorithm that:

- Builds a solution one step at a time;
 - e.g. Lego construction or line-by-line multiplication
- Makes a choice at each step to optimize a local criteria; *i.e. evaluation of the current situation*
- Never revokes a previous choice.
- The best solution is chosen locally: no guarantee on finding the global optimum
- No going back: the algorithm goes directly toward a solution.
- Example : Shortest path
 - local criteria: node of the frontier with minimum distance

Minimum spanning tree : generic approach

Goal

Given
$${\it G}=(V,E)$$
 and $w:E\longrightarrow \mathbb{R}^*_+$

 \rightarrow We must build, step by step, a subset of *E*.

General principle

- We start with $E_T = \emptyset$
- At each step, a new edge (u, v) is chosen such that
 E_T ∪ (u, v) is always a sub-set of a minimum spanning tree of G.
- → We say that (u, v) is a safe edge for E_T

This greedy algorithm reaches a global optimum...

Minimum spanning tree : generic approach

```
General algorithm
```

```
def MST(V,E):
    E_T = []
    while !isSolution(E_T,V,E):
        e = safeEdge(E_T,V,E)
        E_T.append(e)
    return E_T
```


Minimum spanning tree : generic approach

```
General algorithm
```

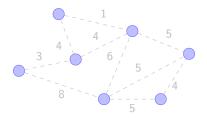
```
def MST(V,E):
    E_T = []
    while !isSolution(E_T,V,E):
        e = safeEdge(E_T,V,E)
        E_T.append(e)
    return E_T
```

How can we find a safe edge?

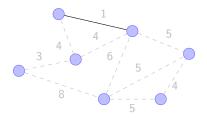
We shall discover it soon...

Let us first discover two algorithms that adopt this schema.

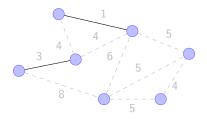
- Initialization: a graph T with all vertices of G but without any edges
- **Iteration:** add to *T* an edge with the minimum weight without creating a cycle
- Stop: after adding n-1 edges



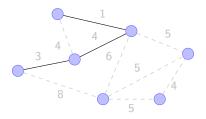
- Initialization: a graph T with all vertices of G but without any edges
- **Iteration:** add to *T* an edge with the minimum weight without creating a cycle
- Stop: after adding n-1 edges



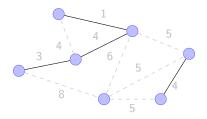
- Initialization: a graph T with all vertices of G but without any edges
- **Iteration:** add to *T* an edge with the minimum weight without creating a cycle
- Stop: after adding n-1 edges



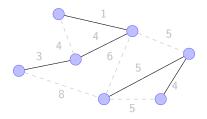
- Initialization: a graph T with all vertices of G but without any edges
- **Iteration:** add to *T* an edge with the minimum weight without creating a cycle
- Stop: after adding n-1 edges



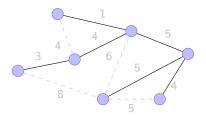
- Initialization: a graph T with all vertices of G but without any edges
- **Iteration:** add to *T* an edge with the minimum weight without creating a cycle
- Stop: after adding n-1 edges



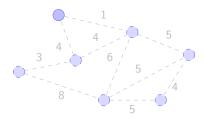
- Initialization: a graph T with all vertices of G but without any edges
- **Iteration:** add to *T* an edge with the minimum weight without creating a cycle
- Stop: after adding n-1 edges



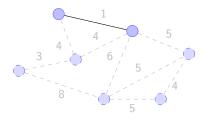
- Initialization: a graph T with all vertices of G but without any edges
- **Iteration:** add to *T* an edge with the minimum weight without creating a cycle
- Stop: after adding n-1 edges



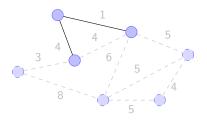
- Initialization: a tree T that contains one vertex from G (anyone)
- **Iteration:** add to *T* an edge with the minimum weight to connect a new node (*i.e.* not already in *T*)
- Stop: after adding n-1 edges



- Initialization: a tree T that contains one vertex from G (anyone)
- **Iteration:** add to *T* an edge with the minimum weight to connect a new node (*i.e.* not already in *T*)
- Stop: after adding n-1 edges



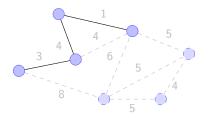
- Initialization: a tree T that contains one vertex from G (anyone)
- **Iteration:** add to *T* an edge with the minimum weight to connect a new node (*i.e.* not already in *T*)
- Stop: after adding n-1 edges



Overview

- Initialization: a tree T that contains one vertex from G (anyone)
- **Iteration:** add to *T* an edge with the minimum weight to connect a new node (*i.e.* not already in *T*)

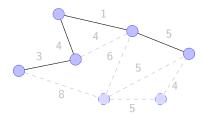
• Stop: after adding n-1 edges



Overview

- Initialization: a tree T that contains one vertex from G (anyone)
- **Iteration:** add to *T* an edge with the minimum weight to connect a new node (*i.e.* not already in *T*)

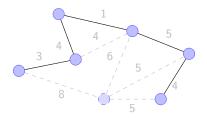
• Stop: after adding n-1 edges



Overview

- Initialization: a tree T that contains one vertex from G (anyone)
- **Iteration:** add to *T* an edge with the minimum weight to connect a new node (*i.e.* not already in *T*)

• Stop: after adding n-1 edges

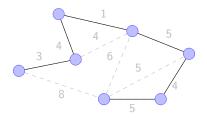


Prim method (1957)

Overview

- Initialization: a tree T that contains one vertex from G (anyone)
- **Iteration:** add to *T* an edge with the minimum weight to connect a new node (*i.e.* not already in *T*)

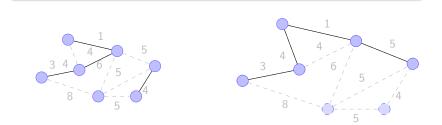
• Stop: after adding n-1 edges



Remarks

Comparison of both approaches

- Kruskal maintains full coverage (forest) and builds up connexity
- Prim maintains T connected (sub-tree) and makes it a covering tree
- Both ensure the absence of cycle



Remarks

Comparison of both approaches

- Kruskal maintains full coverage (forest) and builds up connexity
- Prim maintains T connected (sub-tree) and makes it a covering tree
- Both ensure the absence of cycle
- Both stop n-1 edges. Why?

Remarks

Comparison of both approaches

- Kruskal maintains full coverage (forest) and builds up connexity
- Prim maintains T connected (sub-tree) and makes it a covering tree
- Both ensure the absence of cycle
- Both stop n-1 edges. Why?

Theorem

If T is a graph of n vertices, then the three statements are equivalent:

- T is a tree : acyclic and connected
- T is connected and has n-1 edges
- T is acyclic and has n-1 edges

Prim algorithm details

Principle

Maintain a structure nextnodes containing the remaining nodes while updating their distance to the current tree:

 $dist(x, T) = min\{\omega((x, u)) \mid u \in T\}$

Prim algorithm details

Principle

Maintain a structure nextnodes containing the remaining nodes while updating their distance to the current tree:

$$dist(x, T) = min\{\omega((x, u)) \mid u \in T\}$$

Iteration

- Extract the vertex from nextnodes of minimum distance to the current tree T
- ② Add it to the tree T with the corresponding minimal edge
- Opdate distances of its neighbors

Prim algorithm details

Principle

Maintain a structure nextnodes containing the remaining nodes while updating their distance to the current tree:

$$dist(x, T) = min\{\omega((x, u)) \mid u \in T\}$$

Iteration

- Extract the vertex from nextnodes of minimum distance to the current tree T
- ② Add it to the tree T with the corresponding minimal edge
- Opdate distances of its neighbors
- → It is very similar to SP (BFS)!

Prim algorithm details

Principle

Maintain a structure nextnodes containing the remaining nodes while updating their distance to the current tree:

$$dist(x, T) = min\{\omega((x, u)) \mid u \in T\}$$

Iteration

- Extract the vertex from nextnodes of minimum distance to the current tree T
- ② Add it to the tree T with the corresponding minimal edge
- Opdate distances of its neighbors
- → It is very similar to SP (BFS)!

At the end

nextnodes is empty and T is a minimum spanning tree

Prim algorithm

```
def Prim_MST(graph,s):
    nextnodes = nodes(graph)
    parent = \{\}
    dist = \{\}
    dist[s] = 0
    For the first step, s will always be selected
    while len(nextnodes)>0:
         x = extract_min_dist(nextnodes,dist)
         update the neighbors:
         for y in neighbors(graph, x):
             new_dist = distance(graph, x, y)
              if (y in nextnodes) and \setminus
                     (y not in dist or new_dist < dist[y]):</pre>
                  dist[y] = new_dist
                  parent[y] = x
```

return parent

SP vs Prim

SP

```
def shortest_path(graph,s):
  frontier = [s]
  parent = {}; parent[s] = None
  dist = \{\}: dist[s] = 0
  while len(frontier)>0:
    x = extract_min_dist(frontier,dist)
    for v in neighbors(graph, x):
      if y not in parent:
        frontier.append(y)
      new_dist = dist[x] + \setminus
                  distance(graph,x,v)
      if y not in dist or \
            dist[y] > new_dist:
        dist[y] = new_dist
        parent[y] = x
  return parent
```


SP vs Prim

```
Prim
def Prim_MST(graph,s):
  nextnodes = nodes(graph)
  parent = {}
  dist = \{\}: dist[s] = 0
  while len(nextnodes)>0:
    x = extract_min_dist(nextnodes,dist)
    for v in neighbors(graph, x):
      new_dist = distance(graph,x,y)
      if (y in nextnodes) and \
            (y not in dist or \
           new_dist < dist[y]):</pre>
        dist[y] = new_dist
        parent[y] = x
  return parent
```

SP

```
def shortest_path(graph,s):
  frontier = [s]
  parent = {}; parent[s] = None
  dist = \{\}: dist[s] = 0
  while len(frontier)>0:
    x = extract_min_dist(frontier,dist)
    for v in neighbors(graph, x):
      if y not in parent:
        frontier.append(y)
      new_dist = dist[x] + \setminus
                  distance(graph,x,v)
      if y not in dist or \
            dist[v] > new dist:
        dist[y] = new_dist
        parent[y] = x
  return parent
```

The difference comes from the storage in the queue

- BFS: elements ordered by number of edges from s
- SP: elements ordered by distance to s
- Prim: elements ordered by distance to the tree under construction

Kruskal algorithm details

At the beginning

The forest F (set of trees) is composed of n isolated vertices (n singleton trees).

Kruskal algorithm details

At the beginning

The forest F (set of trees) is composed of n isolated vertices (n singleton trees).

Iteration

Merge two neighbouring trees, connected by a new edge (of minimal weight) that is added to T.

Invariant : *F* is a forest (without cycle)

Kruskal algorithm details

At the beginning

The forest F (set of trees) is composed of n isolated vertices (n singleton trees).

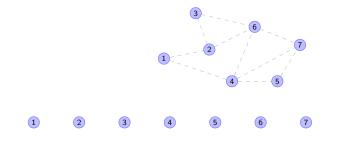
Iteration

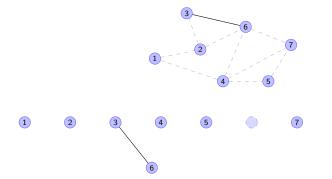
Merge two neighbouring trees, connected by a new edge (of minimal weight) that is added to T.

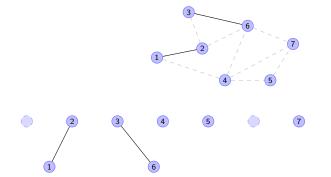
Invariant : *F* is a forest (without cycle)

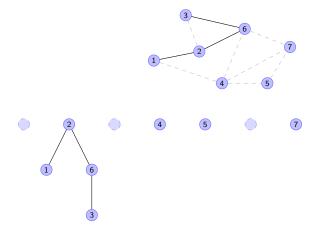
At the end

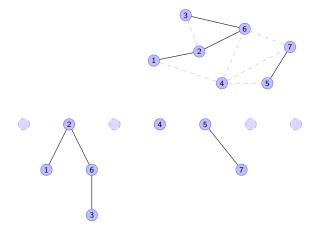
There is only one remaining tree $T = (V, E_T)$ in F and it is a minimum spanning tree.











Kruskal algorithm

```
def Kruskal_MST(graph):
    max = len(nodes(graph))-1
    MST = []
                          # list of selected edges
    forest = {}
                            # set of trees
    for v in nodes(graph):
         tree = create tree(v)
         forest.add(tree)
    cpt = 0
    for (u, v) in sort_by_weight(edges(graph)):
        if find_tree(u, forest) != find_tree(v, forest):
             MST.append((u, v))
            merge_trees(u, v, forest)
             cpt = cpt + 1
             if cpt == max:
                 break
```


Complexity

Kruskal Algorithm

(more details later)

The Kruskal algorithm is of complexity $\mathcal{O}(|E| \log |E|)$ \Rightarrow with $|E| \approx |V|^2$ we obtain a complexity in $\mathcal{O}(|V|^2 \log |V|)$

Complexity

Kruskal Algorithm (more details later) The Kruskal algorithm is of complexity $\mathcal{O}(|E| \log |E|)$ \Rightarrow with $|E| \approx |V|^2$ we obtain a complexity in $\mathcal{O}(|V|^2 \log |V|)$

Prim Algorithm

The complexity of Prim's algorithm is the same as the complexity of SP (Dijkstra) algorithm:

→ With
$$|E| \approx |V|$$
 we get a complexity $O(|V| \log(|V|))$ binary heap

→ With $|E| \approx |V|^2$ we get a complexity $\mathcal{O}(|V|^2)$

list

Complexity

Kruskal Algorithm (more details later) The Kruskal algorithm is of complexity $\mathcal{O}(|E| \log |E|)$ \rightarrow with $|E| \approx |V|^2$ we obtain a complexity in $\mathcal{O}(|V|^2 \log |V|)$

Prim Algorithm

The complexity of Prim's algorithm is the same as the complexity of SP (Dijkstra) algorithm:

→ With
$$|E| \approx |V|$$
 we get a complexity $O(|V| \log(|V|))$ binary heap

→ With $|E| \approx |V|^2$ we get a complexity $\mathcal{O}(|V|^2)$

list

Corollary

An optimal solution of the MST problem can be computed in polynomial time!

Optimality

How can we be certain that Prim's and Kruskal's algorithms build a minimum spanning tree?

Reminder

Greedy algorithm to build a MST T from G = (V, E):

- Start with $E' = \emptyset$
- At each step, select a new safe edge (u, v)
 → E' = E' ∪ (u, v) must always be a subset of a MST of G
- At the end when |E'| = |V| 1, we obtain a MST $T = (V, E_T = E')$

Optimality

How can we be certain that Prim's and Kruskal's algorithms build a minimum spanning tree?

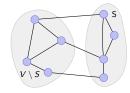
Reminder

Greedy algorithm to build a MST T from G = (V, E):

- Start with $E' = \emptyset$
- At each step, select a new safe edge (u, v)
 → E' = E' ∪ (u, v) must always be a subset of a MST of G
- At the end when |E'| = |V| 1, we obtain a MST $T = (V, E_T = E')$

Definition: cut

→ A cut is a partition of all vertices in two non-empty sets S and $(V \setminus S)$ (disjoint)



Property: safe edge and cut

Definitions

Let us consider $S \subset V$ and $E' \subseteq E$. We say that:

- an edge crosses the cut $(S, V \setminus S)$ if one of its endpoints is in S and the other in $(V \setminus S)$
- the cut $(S, V \setminus S)$ respects E' if no edge in E' crosses the cut

Property: safe edge and cut

Definitions

Let us consider $S \subset V$ and $E' \subseteq E$. We say that:

- an edge crosses the cut $(S, V \setminus S)$ if one of its endpoints is in S and the other in $(V \setminus S)$
- the cut $(S, V \setminus S)$ respects E' if no edge in E' crosses the cut

Property of the greedy algorithm

- E' a subset of a MST T of G
- $(S, V \setminus S)$ a cut that respects E'
- (u, v) an edge of minimal weight which crosses the cut $(S, V \setminus S)$
- → then (u, v) is a safe edge for E'.

i.e. $E' \cup (u, v)$ will always be a subset of a MST of G

 $E' \subset E_T \subset E$

Property: safe edge and cut

Definitions

Let us consider $S \subset V$ and $E' \subseteq E$. We say that:

- an edge crosses the cut $(S, V \setminus S)$ if one of its endpoints is in S and the other in $(V \setminus S)$
- the cut $(S, V \setminus S)$ respects E' if no edge in E' crosses the cut

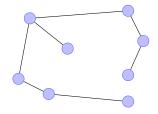
Property of the greedy algorithm

- E' a subset of a MST T of G
- $(S, V \setminus S)$ a cut that respects E'
- (u, v) an edge of minimal weight which crosses the cut $(S, V \setminus S)$
- → then (u, v) is a safe edge for E'.

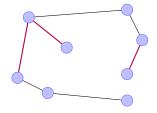
i.e. $E' \cup (u, v)$ will always be a subset of a MST of G

 $E' \subset E_T \subset E$

Proof • Let T be a MST of G = (V, E)

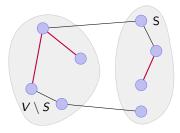


Proof • Let T be a MST of G = (V, E), including $E' \subseteq E_T \subseteq E$



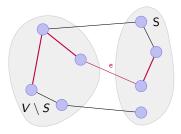
Proof 🖕

- Let T be a MST of G = (V, E), including $E' \subseteq E_T \subseteq E$
 - Let $(S, V \setminus S)$, be a cut that respects E'



Proof 🖕

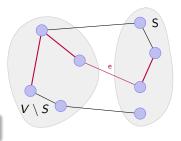
- Let T be a MST of G = (V, E), including $E' \subseteq E_T \subseteq E$
- Let $(S, V \setminus S)$, be a cut that respects E'
- Let *e* be the minimum weight edge that crosses the cut: suppose that *T* does not contain *e*



Proof

- Let T be a MST of G = (V, E), including $E' \subseteq E_T \subseteq E$
- Let $(S, V \setminus S)$, be a cut that respects E'
- Let *e* be the minimum weight edge that crosses the cut: suppose that *T* does not contain *e*

We will show that it is possible to build a tree $\mathcal{T}',$ including $\frac{\mathbf{E}'}{\mathbf{E}}\cup\{e\}$



Proof

- Let T be a MST of G = (V, E), including $E' \subseteq E_T \subseteq E$
- Let $(S, V \setminus S)$, be a cut that respects E'
- Let *e* be the minimum weight edge that crosses the cut: suppose that *T* does not contain *e*

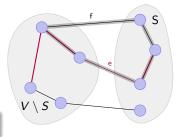
We will show that it is possible to build a tree $\mathcal{T}',$ including $\frac{\mathcal{E}'}{\mathcal{E}}\cup\{e\}$

- f V\S
- Adding e to T implies a cycle (denoted C).
- Let $f \neq e$ be an edge of C between S and V S.

Proof

- Let T be a MST of G = (V, E), including $E' \subseteq E_T \subseteq E$
- Let $(S, V \setminus S)$, be a cut that respects E'
- Let *e* be the minimum weight edge that crosses the cut: suppose that *T* does not contain *e*

```
We will show that it is possible to build a tree \mathcal{T}', including \frac{\mathbf{E}'}{\mathbf{E}}\cup\{e\}
```

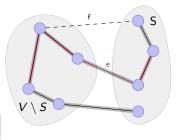


- Adding e to T implies a cycle (denoted C).
- Let $f \neq e$ be an edge of C between S and V S.
- → By definition of *e*, we have $\omega(e) \leq \omega(f)$
- → The cut respects E', thus f is not in E'.

Proof

- Let T be a MST of G = (V, E), including $E' \subseteq E_T \subseteq E$
- Let $(S, V \setminus S)$, be a cut that respects E'
- Let *e* be the minimum weight edge that crosses the cut: suppose that *T* does not contain *e*

```
We will show that it is possible to build a tree \mathcal{T}', including \underline{E}' \cup \{e\}
```



- Adding e to T implies a cycle (denoted C).
- Let $f \neq e$ be an edge of C between S and V S.
- → By definition of *e*, we have $\omega(e) \le \omega(f)$
- → The cut respects E', thus f is not in E'.
- Let T' be the tree passing through e instead of f
 - → T' is covering
 - → T' is minimal
 - → T' includes $E' \cup \{e\}$

 $E_{T'} = (E_T \setminus \{f\}) \cup \{e\}.$

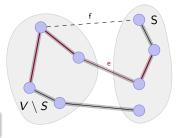
$$\Omega(T') = \Omega(T) - \omega(f) + \omega(e) \le \Omega(T)$$
$$\frac{E' \cup \{e\} \subseteq E_{T'}$$

Introduction to the problem **Problem solving** Implementation of Kruskal algorithm Clustering Conclusion Greedy approaches Prim algorithm Kruskal algorithm **Optimality**

Proof

- Let T be a MST of G = (V, E), including $E' \subseteq E_T \subseteq E$
- Let $(S, V \setminus S)$, be a cut that respects E'
- Let *e* be the minimum weight edge that crosses the cut: suppose that *T* does not contain *e*

```
We will show that it is possible to build a tree \mathcal{T}', including \underline{E}' \cup \{e\}
```



- Adding e to T implies a cycle (denoted C).
- Let $f \neq e$ be an edge of C between S and V S.
- → By definition of *e*, we have $\omega(e) \leq \omega(f)$
- → The cut respects E', thus f is not in E'.
- Let T' be the tree passing through e instead of f
 - → T' is covering
 - → T' is minimal
 - → T' includes $E' \cup \{e\}$

 $E_{T'} = (E_T \setminus \{f\}) \cup \{e\}.$

 $\Omega(T') = \Omega(T) - \omega(f) + \omega(e) \le \Omega(T)$ $E' \cup \{e\} \subseteq E_{T'}$

→ Selecting *e* with the minimum weight amongst all edges that cross a cut respecting E' always provides a safe edge!

Prim and Kruskal

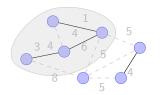
Choice of a safe edge

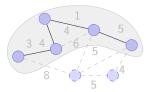
Prim

• Cut: S = set of all vertice that are endpoints of one edge in E'

Kruskal

- $\bullet \ \ \mbox{Minimal edge} \rightarrow \mbox{defines the cut!}$
- → Cut between the two subgraphs that we will regroup





Plan

2 Problem solving

Implementation of Kruskal algorithm

4 Clustering

5 Conclusion

Implementation of Kruskal algorithm

Choosing the data structure We need to store T and its sub-trees.

Constraints

We have to perform the following operations:

- Initialize the data structure (singletons)
- For each vertex v, find the set that contains v
- Merge two sets

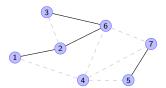
Naive approach

Most simple structure

An array Kruskal_tab of n integer values giving the number of the set that contains the vertex i.

```
Kruskal_tab = [1,1,1,4,5,1,5]
```

and we keep the array of selected edges $\left[\left(3,6\right),\left(1,2\right),\ldots\right]$



Naive approach

Most simple structure

An array Kruskal_tab of n integer values giving the number of the set that contains the vertex i.

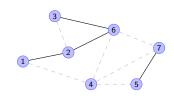
```
Kruskal_tab = [1,1,1,4,5,1,5]
```

and we keep the array of selected edges $[(3,6),(1,2),\ldots]$

Complexity

- Initialization : $\mathcal{O}(|V|)$
- Find the set containing a vertex
 : O(1)

• Merge : O(|V|)



Union-Find approach

Principle

A data structure to implement a partition with two primitives:

- Find the set of the partition containing a given element
- Union to merge 2 sets of the partition

Union-Find approach

Principle

A data structure to implement a partition with two primitives:

- Find the set of the partition containing a given element
- Union to merge 2 sets of the partition

2 concrete implementations

- Linked lists
- Trees

Union-Find approach

Principle

A data structure to implement a partition with two primitives:

- Find the set of the partition containing a given element
- Union to merge 2 sets of the partition

2 concrete implementations

- Linked lists
- Trees

Best complexity : Trees

- Initialization : $\mathcal{O}(|V|)$
- Find the set containing a vertex : $\mathcal{O}(\log |V|)$ (the tree height)
- Merge : $\mathcal{O}(\log |V|)$ (to balance the tree)

Complexity of the Kruskal algorithm

total cost

- Initial sorting of edges : $\mathcal{O}(|E| \log |E|)$ so $\mathcal{O}(|E| \log |V|)$ as $|E| \le |V|^2$
- Initializing the T structure: $\mathcal{O}(|V|)$
- Find the set containing a vertex called at most $2 \times |E|$ times
 - With a naive array : $\mathcal{O}(|E|)$
 - With trees : $\mathcal{O}(|E| \log |V|)$
- ullet Merge called in the worst case |V|-1 times
 - With a naive array : $\mathcal{O}(|V|^2)$
 - With trees : $\mathcal{O}(|V| \log |V|)$

Plan

- 2 Problem solving
- Implementation of Kruskal algorithm

5 Conclusion

Motivation for Clustering

- Given a set of objects and distances between them.
 - Objects can be images, web pages, people, documents
- Distance function
 - Increasing distance corresponds to decreasing similarity.

Motivation for Clustering

- Given a set of objects and distances between them.
 - Objects can be images, web pages, people, documents
- Distance function
 - Increasing distance corresponds to decreasing similarity.

Clustering Goal

Group objects into clusters, where each cluster is a set of similar objects.

- Let O be the set of n objects labeled o_1, o_2, \ldots, o_n .
- For every pair o_i and o_j , we have a positive distance $d(o_i, o_j)$.

- Let O be the set of n objects labeled o_1, o_2, \ldots, o_n .
- For every pair o_i and o_j , we have a positive distance $d(o_i, o_j)$.
- Given a positive integer k, a k-clustering of O is a partition of O into k non-empty subsets C₁, C₂,... C_k called clusters.

- Let O be the set of n objects labeled o_1, o_2, \ldots, o_n .
- For every pair o_i and o_j , we have a positive distance $d(o_i, o_j)$.
- Given a positive integer k, a k-clustering of O is a partition of O into k non-empty subsets C₁, C₂,... C_k called clusters.
- The spacing of a clustering is the smallest distance between objects in two different clusters:

 $\operatorname{spacing}(C_1, C_2, \dots, C_k) = \min\{d(a, b), i \neq j \land a \in C_i \land b \in C_j\}$

- Let O be the set of n objects labeled o_1, o_2, \ldots, o_n .
- For every pair o_i and o_j , we have a positive distance $d(o_i, o_j)$.
- Given a positive integer k, a k-clustering of O is a partition of O into k non-empty subsets C₁, C₂,... C_k called clusters.
- The spacing of a clustering is the smallest distance between objects in two different clusters:

 $\operatorname{spacing}(C_1, C_2, \dots, C_k) = \min\{d(a, b), i \neq j \land a \in C_i \land b \in C_j\}$

Clustering of Maximum Spacing Problem

Find a k-clustering of O whose spacing is maximum over all possible k-clusterings.

Intuition?

Intuition?

Apply Kruskal's algorithm but do not add last k-1 edges in MST.

Intuition?

Apply Kruskal's algorithm but do not add last k-1 edges in MST.

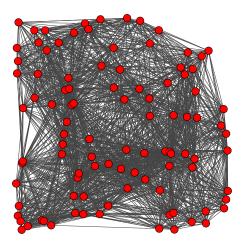
• What is the spacing value?

Intuition?

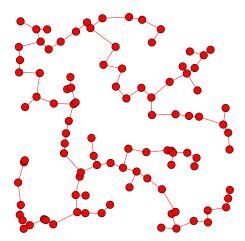
Apply Kruskal's algorithm but do not add last k - 1 edges in MST.

- What is the spacing value?
 - It is the weight of the $(k-1)^{st}$ most expensive edge in the MST generated by Kruskal's algorithm.

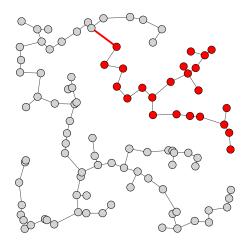
Consider a complete graph, weights are the Cartesian distances



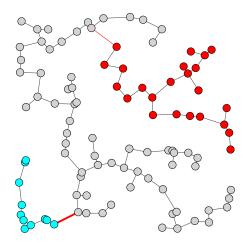
The minimum spanning tree : Kruskal Algorithm

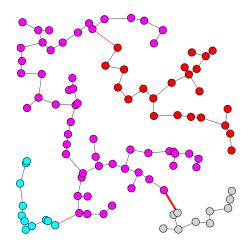


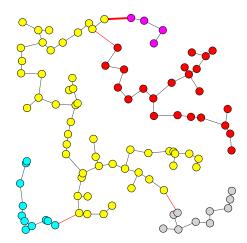
2 clusters by dropping the last Kruskal edge

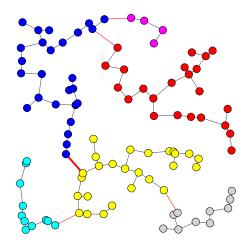


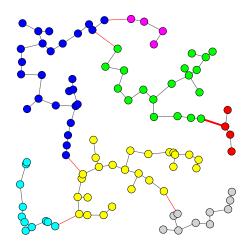
3 clusters by dropping the 2 last Kruskal edges

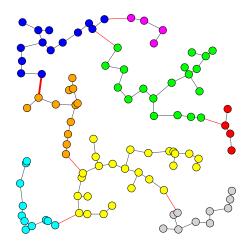


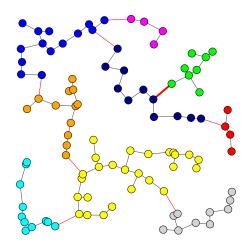




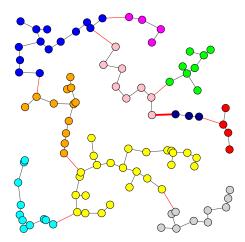








10 clusters of maximum spacing!



Plan

- 2 Problem solving
- Implementation of Kruskal algorithm

4 Clustering

5 Conclusion

To keep in mind

- There are efficient algorithms to compute a minimum spanning tree
 - $\bullet~{\rm Kruskal} \to {\rm adds}$ an edge of minimal weight
 - $\bullet~\mbox{Prim}$ \rightarrow adds the closest neighbor to the current tree
 - → They may not give the same solution...
 - ... but both are optimal!
- Data structure to implement the algorithm
 - → Impact on computing time (time complexity)
 - → Structure of type union-find
- Many applications to computing problems (example: *clustering*)