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The telecommunication operator problem

Context

An operator of a telecommunication network manages its own
infrastructure and knows the throughput capacity of each link. He
receives remuneration from other operators transiting by its
network between the source router s and the target router t , s ̸= t

Objective ?

Compute the maximum throughput of the network infrastructure
between the entry point s and the exit point t .

Nature of the problem ?

It is an optimization problem
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Maximum flow

There are many real-world applications of the problem :

What is the maximum flow transiting through a hydraulic
network of pipes ?

Goods have to be delivered through a network of roads each
of which having a maximum capacity of goods that can flow
through it. The problem is to find if there is a circulation that
satisfies the demand ?

The enemy transports the steel produced in a location s to a
tank manufacture in t with a railway network. What is the
minimum number of railway links to destroy in order to stop
the tanks production ?

etc.
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Example Problem

Flow graph example : capacities
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Example Problem

Flow graph example : flows
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Example Problem

Flow graph example : flow–capacity rule
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Capacity : ∀u, v ∈ V × V 0 ≤ f (u, v) ≤ c(u, v)
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Example Problem

Flow graph example : flow conservation
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Conservation law : ∀u ∈ V \ {s, t}
∑
v∈V

f (u, v) =
∑
v∈V

f (v , u)
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Example Problem

Flow graph example : current flow
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Current flow : |f | =
∑
u∈V

f (s, u) =
∑
u∈V

f (u, t)

What is the maximum flow ?
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Example Problem

Problem definition

Flow graph

A directed graph G = (V ,E )

2 vertices s ∈ V : source and t ∈ V : terminal

A capacity function c : E −→ R+

More definitions

We call flow a function f : V × V −→ R such that :

capacity constraint :

∀(u, v) ∈ E 0 ≤ f (u, v) ≤ c(u, v)

flow conservation constraint :

∀u ∈ V \ {s, t}
∑
v∈V

f (u, v) =
∑
v∈V

f (v , u)

We set that f (u, v) = 0 when (u, v) ̸∈ E
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Example Problem

Problem definition II

Flow value

We call flow value of f and we denote

|f | =
∑
v∈V

f (s, v) =
∑
v∈V

f (v , t)

the quantity that flows out of the source. It is also the quantity
that flows in the terminal.

The maximum flow problem is about finding the maximum
possible value |f | for an f flow.
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Example Problem

Simplifying hypothesis

For the sake of simplicity, we request the following :

1 each vertex is on a path between s and t

∀v ∈ V s ⇝ v ⇝ t

2 all capacities are strictly positive :

(u, v) ∈ E ⇐⇒ c(u, v) ̸= 0

3 no loop on a vertex :
(u, u) /∈ E

4 we forbid (u, v) ∈ E and (v , u) ∈ E simultaneously

5 to simplify : no edge pointing to s or out of t

∀u ∈ V (u, s) /∈ E et (t, u) /∈ E

ST2 – Gif Algorithmics and Complexity 13/44
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Ford-Fulkerson method (1962)

General idea

Iterative algorithm

➜ Increase the flow step by step, until the flow is saturating the
graph

Relies on residual capacities and augmenting paths

ST2 – Gif Algorithmics and Complexity 15/44
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Residual capacity
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Residual capacity

What we can still push along an edge

but also what we can cancel in the reverse direction

to keep it simple : no cancelling towards s or from t
(justification later on).

ST2 – Gif Algorithmics and Complexity 16/44



Real-world problem Problem modeling Ford-Fulkerson Other applications Conclusion

Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Residual capacity

s

r1

r2

r3

r4

t

11
/1
6

8/13

12/12

1/
4

4/
9

11/14

15/20

7/
7

4/
4

Residual capacity

What we can still push along an edge

but also what we can cancel in the reverse direction

to keep it simple : no cancelling towards s or from t
(justification later on).

ST2 – Gif Algorithmics and Complexity 16/44



Real-world problem Problem modeling Ford-Fulkerson Other applications Conclusion

Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Residual capacity

s

r1

r2

r3

r4

t

11
/1
65

8/13

12/12

1/
4

4/
9

11/14

15/20

7/
7

4/
4

Residual capacity

What we can still push along an edge

but also what we can cancel in the reverse direction

to keep it simple : no cancelling towards s or from t
(justification later on).

ST2 – Gif Algorithmics and Complexity 16/44



Real-world problem Problem modeling Ford-Fulkerson Other applications Conclusion

Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Residual capacity

s

r1

r2

r3

r4

t

11
/1
65

8/13

12/12

1/
4

4/
9

11/14

15/20

7/
7

4/
4

Residual capacity

What we can still push along an edge

but also what we can cancel in the reverse direction

to keep it simple : no cancelling towards s or from t
(justification later on).

ST2 – Gif Algorithmics and Complexity 16/44



Real-world problem Problem modeling Ford-Fulkerson Other applications Conclusion

Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Residual capacity

s

r1

r2

r3

r4

t

11
/1
65

8/13

12/12

1/
4

4/
9

11/14

15/20

7/
7

4/
4

Sa
tu
ra
te
d
ed
ge

Residual capacity

What we can still push along an edge

but also what we can cancel in the reverse direction

to keep it simple : no cancelling towards s or from t
(justification later on).

ST2 – Gif Algorithmics and Complexity 16/44



Real-world problem Problem modeling Ford-Fulkerson Other applications Conclusion

Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Residual capacity

s

r1

r2

r3

r4

t

11
/1
65

8/13

12/12

1/
4

4/
9

11/14

15/20

7/
7

4/
4

Sa
tu
ra
te
d
ed
ge

Residual capacity

What we can still push along an edge

but also what we can cancel in the reverse direction

to keep it simple : no cancelling towards s or from t
(justification later on).

ST2 – Gif Algorithmics and Complexity 16/44



Real-world problem Problem modeling Ford-Fulkerson Other applications Conclusion

Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Residual capacity

s

r1

r2

r3

r4

t

11
/1
65

8/13

12/12

1/
4

4/
9

4

5

11/14

15/20

7/
7

4/
4

Sa
tu
ra
te
d
ed
ge

Residual capacity

What we can still push along an edge

but also what we can cancel in the reverse direction

to keep it simple : no cancelling towards s or from t
(justification later on).

ST2 – Gif Algorithmics and Complexity 16/44



Real-world problem Problem modeling Ford-Fulkerson Other applications Conclusion

Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Augmenting path (main idea)
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Augmentanting path

➜ ≪ simple path ≫ from s to t with residual capacities
edges taken forward or backward. . .
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Ford-Fulkerson method (1962)

Main idea

Iterative algorithm :

➜ Augment the flow gradually until it is saturated

Sketch of the algorithm
1 Find an augmenting path with residual capacities between s and t

by some not yet specified method. . .

2 Augment as much as possible the flow along this path

3 Repeat until you cannot augment the flow anymore

➜ How to implement this algorithm ?

ST2 – Gif Algorithmics and Complexity 18/44
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Definition of residual graph
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Residual graph

Graph induced by residual capacities
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Augmenting path : example
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Augmenting path

An augmenting path is a path between s and t in the residual
graph

➜ The flow can be augmented by the value of the minimum residual capacity

on an augmenting path
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Definitions

Residual capacity

The residual capacity along (u, v) is the value of supplementary
flow that can be sent from u to v , either directly or by cancelling
flow in the reverse direction :

cf (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E

f (v , u) if (v , u) ∈ E

0 else.

Residual graph

The residual graph of G induced by f is the graph Gf = (V ,Ef )
where :

Ef = {(u, v) ∈ V × V | cf (u, v) > 0}.
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Definitions

Augmentanting path

An augmentanting path in G is a path between s and t in the
residual graph of G induced by f .

Residual capacity of a path

The residual capacity of an augmenting path p is the maximum
value by which we can augment the flow along this p path :

cf (p) = min{cf (u, v) | (u, v) ∈ p}

While augmenting :

The flow is modified only along the path under consideration,

the conservation law is kept valid.
The sum of in-flows is equal to the sum of out-flows.
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Ford-Fulkerson method (1962)
General idea

def FordFulkerson(G, s, t):

# initialize Gr with G and f with 0

Gr, f = ...

while True:

# find an augmenting path

aug_path = search_aug_path(Gr, s, t)

if not aug_path :

break

# compute the residual capacity for this path

aug_flow = cf_path(Gr , aug_path)

# update flow and residual graph

Gr, f = update_flow_graph(Gr, f, aug_path , aug_flow)

return f
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation
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Ford-Fulkerson and flow augmentation

Theorem

Let f be a flow in a flow graph G .

Let cf (p) be the residual capacity of an augmenting path p in
the residual graph Gf induced by f on G .

➜ The new flow f ′ = f + cf (p) computed by adding cf (p) along
p in f is also a flow on G and |f ′| > |f |

Ford-Fulkerson does actually augment repeatedly the flow,

why does Ford-Fulkerson converge towards the maximum
flow ?
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Cut in a flow graph

Definition

An s–t cut is a partition of V in S and T = V \ S such that s ∈ S
and t ∈ T = V \ S .

Its capacity is

c(S ,T ) =
∑
u∈S

∑
v∈T

c(u, v).

The net flow across this cut is

f (S ,T ) =
∑
u∈S

∑
v∈T

f (u, v)−
∑
u∈T

∑
v∈S

f (u, v).
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How to compute the value of the flow on G ?

Definition and theorem

The value |f | of the flow in G is equal to f (S ,T ) for any s–t cut.

→ It can be proved that it is always the same !

Hint : if you move one vertex from S to T , this won’t change the flow. . .

Two special s–t cuts

S = {s} (value at the source)

S = V \ {t} (value at the terminal)
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Some observations

The flow value is bounded by any cut capacity :

|f | ≤ c(S ,T )

Definition

An arc (u, v) ∈ E is said to be saturated if f (u, v) = c(u, v).

By extension, an s–t cut is saturated if |f | = c(S ,T ).
(The flow is equal to the cut capacity)

Definition

A minimum cut is a cut of minimum capacity among all the cuts.

Corollary : A saturated cut is a minimum cut.
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Main theorem : max flow ⇔ min cut ⇔ no augmenting path

Theorem

The three propositions below are equivalent :

1 The flow |f | between s and t is maximum.

2 There is no augmenting path.

3 There exists an s–t cut whose capacity is equal to |f |.

Demonstration
1 3 ⇒ 1 : cut=flow ⇒ max-flow

2 1 ⇒ 2 : max-flow ⇒ no augmenting path

3 2 ⇒ 3 : no augmenting path ⇒ cut=flow

skip proof
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3 ⇒ 1 : min-cut and flow-max

By flow definition (∀e, f (e) ≤ c(e)) and by cut capacity
definition (capacities sum), the flow value is bounded by the
cut capacity :

|f | ≤ c(S ,T )

→ This holds for all cuts. . .

If c(S ,T ) = |f | (3) then necessarily :

|f | is maximum (1)
c(S ,T ) is minimum

We showed :

3 ⇒ 1

but also : 3 ⇒ the cut is minimum
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1 ⇒ 2 : max-flow and no augmenting path

Proof by contraposition

If there exists an augmenting path. . .

. . . then we can augment the flow (hence it was not maximum)

By contraposition, max-flow (1) ⇒ no augmenting path (2)
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2 ⇒ 3 : no augmenting path and min-cut

Proof (1956)

Proof given at the same time by Ford and Fulkerson and by Elias, Feinstein and

Shannon

Let |f | be the value of a flow with no augmenting path.

Let S be the set of vertices reachable from s by following
augmenting paths

s ∈ S (by definition) and t /∈ S
(because there is no augmenting path reaching t)

So we have an s–t cut with net flow :
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Proof (1956)

Proof given at the same time by Ford and Fulkerson and by Elias, Feinstein and

Shannon

Let |f | be the value of a flow with no augmenting path.

Let S be the set of vertices reachable from s by following
augmenting paths

s ∈ S (by definition) and t /∈ S
(because there is no augmenting path reaching t)

So we have an s–t cut with net flow :

f (S ,T ) =
∑

u∈S ,v∈T
c(u, v)−

∑
u∈T ,v∈S

f (u, v)

(the outgoing arcs are saturated, else we could reach T)
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0

(The flow coming from T is null, else we could cancel it)
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(because there is no augmenting path reaching t)

So we have an s–t cut with net flow :

f (S ,T ) =
∑

u∈S ,v∈T
c(u, v)

⇒ flow value = cut capacity ■
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Ford-Fulkerson algorithm in Python

def FordFulkerson(G, s, t):

# initialisze Gr and f

...

while True:

# find an augmenting path

aug_path = search_aug_path(Gr, s, t)

if aug_path == None:

break

# compute the residual capacity of the path

aug_flow = cf_path(Gr , aug_path)

for k in range(len(aug_path )-1):

u, v = aug_path[k], aug_path[k+1]

# update flow and residual graph

# along the augmenting path

if v in neighbours(G, u) :

f[u][v] += aug_flow

cf[u][v], cf[v][u] = c[u][v] - f[u][v], f[u][v]

else :

f[v][u] -= aug_flow

cf[v][u], cf[u][v] = c[v][u] - f[v][u], f[v][u]
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Searching an augmenting path in Python

def search_aug_path(Gr,s,t):

lnext = [s]

parent = {s:None}

while len(lnext)>0:

n = pop_end(lnext) # DFS or pop_begin for BFS

if n==t:

return path(parent , t) # returns the augmenting path

for v in neighbours(Gr, n):

if not v in parent:

add_end(v,lnext)

parent[v] = n

return None # no augmenting path

N.B. Classical F-F is using DFS, but you are free to choose another
method to find an augmenting path. For example, Edmonds and Karp
suggest to use BFS.
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Complexity and convergence of the Ford-Fulkerson algorithm

Assume that c : E −→ N
DFS is in O(|V |+ |E |).

F-F algorithm complexity

: O((|V |+ |E |)× |f |max)

depends on the value of the answer |f |max ∈ N
and when |f |max >> |V |, for example : |f |max ≈ 2|V | ! !

Assume that c : E −→ Q
F-F algorithm complexity is in O((|V |+ |E |)× |f |max × d) ! where d
is the common denominator

Assume that c : E −→ R
it may happen that F-F never terminates !

augmenting paths with smaller and smaller residual capacities

safe for a computer ! (see implementation exercise in TD3)
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Idea Residual graph Example Augmentating the flow Flow and cut Max-Flow-Min-Cut Implementation

Alternatives

Algorithms whose complexity does not depend on |f |max

Edmonds-Karp (F-F based on BFS), 1970 :

in O(|E |2 × |V |)

converges for capacities in N, Q or R
in less than |V | × |E | augmenting paths (iterations)

Dinic (Dinitz), 1970, en O(|E | × |V |2)

Orlin, 2013, in O(|E | × |V |) and even in O( |V |2
log(|V |)) when |E |

is in O(|V |)
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Student residence Week of BDE (Student Office)

Plan

1 Real-world problem

2 Problem modeling

3 Ford-Fulkerson

4 Flow graphs as a model for other problems
Student residence
Week of BDE (Student Office)

5 Conclusion

ST2 – Gif Algorithmics and Complexity 38/44



Real-world problem Problem modeling Ford-Fulkerson Other applications Conclusion

Student residence Week of BDE (Student Office)

Managing university residences

Context

A university has M residences, the number of students that each
residence can host is mi , i = 1, . . . ,M.
The university welcomes N students. A student communicates a
list of the residences in which he wishes to be accommodated.

Goal

Suggest an allocation of residences by maximizing the number of
accepted students.
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Student residence Week of BDE (Student Office)

Model construction : flow graph

1 a bipartite graph (VN ∪ VM ,E = VN × VM),
where VN are the students vertices and VM

the residences vertices

2 an arc (si , rj) ∈ VN × VM for each wish of the
student si to get the residence rj with
c((si , rj)) = 1

3 add two artificial nodes, s and t and connect
them by the following arcs :

e = (s, si )) for each si ∈ VN with c(e) = 1
e = (ri , t) for each ri ∈ VM with c(e) = mi

Conclusion
Solving the students housing problem is reduced to finding the max-flow
of the above graph.
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Student residence Week of BDE (Student Office)

Week of BDE

Context

During the day, the students of CentraleSupélec go from the
student residence (in the morning) to the canteen (at noon),
passing through various classrooms.

Problem

The BDE team wants to distribute volunteers on the students’
route so that no one can avoid the distribution of leaflets.
Depending on the size of the passage areas, it may be necessary to
put several volunteers to cover a wide passage.

Goal

Propose an optimal assignment with the minimum number of
volunteers so as not to miss any student.
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Student residence Week of BDE (Student Office)

Model construction :

1 A graph whose vertices represent the residence, the classrooms and
the canteen. The edges represent the different paths allowing to go
directly from one point to another of the campus.

2 We define the capacity of an edge as the number of volunteers that
must be positioned to intercept all the students who pass by this
path.

3 Two special vertices : the residence (s) and the canteen (t).

minimum cut problem

What is the minimum cut in this graph separating s and t ?

➜ The capacity of this cup gives the number of volunteers required.

Exercise : it is about a non-oriented graph, how to transform it into a
flow graph ?
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To keep in mind

Directed graph : G = (V ,E ) with capacities c : E → R+

Main theorem :

max flow ⇔ min cut ⇔ no augmenting path

Ford-Fulkerson algorithm :

Finding augmenting paths (free traversal) ;
Complexity within O((|V |+ |E |)× |f |max) ;
When F-F terminates, we obtain the maximum flow (theorem) ;

➜ Edmonds-Karp’s variant based on BFS within O(|E |2 × |V |)

Many practical applications :

networks of any kind. . .
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