
Change making Dynamic programming Shortest Path Conclusion Sequence alignment

Algorithmics and Complexity
Cours 5/7 : Dynamic Programming

CentraleSupélec – Gif

ST2 – Gif

ST2 – Gif Algorithmics and Complexity 1/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Plan

1 Change making
Problem
Algorithms
Dynamic programming

2 Dynamic programming

3 Shortest Path

4 Conclusion

5 Sequence alignment

ST2 – Gif Algorithmics and Complexity 2/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Change making

Change making
Give back 3,57 EUR with coins worth 1 and 2 euros and 1, 2, 5,
10, 20 and 50 cents.

Solutions
A set of coins:

✓ 2€ + 1€ + 50¢ + 5¢ + 2¢
✓ 1€ + 1€ + 50¢ + 4×20¢ + 2×10¢ + 3×2¢ + 1¢
✓ 357×1¢
➜ With how many minimum number of coins can we return

3,57€?

ST2 – Gif Algorithmics and Complexity 3/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Change making

Change making
Give back 3,57 EUR with coins worth 1 and 2 euros and 1, 2, 5,
10, 20 and 50 cents.

Solutions
A set of coins:

➜ 2€ + 1€ + 50¢ + 5¢ + 2¢

✓ 2€ + 1€ + 50¢ + 5¢ + 2¢
✓ 1€ + 1€ + 50¢ + 4×20¢ + 2×10¢ + 3×2¢ + 1¢
✓ 357×1¢
➜ With how many minimum number of coins can we return

3,57€?

ST2 – Gif Algorithmics and Complexity 3/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Change making

Change making
Give back 3,57 EUR with coins worth 1 and 2 euros and 1, 2, 5,
10, 20 and 50 cents.

Solutions
A set of coins:

✓ 2€ + 1€ + 50¢ + 5¢ + 2¢
➜ 1€ + 1€ + 50¢ + 4×20¢ + 2×10¢ + 3×2¢ + 1¢

✓ 1€ + 1€ + 50¢ + 4×20¢ + 2×10¢ + 3×2¢ + 1¢
✓ 357×1¢
➜ With how many minimum number of coins can we return

3,57€?

ST2 – Gif Algorithmics and Complexity 3/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Change making

Change making
Give back 3,57 EUR with coins worth 1 and 2 euros and 1, 2, 5,
10, 20 and 50 cents.

Solutions
A set of coins:

✓ 2€ + 1€ + 50¢ + 5¢ + 2¢
✓ 1€ + 1€ + 50¢ + 4×20¢ + 2×10¢ + 3×2¢ + 1¢

✓ 357×1¢
➜ With how many minimum number of coins can we return

3,57€?

ST2 – Gif Algorithmics and Complexity 3/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Change making

Change making
Give back 3,57 EUR with coins worth 1 and 2 euros and 1, 2, 5,
10, 20 and 50 cents.

Solutions
A set of coins:

✓ 2€ + 1€ + 50¢ + 5¢ + 2¢
✓ 1€ + 1€ + 50¢ + 4×20¢ + 2×10¢ + 3×2¢ + 1¢
✓ 357×1¢

➜ With how many minimum number of coins can we return
3,57€?

ST2 – Gif Algorithmics and Complexity 3/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Change making

Change making
Give back 3,57 EUR with coins worth 1 and 2 euros and 1, 2, 5,
10, 20 and 50 cents.

Solutions
A set of coins:

✓ 2€ + 1€ + 50¢ + 5¢ + 2¢
✓ 1€ + 1€ + 50¢ + 4×20¢ + 2×10¢ + 3×2¢ + 1¢
✓ 357×1¢
➜ With how many minimum number of coins can we return

3,57€?
ST2 – Gif Algorithmics and Complexity 3/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Optimization problem

Input data
S ∈ N+n a n-tuple of coins: S = (200, 100, 50, 20, 10, 5, 2, 1)

total ∈ N the amount to give back: total = 357

Output data
c the number of coins used to obtain the value total,
as it exists L ∈ Nn a n-tuple, checking:

total =
∑n−1

i=0 Li × Si L indicates the number of each piece

c =
∑n−1

i=0 Li c is the cost of the solution L

and c is minimal!

Example
L = (0, 2, 1, 4, 2, 0, 3, 1) → c = 13 ➜ not minimal!

ST2 – Gif Algorithmics and Complexity 4/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Optimization problem

Input data
S ∈ N+n a n-tuple of coins: S = (200, 100, 50, 20, 10, 5, 2, 1)

total ∈ N the amount to give back: total = 357

Output data
c the number of coins used to obtain the value total,
as it exists L ∈ Nn a n-tuple, checking:

total =
∑n−1

i=0 Li × Si L indicates the number of each piece

c =
∑n−1

i=0 Li c is the cost of the solution L

and c is minimal!

Example
L = (0, 2, 1, 4, 2, 0, 3, 1) → c = 13 ➜ not minimal!

ST2 – Gif Algorithmics and Complexity 4/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Optimization problem

Input data
S ∈ N+n a n-tuple of coins: S = (200, 100, 50, 20, 10, 5, 2, 1)

total ∈ N the amount to give back: total = 357

Output data
c the number of coins used to obtain the value total,
as it exists L ∈ Nn a n-tuple, checking:

total =
∑n−1

i=0 Li × Si L indicates the number of each piece

c =
∑n−1

i=0 Li c is the cost of the solution L

and c is minimal!

Example
L = (0, 2, 1, 4, 2, 0, 3, 1) → c = 13 ➜ not minimal!

ST2 – Gif Algorithmics and Complexity 4/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Some observations. . .

Solution
Coins of unit value → at least one solution ∀total ∈ N
We assume an infinity of coins for each of the values. . .

Problem size ?

n (the number of different coin values)
➜ The sum to be returned is a parameter of the problem

Goal
✓ Return the sum → a solution
✓ With a minimum number of coins → the optimal solution!

Optimal solution
We are looking for the cost of the optimal solution!

ST2 – Gif Algorithmics and Complexity 5/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Some observations. . .

Solution
Coins of unit value → at least one solution ∀total ∈ N
We assume an infinity of coins for each of the values. . .

Problem size

?

n (the number of different coin values)
➜ The sum to be returned is a parameter of the problem

Goal
✓ Return the sum → a solution
✓ With a minimum number of coins → the optimal solution!

Optimal solution
We are looking for the cost of the optimal solution!

ST2 – Gif Algorithmics and Complexity 5/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Some observations. . .

Solution
Coins of unit value → at least one solution ∀total ∈ N
We assume an infinity of coins for each of the values. . .

Problem size

?

n (the number of different coin values)
➜ The sum to be returned is a parameter of the problem

Goal
✓ Return the sum → a solution
✓ With a minimum number of coins → the optimal solution!

Optimal solution
We are looking for the cost of the optimal solution!

ST2 – Gif Algorithmics and Complexity 5/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Some observations. . .

Solution
Coins of unit value → at least one solution ∀total ∈ N
We assume an infinity of coins for each of the values. . .

Problem size

?

n (the number of different coin values)
➜ The sum to be returned is a parameter of the problem

Goal
✓ Return the sum → a solution
✓ With a minimum number of coins → the optimal solution!

Optimal solution
We are looking for the cost of the optimal solution!

ST2 – Gif Algorithmics and Complexity 5/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Recursive algorithm

To return 3,57€, I can return:
one coin of 2 € then 1,57;
one coin of 1 € then 2,57;
one coin of 50 ¢ then 3,07;
etc. for every possible coin value

➜ The best solution is then:
1 + min(given_back(2, 57), given_back(1, 57), . . .)

Recursive calculation of the cost of the optimal solution
Denote by C(s) the minimum number of coins to obtain s.

Base case: C(0) = 0
General case: C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

ST2 – Gif Algorithmics and Complexity 6/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Recursive algorithm

To return 3,57€, I can return:
one coin of 2 € then 1,57;
one coin of 1 € then 2,57;
one coin of 50 ¢ then 3,07;
etc. for every possible coin value

➜ The best solution is then:
1 + min(given_back(2, 57), given_back(1, 57), . . .)

Recursive calculation of the cost of the optimal solution
Denote by C(s) the minimum number of coins to obtain s.

Base case: C(0) = 0
General case: C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

ST2 – Gif Algorithmics and Complexity 6/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Recursive algorithm

To return 3,57€, I can return:
one coin of 2 € then 1,57;
one coin of 1 € then 2,57;
one coin of 50 ¢ then 3,07;
etc. for every possible coin value

➜ The best solution is then:
1 + min(given_back(2, 57), given_back(1, 57), . . .)

Recursive calculation of the cost of the optimal solution
Denote by C(s) the minimum number of coins to obtain s.

Base case: C(0) = 0
General case: C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

ST2 – Gif Algorithmics and Complexity 6/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Recursive algorithm

To return 3,57€, I can return:
one coin of 2 € then 1,57;
one coin of 1 € then 2,57;
one coin of 50 ¢ then 3,07;
etc. for every possible coin value

➜ The best solution is then:
1 + min(given_back(2, 57), given_back(1, 57), . . .)

Recursive calculation of the cost of the optimal solution
Denote by C(s) the minimum number of coins to obtain s.

Base case: C(0) = 0

General case: C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

ST2 – Gif Algorithmics and Complexity 6/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Recursive algorithm

To return 3,57€, I can return:
one coin of 2 € then 1,57;
one coin of 1 € then 2,57;
one coin of 50 ¢ then 3,07;
etc. for every possible coin value

➜ The best solution is then:
1 + min(given_back(2, 57), given_back(1, 57), . . .)

Recursive calculation of the cost of the optimal solution
Denote by C(s) the minimum number of coins to obtain s.

Base case: C(0) = 0
General case: C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

ST2 – Gif Algorithmics and Complexity 6/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Recursive approach
C(0) = 0
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

357: (0, 0, 0, 0, 0, 0, 0, 0)

157: (1, 0, 0, 0, 0, 0, 0, 0) 257: (0, 1, 0, 0, 0, 0, 0, 0) . . . 356: (0, 0, 0, 0, 0, 0, 0, 1)

⊥: (2, 0, 0, 0, 0, 0, 0, 0)
X

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

Exponential complexity!
Unbalanced n-ary exploration tree of depth within [total

S0
, total

Sn−1
]

Complexity higher than nk where k = total
S0

.

ST2 – Gif Algorithmics and Complexity 7/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Recursive approach
C(0) = 0
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

357: (0, 0, 0, 0, 0, 0, 0, 0)

157: (1, 0, 0, 0, 0, 0, 0, 0) 257: (0, 1, 0, 0, 0, 0, 0, 0) . . . 356: (0, 0, 0, 0, 0, 0, 0, 1)

⊥: (2, 0, 0, 0, 0, 0, 0, 0)
X

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

Exponential complexity!
Unbalanced n-ary exploration tree of depth within [total

S0
, total

Sn−1
]

Complexity higher than nk where k = total
S0

.

ST2 – Gif Algorithmics and Complexity 7/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Recursive approach
C(0) = 0
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

357: (0, 0, 0, 0, 0, 0, 0, 0)

157: (1, 0, 0, 0, 0, 0, 0, 0)

257: (0, 1, 0, 0, 0, 0, 0, 0) . . . 356: (0, 0, 0, 0, 0, 0, 0, 1)

⊥: (2, 0, 0, 0, 0, 0, 0, 0)
X

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

Exponential complexity!
Unbalanced n-ary exploration tree of depth within [total

S0
, total

Sn−1
]

Complexity higher than nk where k = total
S0

.

ST2 – Gif Algorithmics and Complexity 7/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Recursive approach
C(0) = 0
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

357: (0, 0, 0, 0, 0, 0, 0, 0)

157: (1, 0, 0, 0, 0, 0, 0, 0) 257: (0, 1, 0, 0, 0, 0, 0, 0)

. . . 356: (0, 0, 0, 0, 0, 0, 0, 1)

⊥: (2, 0, 0, 0, 0, 0, 0, 0)
X

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

Exponential complexity!
Unbalanced n-ary exploration tree of depth within [total

S0
, total

Sn−1
]

Complexity higher than nk where k = total
S0

.

ST2 – Gif Algorithmics and Complexity 7/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Recursive approach
C(0) = 0
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

357: (0, 0, 0, 0, 0, 0, 0, 0)

157: (1, 0, 0, 0, 0, 0, 0, 0) 257: (0, 1, 0, 0, 0, 0, 0, 0) . . . 356: (0, 0, 0, 0, 0, 0, 0, 1)

⊥: (2, 0, 0, 0, 0, 0, 0, 0)
X

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

Exponential complexity!
Unbalanced n-ary exploration tree of depth within [total

S0
, total

Sn−1
]

Complexity higher than nk where k = total
S0

.

ST2 – Gif Algorithmics and Complexity 7/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Recursive approach
C(0) = 0
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

357: (0, 0, 0, 0, 0, 0, 0, 0)

157: (1, 0, 0, 0, 0, 0, 0, 0) 257: (0, 1, 0, 0, 0, 0, 0, 0) . . . 356: (0, 0, 0, 0, 0, 0, 0, 1)

⊥: (2, 0, 0, 0, 0, 0, 0, 0)
X

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

Exponential complexity!
Unbalanced n-ary exploration tree of depth within [total

S0
, total

Sn−1
]

Complexity higher than nk where k = total
S0

.

ST2 – Gif Algorithmics and Complexity 7/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Recursive approach
C(0) = 0
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

357: (0, 0, 0, 0, 0, 0, 0, 0)

157: (1, 0, 0, 0, 0, 0, 0, 0) 257: (0, 1, 0, 0, 0, 0, 0, 0) . . . 356: (0, 0, 0, 0, 0, 0, 0, 1)

⊥: (2, 0, 0, 0, 0, 0, 0, 0)
X

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

Exponential complexity!
Unbalanced n-ary exploration tree of depth within [total

S0
, total

Sn−1
]

Complexity higher than nk where k = total
S0

.

mais. . .

ST2 – Gif Algorithmics and Complexity 7/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Recursive approach
C(0) = 0
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

357: (0, 0, 0, 0, 0, 0, 0, 0)

157: (1, 0, 0, 0, 0, 0, 0, 0) 257: (0, 1, 0, 0, 0, 0, 0, 0) . . . 356: (0, 0, 0, 0, 0, 0, 0, 1)

⊥: (2, 0, 0, 0, 0, 0, 0, 0)
X

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

Exponential complexity!
Unbalanced n-ary exploration tree of depth within [total

S0
, total

Sn−1
]

Complexity higher than nk where k = total
S0

.

Redundant computation!

ST2 – Gif Algorithmics and Complexity 7/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Dynamic programming

Idea
✓ Solve optimization problems
✓ Where there is a recursive construction of the solution

➜ Dynamic programming

Principle
Store the intermediate solutions so as not to recalculate them
Invented by Bellman in the 1950s
Applies when the optimal solution of the problem is composed
of the optimal solutions of its subproblems

ST2 – Gif Algorithmics and Complexity 8/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Algorithms Dynamic programming

Dynamic programming

Idea
✓ Solve optimization problems
✓ Where there is a recursive construction of the solution
➜ Dynamic programming

Principle
Store the intermediate solutions so as not to recalculate them
Invented by Bellman in the 1950s
Applies when the optimal solution of the problem is composed
of the optimal solutions of its subproblems

ST2 – Gif Algorithmics and Complexity 8/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Plan

1 Change making

2 Dynamic programming
Principle
Comparison with the recursive approach
Change making

3 Shortest Path

4 Conclusion

5 Sequence alignment

ST2 – Gif Algorithmics and Complexity 9/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming

Principle
Recursively, start by solving the smallest sub-problems, then
solve bigger and bigger sub-problems until the solution to the
global problem is obtained.

Keep the solutions to sub-problems in a table
to avoid redundant computations that make the recursive solution inefficient

Example: change making
We iterate from s = 0 to s = total

As we know how to make change for all s ′ < s:
→ we compute the min cost for s:

C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

We memorize the result in the array
→ needed later to compute the min cost of s + Si

ST2 – Gif Algorithmics and Complexity 10/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming

Principle
Recursively, start by solving the smallest sub-problems, then
solve bigger and bigger sub-problems until the solution to the
global problem is obtained.
Keep the solutions to sub-problems in a table
to avoid redundant computations that make the recursive solution inefficient

Example: change making
We iterate from s = 0 to s = total

As we know how to make change for all s ′ < s:
→ we compute the min cost for s:

C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

We memorize the result in the array
→ needed later to compute the min cost of s + Si

ST2 – Gif Algorithmics and Complexity 10/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming

Principle
Recursively, start by solving the smallest sub-problems, then
solve bigger and bigger sub-problems until the solution to the
global problem is obtained.
Keep the solutions to sub-problems in a table
to avoid redundant computations that make the recursive solution inefficient

Example: change making
We iterate from s = 0 to s = total

As we know how to make change for all s ′ < s:
→ we compute the min cost for s:

C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

We memorize the result in the array
→ needed later to compute the min cost of s + Si

ST2 – Gif Algorithmics and Complexity 10/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming

Principle
Recursively, start by solving the smallest sub-problems, then
solve bigger and bigger sub-problems until the solution to the
global problem is obtained.
Keep the solutions to sub-problems in a table
to avoid redundant computations that make the recursive solution inefficient

Example: change making
We iterate from s = 0 to s = total

As we know how to make change for all s ′ < s:
→ we compute the min cost for s:

C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

We memorize the result in the array
→ needed later to compute the min cost of s + Si

ST2 – Gif Algorithmics and Complexity 10/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming

Principle
Recursively, start by solving the smallest sub-problems, then
solve bigger and bigger sub-problems until the solution to the
global problem is obtained.
Keep the solutions to sub-problems in a table
to avoid redundant computations that make the recursive solution inefficient

Example: change making
We iterate from s = 0 to s = total

As we know how to make change for all s ′ < s:
→ we compute the min cost for s:

C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

We memorize the result in the array
→ needed later to compute the min cost of s + Si

ST2 – Gif Algorithmics and Complexity 10/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming

Optimal sub-structure
1 Divide the problem in sub-problems
2 Construct the optimal solution from optimal solutions of

sub-problems
3 Deduce a recurrence formula

Examples of applications
Sequence alignment
Change making
Shortest path
Knapsack

ST2 – Gif Algorithmics and Complexity 11/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming

Optimal sub-structure
1 Divide the problem in sub-problems
2 Construct the optimal solution from optimal solutions of

sub-problems
3 Deduce a recurrence formula

Examples of applications
Sequence alignment
Change making
Shortest path
Knapsack

ST2 – Gif Algorithmics and Complexity 11/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming vs Divide and conquer

Similarity
Both methods need an optimal sub-structure (a recurrence
formula)

If the sub-problems are independents (all the sub-problems are
different)

Dynamic programming is useless
classic example: fact(n + 1) = (n + 1) × fact(n)

Otherwise
Dynamic programming is more efficient in time
(in return, we pay in space because nothing is free!)
classic example: fib(n + 2) = fib(n + 1) + fib(n)

ST2 – Gif Algorithmics and Complexity 12/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming vs Divide and conquer

Similarity
Both methods need an optimal sub-structure (a recurrence
formula)

If the sub-problems are independents (all the sub-problems are
different)

Dynamic programming is useless
classic example: fact(n + 1) = (n + 1) × fact(n)

Otherwise
Dynamic programming is more efficient in time
(in return, we pay in space because nothing is free!)
classic example: fib(n + 2) = fib(n + 1) + fib(n)

ST2 – Gif Algorithmics and Complexity 12/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming vs Divide and conquer

Similarity
Both methods need an optimal sub-structure (a recurrence
formula)

If the sub-problems are independents (all the sub-problems are
different)

Dynamic programming is useless
classic example: fact(n + 1) = (n + 1) × fact(n)

Otherwise
Dynamic programming is more efficient in time
(in return, we pay in space because nothing is free!)
classic example: fib(n + 2) = fib(n + 1) + fib(n)

ST2 – Gif Algorithmics and Complexity 12/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming vs Divide and conquer

Divide and conquer (recursive approach)
def fib(n):

i f n==1 or n==2:
r e t u r n 1

r e t u r n fib(n -1)+ fib(n -2)

exponential complexity O(ϕn) (ϕ the golden ratio)

Dynamic programming
table = {0:0 , 1:1}
def fib(n):

i f not n i n table:
table[n] = fib(n -1) + fib(n -2)

r e t u r n table[n]

linear complexity O(n)

ST2 – Gif Algorithmics and Complexity 13/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming vs Divide and conquer

Divide and conquer (recursive approach)
def fib(n):

i f n==1 or n==2:
r e t u r n 1

r e t u r n fib(n -1)+ fib(n -2)

exponential complexity O(ϕn) (ϕ the golden ratio)

Dynamic programming
table = {0:0 , 1:1}
def fib(n):

i f not n i n table:
table[n] = fib(n -1) + fib(n -2)

r e t u r n table[n]

linear complexity O(n)

ST2 – Gif Algorithmics and Complexity 13/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Resolution with dynamic programming (Algorithm 1)
We reuse the previous recurrence formula while saving the
intermediate results:{

C(s) = 1 si ∃i ∈ [0, n − 1] tel que s = Si
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

Let S = (10, 5, 2, 1) and total = 14

1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

skip

12 12 125 125 125 125 12510 12510 12510 12510

computation time n × total

ST2 – Gif Algorithmics and Complexity 14/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Resolution with dynamic programming (Algorithm 1)
We reuse the previous recurrence formula while saving the
intermediate results:{

C(s) = 1 si ∃i ∈ [0, n − 1] tel que s = Si
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

Let S = (10, 5, 2, 1) and total = 14

1 1 2 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

skip
12

12 125 125 125 125 12510 12510 12510 12510

computation time n × total

ST2 – Gif Algorithmics and Complexity 14/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Resolution with dynamic programming (Algorithm 1)
We reuse the previous recurrence formula while saving the
intermediate results:{

C(s) = 1 si ∃i ∈ [0, n − 1] tel que s = Si
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

Let S = (10, 5, 2, 1) and total = 14

1 1 2 2 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

skip

12

12

125 125 125 125 12510 12510 12510 12510

computation time n × total

ST2 – Gif Algorithmics and Complexity 14/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Resolution with dynamic programming (Algorithm 1)
We reuse the previous recurrence formula while saving the
intermediate results:{

C(s) = 1 si ∃i ∈ [0, n − 1] tel que s = Si
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

Let S = (10, 5, 2, 1) and total = 14

1 1 2 2 1 2 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

skip

12 12

125

125 125 125 12510 12510 12510 12510

computation time n × total

ST2 – Gif Algorithmics and Complexity 14/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Resolution with dynamic programming (Algorithm 1)
We reuse the previous recurrence formula while saving the
intermediate results:{

C(s) = 1 si ∃i ∈ [0, n − 1] tel que s = Si
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

Let S = (10, 5, 2, 1) and total = 14

1 1 2 2 1 2 2 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

skip

12 12 125

125

125 125 12510 12510 12510 12510

computation time n × total

ST2 – Gif Algorithmics and Complexity 14/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Resolution with dynamic programming (Algorithm 1)
We reuse the previous recurrence formula while saving the
intermediate results:{

C(s) = 1 si ∃i ∈ [0, n − 1] tel que s = Si
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

Let S = (10, 5, 2, 1) and total = 14

1 1 2 2 1 2 2 3 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

skip

12 12 125 125

125

125 12510 12510 12510 12510

computation time n × total

ST2 – Gif Algorithmics and Complexity 14/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Resolution with dynamic programming (Algorithm 1)
We reuse the previous recurrence formula while saving the
intermediate results:{

C(s) = 1 si ∃i ∈ [0, n − 1] tel que s = Si
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

Let S = (10, 5, 2, 1) and total = 14

1 1 2 2 1 2 2 3 3 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

skip

12 12 125 125 125

125

12510 12510 12510 12510

computation time n × total

ST2 – Gif Algorithmics and Complexity 14/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Resolution with dynamic programming (Algorithm 1)
We reuse the previous recurrence formula while saving the
intermediate results:{

C(s) = 1 si ∃i ∈ [0, n − 1] tel que s = Si
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

Let S = (10, 5, 2, 1) and total = 14

1 1 2 2 1 2 2 3 3 1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

skip

12 12 125 125 125 125

12510

12510 12510 12510

computation time n × total

ST2 – Gif Algorithmics and Complexity 14/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Resolution with dynamic programming (Algorithm 1)
We reuse the previous recurrence formula while saving the
intermediate results:{

C(s) = 1 si ∃i ∈ [0, n − 1] tel que s = Si
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

Let S = (10, 5, 2, 1) and total = 14

1 1 2 2 1 2 2 3 3 1 2 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

skip

12 12 125 125 125 125 12510

12510

12510 12510

computation time n × total

ST2 – Gif Algorithmics and Complexity 14/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Resolution with dynamic programming (Algorithm 1)
We reuse the previous recurrence formula while saving the
intermediate results:{

C(s) = 1 si ∃i ∈ [0, n − 1] tel que s = Si
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

Let S = (10, 5, 2, 1) and total = 14

1 1 2 2 1 2 2 3 3 1 2 2 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

skip

12 12 125 125 125 125 12510 12510

12510

12510

computation time n × total

ST2 – Gif Algorithmics and Complexity 14/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Resolution with dynamic programming (Algorithm 1)
We reuse the previous recurrence formula while saving the
intermediate results:{

C(s) = 1 si ∃i ∈ [0, n − 1] tel que s = Si
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

Let S = (10, 5, 2, 1) and total = 14

1 1 2 2 1 2 2 3 3 1 2 2 3 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

skip
12 12 125 125 125 125 12510 12510 12510

12510

computation time n × total
ST2 – Gif Algorithmics and Complexity 14/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Algorithm 1, recursive version

import math
S = (200 , 100, 50, 20, 10, 5, 2, 1); n= l en (S)
total = 357;
C = [math.inf f o r i i n range (total +1)]

def given_back (sum):
i f C[sum]== math.inf:

i f sum i n S:
C[sum]=1

e l s e :
best = math.inf
f o r i i n range (n):

i f S[i]<sum:
best = min(best , given_back (sum-S[i]))

C[sum] = best +1
r e t u r n C[sum]

p r i n t (" Number_of_coins :", given_back (total))

ST2 – Gif Algorithmics and Complexity 15/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Algorithm 1, iterative version

import math
S = (200 , 100, 50, 20, 10, 5, 2, 1); n= l en (S)
total = 357;
C = [0]

f o r i i n range (1, total +1):
C. append (math.inf)
f o r j i n range (n):

i f i>=S[j] and 1+C[i-S[j]]<C[i]:
C[i] = 1+C[i-S[j]]

p r i n t (" Number_of_coins :", s t r (C[total]))

➜ In both cases, we do not have the solution, only its cost
C(total).

ST2 – Gif Algorithmics and Complexity 16/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Algorithm 1, iterative version

import math
S = (200 , 100, 50, 20, 10, 5, 2, 1); n= l en (S)
total = 357;
C = [0]

f o r i i n range (1, total +1):
C. append (math.inf)
f o r j i n range (n):

i f i>=S[j] and 1+C[i-S[j]]<C[i]:
C[i] = 1+C[i-S[j]]

p r i n t (" Number_of_coins :", s t r (C[total]))

➜ In both cases, we do not have the solution, only its cost
C(total).

ST2 – Gif Algorithmics and Complexity 16/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Plan

1 Change making

2 Dynamic programming

3 Shortest Path
Shortest Paths algorithm
Bellman-Ford
Algorithm
Negative weight cycles detection
Application: routing

4 Conclusion

5 Sequence alignment
ST2 – Gif Algorithmics and Complexity 17/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

The Shortest Paths algorithm does not work with negative weights

s0

s1 s2

s3

+5
+3

-4

+1

+3

Node Distance Parent
s0 0 •
s1 ∞ •
s2 ∞ •
s3 ∞ •

Frontier = {s0}
x =

The Shortest Paths algorithm gives a wrong answer for s3!

Why would someone want to calculate a shortest path on a graph with
negative weights?
➜ answer to TD 4, exercise 1 (placement problem)

ST2 – Gif Algorithmics and Complexity 18/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

The Shortest Paths algorithm does not work with negative weights

s0

s1 s2

s3

+5
+3

-4

+1

+3s0

s1 s2

s3

Node Distance Parent
s0 0 •
s1 5 s0
s2 3 s0
s3 3 s0

Frontier = {s1, s2, s3}
x = s0

The Shortest Paths algorithm gives a wrong answer for s3!

Why would someone want to calculate a shortest path on a graph with
negative weights?
➜ answer to TD 4, exercise 1 (placement problem)

ST2 – Gif Algorithmics and Complexity 18/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

The Shortest Paths algorithm does not work with negative weights

s0

s1 s2

s3

+5
+3

-4

+1

+3s0

s1 s2

s3

s2

s0

Node Distance Parent
s0 0 •
s1 5 s0
s2 3 s0
s3 3 s0

Frontier = {s1, s3}
x = s2

The Shortest Paths algorithm gives a wrong answer for s3!

Why would someone want to calculate a shortest path on a graph with
negative weights?
➜ answer to TD 4, exercise 1 (placement problem)

ST2 – Gif Algorithmics and Complexity 18/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

The Shortest Paths algorithm does not work with negative weights

s0

s1 s2

s3

+5
+3

-4

+1

+3s0

s1 s2

s3

s2

s0 s3

s2

Node Distance Parent
s0 0 •
s1 5 s0
s2 3 s0
s3 3 s0

Frontier = {s1}
x = s3

The Shortest Paths algorithm gives a wrong answer for s3!

Why would someone want to calculate a shortest path on a graph with
negative weights?
➜ answer to TD 4, exercise 1 (placement problem)

ST2 – Gif Algorithmics and Complexity 18/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

The Shortest Paths algorithm does not work with negative weights

s0

s1 s2

s3

+5
+3

-4

+1

+3s0

s1 s2

s3

s2

s0 s3

s2s1

s3

Node Distance Parent
s0 0 •
s1 5 s0
s2 1 s1
s3 3 s0

Frontier =
x = s1

The Shortest Paths algorithm gives a wrong answer for s3!

Why would someone want to calculate a shortest path on a graph with
negative weights?
➜ answer to TD 4, exercise 1 (placement problem)

ST2 – Gif Algorithmics and Complexity 18/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

The Shortest Paths algorithm does not work with negative weights

s0

s1 s2

s3

+5
+3

-4

+1

+3s0

s1 s2

s3

s2

s0 s3

s2s1

s3

Node Distance Parent
s0 0 •
s1 5 s0
s2 1 s1
s3 3 s0

Frontier =
x =

The Shortest Paths algorithm gives a wrong answer for s3!

Why would someone want to calculate a shortest path on a graph with
negative weights?
➜ answer to TD 4, exercise 1 (placement problem)

ST2 – Gif Algorithmics and Complexity 18/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

The Shortest Paths algorithm does not work with negative weights

s0

s1 s2

s3

+5
+3

-4

+1

+3s0

s1 s2

s3

s2

s0 s3

s2s1

s3

Node Distance Parent
s0 0 •
s1 5 s0
s2 1 s1
s3 3 s0

Frontier =
x =

The Shortest Paths algorithm gives a wrong answer for s3!

Why would someone want to calculate a shortest path on a graph with
negative weights?
➜ answer to TD 4, exercise 1 (placement problem)

ST2 – Gif Algorithmics and Complexity 18/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford algorithm (1956, 1958)

Principle
Based on the principle of the dynamic programming
Calculate the cost of the shortest path
but we can recover the path from the memoization table. . .

Reminder: problem data
An arbitrary weighted and directed graph G , two vertices s and t
including negative weights. . .

➜ What is the length of the shortest path from s to t?

ST2 – Gif Algorithmics and Complexity 19/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford algorithm (1956, 1958)

Principle
Based on the principle of the dynamic programming
Calculate the cost of the shortest path
but we can recover the path from the memoization table. . .

Reminder: problem data
An arbitrary weighted and directed graph G , two vertices s and t
including negative weights. . .

➜ What is the length of the shortest path from s to t?

ST2 – Gif Algorithmics and Complexity 19/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Attention to the negative weight cycles!

Definition: negative weight cycle

s0 s1 s2 s3

s4s5

s6 s7
+2 +1 +1

−1

+1

+1

−2

+1

c

The cycle c in this example is a negative weight cycle, because∑
e=(v ,u)∈c

ω(e) < 0.

Shortest path with negative weights
Need a more precise formulation:

➜ We are looking for the shortest path without cycle!

ST2 – Gif Algorithmics and Complexity 20/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Attention to the negative weight cycles!

Definition: negative weight cycle

s0 s1 s2 s3

s4s5

s6 s7
+2 +1 +1

−1

+1

+1

−2

+1

c

The cycle c in this example is a negative weight cycle, because∑
e=(v ,u)∈c

ω(e) < 0.

Shortest path with negative weights
Need a more precise formulation:

➜ We are looking for the shortest path without cycle!

ST2 – Gif Algorithmics and Complexity 20/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford algorithm (1956, 1958)

Principle
Based on the principle of the dynamic programming
Calculate the cost of the shortest path
but we can recover the path from the memoization table. . .

Properties
✓ Supports negative weights (unlike Dijkstra)
✓ Detects if there is a negative weight cycle

ST2 – Gif Algorithmics and Complexity 21/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Principles of the Bellman-Ford algorithm

Divide into subproblems
Let OPT(i , v) be the length of the shortest path to the target
node t from a node v , v ̸= t, which contains at most i arcs.

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

Recursive construction of a solution

ST2 – Gif Algorithmics and Complexity 22/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Principles of the Bellman-Ford algorithm

Divide into subproblems
Let OPT(i , v) be the length of the shortest path to the target
node t from a node v , v ̸= t, which contains at most i arcs.

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

OPT(2,s1)=?

the length of the shortest path in 2 arcs from s1 to t (s5)
(in this case, it is 0 through s4)

Recursive construction of a solution

ST2 – Gif Algorithmics and Complexity 22/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Principles of the Bellman-Ford algorithm

Divide into subproblems
Let OPT(i , v) be the length of the shortest path to the target
node t from a node v , v ̸= t, which contains at most i arcs.

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

OPT(2,s1)=?
the length of the shortest path in 2 arcs from s1 to t (s5)
(in this case, it is 0 through s4)

Recursive construction of a solution

ST2 – Gif Algorithmics and Complexity 22/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Principles of the Bellman-Ford algorithm

Divide into subproblems
Let OPT(i , v) be the length of the shortest path to the target
node t from a node v , v ̸= t, which contains at most i arcs.

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

OPT(|V | − 1,s1)=?

the length of the shortest path from s1 to t (s5)
(in this case, it is -2)

Recursive construction of a solution

ST2 – Gif Algorithmics and Complexity 22/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Principles of the Bellman-Ford algorithm

Divide into subproblems
Let OPT(i , v) be the length of the shortest path to the target
node t from a node v , v ̸= t, which contains at most i arcs.

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

OPT(|V | − 1,s1)=?
the length of the shortest path from s1 to t (s5)
(in this case, it is -2)

Recursive construction of a solution

ST2 – Gif Algorithmics and Complexity 22/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Principles of the Bellman-Ford algorithm

Divide into subproblems
Let OPT(i , v) be the length of the shortest path to the target
node t from a node v , v ̸= t, which contains at most i arcs.

Recursive construction of a solution
OPT(i , v) = min(v ,u)∈E (OPT(i − 1, u) + ω((v , u)))

)
→ To reach t, first go to u by taking the shortest path in i − 1 steps.

Unless there is already a path in i − 1 steps from v which is
shorter than all the rest!
→ In which case OPT(i , v) = OPT(i − 1, v)

ST2 – Gif Algorithmics and Complexity 22/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Principles of the Bellman-Ford algorithm

Divide into subproblems
Let OPT(i , v) be the length of the shortest path to the target
node t from a node v , v ̸= t, which contains at most i arcs.

Recursive construction of a solution
OPT(i , v) = min(v ,u)∈E (OPT(i − 1, u) + ω((v , u)))

)
→ To reach t, first go to u by taking the shortest path in i − 1 steps.

Unless there is already a path in i − 1 steps from v which is
shorter than all the rest!
→ In which case OPT(i , v) = OPT(i − 1, v)

ST2 – Gif Algorithmics and Complexity 22/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Principles of the Bellman-Ford algorithm

Divide into subproblems
Let OPT(i , v) be the length of the shortest path to the target
node t from a node v , v ̸= t, which contains at most i arcs.

Recursive construction of a solution

OPT(i , v) = min
(
OPT(i − 1, v), min

u∈V
(OPT(i − 1, u) + ω((v , u)))

)

Store the OPT(i , v) → 2-dimensional array.

ST2 – Gif Algorithmics and Complexity 22/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

ST2 – Gif Algorithmics and Complexity 23/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0

ST2 – Gif Algorithmics and Complexity 23/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3

s0 = min(∞, min(−4 + ∞(by s1), −3 + 0(by s5)))

ST2 – Gif Algorithmics and Complexity 23/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞

s1 = min(∞, min(−1 + ∞, −2 + ∞))

ST2 – Gif Algorithmics and Complexity 23/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞ 3

s2 = min(∞, min(8 + ∞, 3 + 0))

ST2 – Gif Algorithmics and Complexity 23/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞ 3 4 2 0

we end the line on the same principle

ST2 – Gif Algorithmics and Complexity 23/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞ 3 4 2 0
2 −3 0 3 3 0 0

then we do the next line

ST2 – Gif Algorithmics and Complexity 23/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞ 3 4 2 0
2 −3 0 3 3 0 0
3 −4 −2 3 3 0 0

and so on. . .

ST2 – Gif Algorithmics and Complexity 23/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞ 3 4 2 0
2 −3 0 3 3 0 0
3 −4 −2 3 3 0 0
4 −6 −2 3 2 0 0
5 −6 −2 3 0 0 0

ST2 – Gif Algorithmics and Complexity 23/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

When to stop?

Proprerty
In an acyclic graph, the shortest path contains at most
|V | − 1 arcs

➜ This is also true in every graph without negative weight cycle

s0 s1 s2 s3

s4s5

s6 s7
+2 +1 +1

−1

+1

+1

−2

+1

➜ Stop as soon as you have computed the paths with |V | − 1
arcs.

ST2 – Gif Algorithmics and Complexity 24/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

When to stop?

Proprerty
In an acyclic graph, the shortest path contains at most
|V | − 1 arcs

➜ This is also true in every graph without negative weight cycle

s0 s1 s2 s3

s4s5

s6 s7
+2 +1 +1

−1

+1

+1

−2

+1

➜ Stop as soon as you have computed the paths with |V | − 1
arcs.

ST2 – Gif Algorithmics and Complexity 24/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

One implementation of Bellman-Ford (adjacency matrix)

import math

graph is an adjacency matrix
n = l en (graph)

initialization of OPT table
OPT = [[math.inf f o r _ i n range (n)] f o r _ i n range (n)]
OPT [0][5] = 0

filling the table
f o r i i n range (1,n):

f o r v i n range (n):
OPT[i][v] = OPT[i -1][v]
f o r u i n range (n):

i f graph[v][u] != None and \
OPT[i][v] > OPT[i -1][u] + graph[v][u]:

OPT[i][v] = OPT[i -1][u] + graph[v][u]

ST2 – Gif Algorithmics and Complexity 25/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford complexity

Complexity adjacency matrix
3 nested loops of |V | iterations each
an access in O(1) to ω((v , u)) at each turn of the inner loop!

➜ Hence, the total complexity of the algorithm is: O(|V |3).

Complexity adjacency list
do it home.
2 loops: for each of the |V | lines, we iterate over the |E | edges

➜ Hence, the total complexity of the algorithm is: O(|V | × |E |).

ST2 – Gif Algorithmics and Complexity 26/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford complexity

Complexity adjacency matrix
3 nested loops of |V | iterations each
an access in O(1) to ω((v , u)) at each turn of the inner loop!

➜ Hence, the total complexity of the algorithm is: O(|V |3).

Complexity adjacency list
do it home.
2 loops: for each of the |V | lines, we iterate over the |E | edges

➜ Hence, the total complexity of the algorithm is: O(|V | × |E |).

ST2 – Gif Algorithmics and Complexity 26/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford complexity

Complexity adjacency matrix
3 nested loops of |V | iterations each
an access in O(1) to ω((v , u)) at each turn of the inner loop!

➜ Hence, the total complexity of the algorithm is: O(|V |3).

Complexity adjacency list
do it home.
2 loops: for each of the |V | lines, we iterate over the |E | edges

➜ Hence, the total complexity of the algorithm is: O(|V | × |E |).

ST2 – Gif Algorithmics and Complexity 26/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford complexity

Complexity adjacency matrix
3 nested loops of |V | iterations each
an access in O(1) to ω((v , u)) at each turn of the inner loop!

➜ Hence, the total complexity of the algorithm is: O(|V |3).

Complexity adjacency list
do it home.
2 loops: for each of the |V | lines, we iterate over the |E | edges

➜ Hence, the total complexity of the algorithm is: O(|V | × |E |).

ST2 – Gif Algorithmics and Complexity 26/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Negative weight cycles detection (=⇒)

Proprerty (reminder)
In an graph without negative cycle, the shortest path has at most
|V | − 1 arcs.

➜ ∀v , OPT(|V | − 1, v) is the length of the shortest path

Contraposition
If a shortest path holds more than |V | − 1 arcs, then G has negative
cycles.

Corollary 1 (=⇒)
If one value in the row |V | is smaller than the one of the previous row:

∃v . OPT (|V |, v) < OPT (|V | − 1, v)

then there is a negative cycle in the graph.

ST2 – Gif Algorithmics and Complexity 27/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Negative weight cycles detection (=⇒)

Proprerty (reminder)
In an graph without negative cycle, the shortest path has at most
|V | − 1 arcs.

➜ ∀v , OPT(|V | − 1, v) is the length of the shortest path

Contraposition
If a shortest path holds more than |V | − 1 arcs, then G has negative
cycles.

Corollary 1 (=⇒)
If one value in the row |V | is smaller than the one of the previous row:

∃v . OPT (|V |, v) < OPT (|V | − 1, v)

then there is a negative cycle in the graph.

ST2 – Gif Algorithmics and Complexity 27/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Negative weight cycles detection (=⇒)

Proprerty (reminder)
In an graph without negative cycle, the shortest path has at most
|V | − 1 arcs.

➜ ∀v , OPT(|V | − 1, v) is the length of the shortest path

Contraposition
If a shortest path holds more than |V | − 1 arcs, then G has negative
cycles.

Corollary 1 (=⇒)
If one value in the row |V | is smaller than the one of the previous row:

∃v . OPT (|V |, v) < OPT (|V | − 1, v)

then there is a negative cycle in the graph.
ST2 – Gif Algorithmics and Complexity 27/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Negative weight cycles detection (⇐=)

Properties
1 If G contains a negative cycle, then for any node v from that cycle,

we can always improve its distance.
➜ ∃v . ∀n. ∃m > n OPT (m, v) < OPT (n, v)

2 If a row of the table is equal to the next one, then all the following
rows are equal to it as well

consequence of the recurrence formula

Corollary 2 (⇐=)
If G contains a negative cycle, then:

∃v . OPT (|V |, v) < OPT (|V | − 1, v)

ST2 – Gif Algorithmics and Complexity 28/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Negative weight cycles detection (⇐=)

Properties
1 If G contains a negative cycle, then for any node v from that cycle,

we can always improve its distance.
➜ ∃v . ∀n. ∃m > n OPT (m, v) < OPT (n, v)

2 If a row of the table is equal to the next one, then all the following
rows are equal to it as well

consequence of the recurrence formula

Corollary 2 (⇐=)
If G contains a negative cycle, then:

∃v . OPT (|V |, v) < OPT (|V | − 1, v)

ST2 – Gif Algorithmics and Complexity 28/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Negative weight cycles detection (⇐=)

Properties
1 If G contains a negative cycle, then for any node v from that cycle,

we can always improve its distance.
➜ ∃v . ∀n. ∃m > n OPT (m, v) < OPT (n, v)

2 If a row of the table is equal to the next one, then all the following
rows are equal to it as well

consequence of the recurrence formula

Corollary 2 (⇐=)
If G contains a negative cycle, then:

∃v . OPT (|V |, v) < OPT (|V | − 1, v)

ST2 – Gif Algorithmics and Complexity 28/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Negative weight cycles detection
Theorem
G contains a negative cycle iff

∃v . OPT (|V |, v) < OPT (|V | − 1, v)

filling the table
f o r i i n range (1,n+1): # filling one more line

f o r v i n range (n):
OPT[i][v] = OPT[i -1][v]
f o r u i n range (n):

i f graph[v][u] != None and \
OPT[i][v] > OPT[i -1][u] + graph[v][u]:

OPT[i][v] = OPT[i -1][u] + graph[v][u]

Detection of cycles
f o r v i n range (n):

i f OPT[n -1][v] > OPT[n][v]:
p r i n t ("Found: _negative_cycle !\n")
break ;

ST2 – Gif Algorithmics and Complexity 29/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Negative weight cycles detection
Theorem
G contains a negative cycle iff

∃v . OPT (|V |, v) < OPT (|V | − 1, v)

filling the table
f o r i i n range (1,n+1): # filling one more line

f o r v i n range (n):
OPT[i][v] = OPT[i -1][v]
f o r u i n range (n):

i f graph[v][u] != None and \
OPT[i][v] > OPT[i -1][u] + graph[v][u]:

OPT[i][v] = OPT[i -1][u] + graph[v][u]

Detection of cycles
f o r v i n range (n):

i f OPT[n -1][v] > OPT[n][v]:
p r i n t ("Found: _negative_cycle !\n")
break ;

ST2 – Gif Algorithmics and Complexity 29/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞ 3 4 2 0
2 −3 0 3 3 0 0
3 −4 −2 3 3 0 0
4 −6 −2 3 2 0 0
5 −6 −2 3 0 0 0
6 −6 −2 3 0 0 0

ST2 – Gif Algorithmics and Complexity 30/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8 → +4

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞ 3 4 2 0
2 −3 0 3 3 0 0
3 −4 −2 3 3 0 0
4 −6 −2 2 2 0 0
5 −6 −2 2 0 −1 0
6 −6 −3 2 0 −1 0

ST2 – Gif Algorithmics and Complexity 30/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Example

Be careful
As soon as there is a negative weight cycle, the calculated cost for
s → t may be wrong !
. . . even if OPT (|V | − 1, s) = OPT (|V |, s)

s

t

1

2

1

0

-1
1

s 1 2 t
0 ∞ ∞ ∞ 0
1 1 ∞ ∞ 0
2 1 0 ∞ 0
3 0 0 ∞ 0
4 0 -1 ∞ 0

ST2 – Gif Algorithmics and Complexity 31/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Demo

ST2 – Gif Algorithmics and Complexity 32/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Distributed Bellman-Ford

Property
To compute the cost OPT (i , v) for node v at step i , we only need:

OPT (i − 1, v) the value at the previous step for v ;
OPT (i − 1, u) the value at the previous step for all the
neighbours u of v .

→ Each node can compute its cost independently, only by
communicating with its neighbours
. . . without being aware of the whole graph!

Application in telecommunication networks
Routing problem

ST2 – Gif Algorithmics and Complexity 33/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Distributed Bellman-Ford

Property
To compute the cost OPT (i , v) for node v at step i , we only need:

OPT (i − 1, v) the value at the previous step for v ;
OPT (i − 1, u) the value at the previous step for all the
neighbours u of v .

→ Each node can compute its cost independently, only by
communicating with its neighbours
. . . without being aware of the whole graph!

Application in telecommunication networks
Routing problem

ST2 – Gif Algorithmics and Complexity 33/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Routing in packet-switched communication networks

Problem
Find the best path to route packets up to their destinations.

Criteria (weights)
Shortest routes w.r.t number of links, minimal latency, . . .

Routing specifics
Each router holds a table (destination, next_router
(Next_Hop)).
Computations done locally in routers (without knowing the
configuration of the network)

ST2 – Gif Algorithmics and Complexity 34/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Routing in packet-switched communication networks

Problem
Find the best path to route packets up to their destinations.

Criteria (weights)
Shortest routes w.r.t number of links, minimal latency, . . .

Routing specifics
Each router holds a table (destination, next_router
(Next_Hop)).
Computations done locally in routers (without knowing the
configuration of the network)

ST2 – Gif Algorithmics and Complexity 34/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Routing in packet-switched communication networks

Problem
Find the best path to route packets up to their destinations.

Criteria (weights)
Shortest routes w.r.t number of links, minimal latency, . . .

Routing specifics
Each router holds a table (destination, next_router
(Next_Hop)).
Computations done locally in routers (without knowing the
configuration of the network)

ST2 – Gif Algorithmics and Complexity 34/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Routing in packet-switched communication networks

Data model (network)
routers are modeled by graph nodes
links between routers are modeled by graph arcs
distances (links numbers, latency) are modeled by arc weights

Communication
As soon as a router changes its routing table, it warns its
neighbours so that they can update their own tables also.

ST2 – Gif Algorithmics and Complexity 35/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Routing in packet-switched communication networks

Data model (network)
routers are modeled by graph nodes
links between routers are modeled by graph arcs
distances (links numbers, latency) are modeled by arc weights

Communication
As soon as a router changes its routing table, it warns its
neighbours so that they can update their own tables also.

ST2 – Gif Algorithmics and Complexity 35/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Implementation

Each router runs a loop:

1 wait for a change notification of routing from one of its neighbours
2 recompute its own routing table (Final destination p → Next_Hop)
3 send its new distances to its neighbours
4 goto 1

Each router v keeps locally:
an array Mv with Mv [p] being the distance of the shortest path
between v and p

an array Next_Hopv where Next_Hopv [p] is the identifier of the
next router for any dispatch towards p

ST2 – Gif Algorithmics and Complexity 36/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Implementation

Each router runs a loop:
1 wait for a change notification of routing from one of its neighbours

2 recompute its own routing table (Final destination p → Next_Hop)
3 send its new distances to its neighbours
4 goto 1

Each router v keeps locally:
an array Mv with Mv [p] being the distance of the shortest path
between v and p

an array Next_Hopv where Next_Hopv [p] is the identifier of the
next router for any dispatch towards p

ST2 – Gif Algorithmics and Complexity 36/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Implementation

Each router runs a loop:
1 wait for a change notification of routing from one of its neighbours
2 recompute its own routing table (Final destination p → Next_Hop)

3 send its new distances to its neighbours
4 goto 1

Each router v keeps locally:
an array Mv with Mv [p] being the distance of the shortest path
between v and p

an array Next_Hopv where Next_Hopv [p] is the identifier of the
next router for any dispatch towards p

ST2 – Gif Algorithmics and Complexity 36/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Implementation

Each router runs a loop:
1 wait for a change notification of routing from one of its neighbours
2 recompute its own routing table (Final destination p → Next_Hop)
3 send its new distances to its neighbours

4 goto 1

Each router v keeps locally:
an array Mv with Mv [p] being the distance of the shortest path
between v and p

an array Next_Hopv where Next_Hopv [p] is the identifier of the
next router for any dispatch towards p

ST2 – Gif Algorithmics and Complexity 36/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Implementation

Each router runs a loop:
1 wait for a change notification of routing from one of its neighbours
2 recompute its own routing table (Final destination p → Next_Hop)
3 send its new distances to its neighbours
4 goto 1

Each router v keeps locally:
an array Mv with Mv [p] being the distance of the shortest path
between v and p

an array Next_Hopv where Next_Hopv [p] is the identifier of the
next router for any dispatch towards p

ST2 – Gif Algorithmics and Complexity 36/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Implementation

Each router runs a loop:
1 wait for a change notification of routing from one of its neighbours
2 recompute its own routing table (Final destination p → Next_Hop)
3 send its new distances to its neighbours
4 goto 1

Each router v keeps locally:
an array Mv with Mv [p] being the distance of the shortest path
between v and p

an array Next_Hopv where Next_Hopv [p] is the identifier of the
next router for any dispatch towards p

ST2 – Gif Algorithmics and Complexity 36/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Algorithm for each node v
Nv = ... # the list of neighbours of v

def process (u, Mu) :
"""
At each notification received from a neighbour u
:param Mu: routing table of u
"""

update the local routing table
update = False
f o r p i n V:

i f Mu[p] + Timings [v][u] < Mv[p]:
Mv[p] = Mu[p] + Timings [v][u]
NextHop_v [p] = u
update = True

notifying neighbours
i f update :

f o r u i n Nv:
send_update (u,Mv)

ST2 – Gif Algorithmics and Complexity 37/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

ST2 – Gif Algorithmics and Complexity 38/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s2 s3
M1(p) 2 3
next(p) s2 s3

p s1 s4
M3(p) 3 1
next(p) s1 s4

p s1 s4
M2(p) 2 3
next(p) s1 s4

p s2 s3
M4(p) 3 1
next(p) s2 s3

ST2 – Gif Algorithmics and Complexity 38/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s1 s4
M3(p) 3 1
next(p) s1 s4

p s1 s4
M2(p) 2 3
next(p) s1 s4

p s2 s3
M4(p) 3 1
next(p) s2 s3

p s2 s3 s4
M1(p) 2 3 4
next(p) s2 s3 s3

ST2 – Gif Algorithmics and Complexity 38/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s1 s3 s4
M2(p) 2 4 3
next(p) s1 s4 s4

p s1 s2 s3
M4(p) 4 3 1
next(p) s3 s2 s3

p s1 s2 s4
M3(p) 3 4 1
next(p) s1 s4 s4

p s2 s3 s4
M1(p) 2 3 4
next(p) s2 s3 s3

ST2 – Gif Algorithmics and Complexity 38/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s1 s3 s4
M2(p) 2 4 3
next(p) s1 s4 s4

p s1 s2 s3
M4(p) 4 3 1
next(p) s3 s2 s3

p s1 s2 s4
M3(p) 3 4 1
next(p) s1 s4 s4

p s2 s3 s4
M1(p) 2 3 4
next(p) s2 s3 s3

X
network fault

ST2 – Gif Algorithmics and Complexity 38/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s1 s2 s4
M3(p) 3 4 1
next(p) s1 s4 s4

p s2 s3 s4
M1(p) 2 3 4
next(p) s2 s3 s3

X
network fault

p s1 s3 s4
M2(p) 2 4 ∞
next(p) s1 s4 null

p s1 s2 s3
M4(p) 4 ∞ 1
next(p) s3 null s3

ST2 – Gif Algorithmics and Complexity 38/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s2 s3 s4
M1(p) 2 3 4
next(p) s2 s3 s3

X
network fault

p s1 s2 s4
M3(p) 3 5 1
next(p) s1 s1 s4

p s1 s3 s4
M2(p) 2 4 6
next(p) s1 s4 s1

p s1 s2 s3
M4(p) 4 ∞ 1
next(p) s3 null s3

ST2 – Gif Algorithmics and Complexity 38/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s2 s3 s4
M1(p) 2 3 4
next(p) s2 s3 s3

X
network fault

p s1 s2 s4
M3(p) 3 5 1
next(p) s1 s1 s4

p s1 s3 s4
M2(p) 2 4 6
next(p) s1 s4 s1

p s1 s2 s3
M4(p) 4 6 1
next(p) s3 s3 s3

ST2 – Gif Algorithmics and Complexity 38/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment

Plan

1 Change making

2 Dynamic programming

3 Shortest Path

4 Conclusion

5 Sequence alignment

ST2 – Gif Algorithmics and Complexity 39/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment

Main points to remember

« General » resolution method
Recurrence formula (sub-optimal structure)
The subproblems are not independent
Memoization technique: decrease the execution time by
memorizing the calculated values

➜ Classic compromise in computer science: time vs memory
Generally efficient but not always applicable
Shortest paths

✗ Be careful with negative weights!
✗ Be careful with negative cycles!

➜ Bellman-Ford algorithm: circumvents these two difficulties
Polynomial complexity (O(|V |3) or O(|V | × |E |))
Principle also used for packet routing

ST2 – Gif Algorithmics and Complexity 40/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Plan

1 Change making

2 Dynamic programming

3 Shortest Path

4 Conclusion

5 Sequence alignment
Problem
Exhaustive approach
Dynamic programming
Algorithm

ST2 – Gif Algorithmics and Complexity 41/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Going further

Concret problem
In bioinformatics (computer science dedicated to biology),
sequence alignment allows two biological sequences (DNA, RNA or
proteins) to be closer, so as to explain the similar regions.

ST2 – Gif Algorithmics and Complexity 42/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Example

Given 2 sequences of any size: the first of size n and the second of
size m

C T A G C A G T C A

G A G C A T C A T C G

an alignment:

C T A G C A G − − T C A

G − A G C A T C A T C G

match substitution insert/delete

an other alignment:

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 43/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Example

Given 2 sequences of any size: the first of size n and the second of
size m

C T A G C A G T C A

G A G C A T C A T C G

an alignment:

C T A G C A G − − T C A

G − A G C A T C A T C G

match substitution insert/delete

an other alignment:

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 43/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Example

Given 2 sequences of any size: the first of size n and the second of
size m

C T A G C A G T C A

G A G C A T C A T C G

an alignment:

C T A G C A G − − T C A

G − A G C A T C A T C G

match

substitution insert/delete

an other alignment:

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 43/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Example

Given 2 sequences of any size: the first of size n and the second of
size m

C T A G C A G T C A

G A G C A T C A T C G

an alignment:

C T A G C A G − − T C A

G − A G C A T C A T C G

match substitution

insert/delete

an other alignment:

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 43/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Example

Given 2 sequences of any size: the first of size n and the second of
size m

C T A G C A G T C A

G A G C A T C A T C G

an alignment:

C T A G C A G − − T C A

G − A G C A T C A T C G

match substitution insert/delete

an other alignment:

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 43/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Example

Given 2 sequences of any size: the first of size n and the second of
size m

C T A G C A G T C A

G A G C A T C A T C G

an alignment:

C T A G C A G − − T C A

G − A G C A T C A T C G

match substitution insert/delete

an other alignment:

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 43/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Which alignment to chose?

to each elementary operation we associate a score:
match : 1
substitution : -1
insert/delete : -2

The score of an alignment is the sum of the elementary scores

first alignment: −3 C T A G C A G − − T C A

G − A G C A T C A T C G

1 1 1 1 1 1-1 -1 -1-2 -2 -2
second alignment: −4

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 44/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Which alignment to chose?

to each elementary operation we associate a score:
match : 1
substitution : -1
insert/delete : -2

The score of an alignment is the sum of the elementary scores

first alignment: −3 C T A G C A G − − T C A

G − A G C A T C A T C G

1 1 1 1 1 1-1 -1 -1-2 -2 -2
second alignment: −4

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 44/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Which alignment to chose?

to each elementary operation we associate a score:
match : 1
substitution : -1
insert/delete : -2

The score of an alignment is the sum of the elementary scores

first alignment: −3 C T A G C A G − − T C A

G − A G C A T C A T C G

1 1 1 1 1 1-1 -1 -1-2 -2 -2

second alignment: −4

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 44/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Which alignment to chose?

to each elementary operation we associate a score:
match : 1
substitution : -1
insert/delete : -2

The score of an alignment is the sum of the elementary scores

first alignment: −3 C T A G C A G − − T C A

G − A G C A T C A T C G

1 1 1 1 1 1-1 -1 -1-2 -2 -2
second alignment: −4

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 44/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Optimization problem

Sequence alignment
Given :

2 sequences
3 scores associated to the 3 elementary operations
(match, subst, ins/del)

Problem : find the alignment with the maximal score

Exponential Complexity!
Number of alignments:

∑n
i=0 C i

m+i × Cn−i
m = O(2n+m)

ST2 – Gif Algorithmics and Complexity 45/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Optimization problem

Sequence alignment
Given :

2 sequences
3 scores associated to the 3 elementary operations
(match, subst, ins/del)

Problem : find the alignment with the maximal score

Exponential Complexity!
Number of alignments:

∑n
i=0 C i

m+i × Cn−i
m = O(2n+m)

ST2 – Gif Algorithmics and Complexity 45/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Optimization problem

Sequence alignment
Given :

2 sequences
3 scores associated to the 3 elementary operations
(match, subst, ins/del)

Problem : find the alignment with the maximal score

Exponential Complexity!
Number of alignments:

∑n
i=0 C i

m+i × Cn−i
m = O(2n+m)

ST2 – Gif Algorithmics and Complexity 45/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Recursive Approach

Align([],[]) = 0
Align(S[0:n],[]) = n × score[′ins/del ′]
Align([],T [0:m]) = m × score[′ins/del ′]

Align(S[0:n],T [0:m]) = max

Align(S[0:n],T [0:m−1]) + score[′ins/del ′]
Align(S[0:n−1],T [0:m]) + score[′ins/del ′]

Align(S[0:n−1],T [0:m−1]) +
{

score[′match′] si S[n]=T [m]
score[′subst′] si S[n] ̸=T [m]

S : C T A G C A G T C A

T : G A G C A T C A T C G

C T A G C A G T C A −

G A G C A T C A T C G

-2

C T A G C A G T C A

G A G C A T C A T C G −

-2

C T A G C A G T C A

G A G C A T C A T C G

-1

ST2 – Gif Algorithmics and Complexity 46/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Recursive Approach

Align([],[]) = 0
Align(S[0:n],[]) = n × score[′ins/del ′]
Align([],T [0:m]) = m × score[′ins/del ′]

Align(S[0:n],T [0:m]) = max

Align(S[0:n],T [0:m−1]) + score[′ins/del ′]
Align(S[0:n−1],T [0:m]) + score[′ins/del ′]

Align(S[0:n−1],T [0:m−1]) +
{

score[′match′] si S[n]=T [m]
score[′subst′] si S[n] ̸=T [m]

S : C T A G C A G T C A

T : G A G C A T C A T C G

C T A G C A G T C A −

G A G C A T C A T C G

-2

C T A G C A G T C A

G A G C A T C A T C G −

-2

C T A G C A G T C A

G A G C A T C A T C G

-1

ST2 – Gif Algorithmics and Complexity 46/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Recursive Approach

Align([],[]) = 0
Align(S[0:n],[]) = n × score[′ins/del ′]
Align([],T [0:m]) = m × score[′ins/del ′]

Align(S[0:n],T [0:m]) = max

Align(S[0:n],T [0:m−1]) + score[′ins/del ′]

Align(S[0:n−1],T [0:m]) + score[′ins/del ′]

Align(S[0:n−1],T [0:m−1]) +
{

score[′match′] si S[n]=T [m]
score[′subst′] si S[n] ̸=T [m]

S : C T A G C A G T C A

T : G A G C A T C A T C G

C T A G C A G T C A −

G A G C A T C A T C G

-2

C T A G C A G T C A

G A G C A T C A T C G −

-2

C T A G C A G T C A

G A G C A T C A T C G

-1

ST2 – Gif Algorithmics and Complexity 46/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Recursive Approach

Align([],[]) = 0
Align(S[0:n],[]) = n × score[′ins/del ′]
Align([],T [0:m]) = m × score[′ins/del ′]

Align(S[0:n],T [0:m]) = max

Align(S[0:n],T [0:m−1]) + score[′ins/del ′]
Align(S[0:n−1],T [0:m]) + score[′ins/del ′]

Align(S[0:n−1],T [0:m−1]) +
{

score[′match′] si S[n]=T [m]
score[′subst′] si S[n] ̸=T [m]

S : C T A G C A G T C A

T : G A G C A T C A T C G

C T A G C A G T C A −

G A G C A T C A T C G

-2

C T A G C A G T C A

G A G C A T C A T C G −

-2

C T A G C A G T C A

G A G C A T C A T C G

-1

ST2 – Gif Algorithmics and Complexity 46/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Recursive Approach

Align([],[]) = 0
Align(S[0:n],[]) = n × score[′ins/del ′]
Align([],T [0:m]) = m × score[′ins/del ′]

Align(S[0:n],T [0:m]) = max

Align(S[0:n],T [0:m−1]) + score[′ins/del ′]
Align(S[0:n−1],T [0:m]) + score[′ins/del ′]

Align(S[0:n−1],T [0:m−1]) +
{

score[′match′] si S[n]=T [m]
score[′subst′] si S[n] ̸=T [m]

S : C T A G C A G T C A

T : G A G C A T C A T C G

C T A G C A G T C A −

G A G C A T C A T C G

-2

C T A G C A G T C A

G A G C A T C A T C G −

-2

C T A G C A G T C A

G A G C A T C A T C G

-1

ST2 – Gif Algorithmics and Complexity 46/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Recursive approach

Exponential complexity!
Ternary search tree of depth n + m
Complexity in O(3n+m)

Redundant computation!

S : C T A G C A G T C A

T : G A G C A T C A T C G

C T A G C A G T C A −

G A G C A T C A T C G

C T A G C A G T C A

G A G C A T C A T C G −

C T A G C A G T C A

G A G C A T C A T C G

C T A G C A G T C A −

G A G C A T C A T C − G

C T A G C A G T C − A

G A G C A T C A T C G −

ST2 – Gif Algorithmics and Complexity 47/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Recursive approach

Exponential complexity!
Ternary search tree of depth n + m
Complexity in O(3n+m)
Redundant computation!

S : C T A G C A G T C A

T : G A G C A T C A T C G

C T A G C A G T C A −

G A G C A T C A T C G

C T A G C A G T C A

G A G C A T C A T C G −

C T A G C A G T C A

G A G C A T C A T C G

C T A G C A G T C A −

G A G C A T C A T C − G

C T A G C A G T C − A

G A G C A T C A T C G −

ST2 – Gif Algorithmics and Complexity 47/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Recurrence formula

Sequence alignment
Let OPT (M, N) be the maximal score

of the alignment of the M first nucleotides of the first sequence
with the N first nucleotides of the second sequence

OPT (0, 0) = 0
OPT (N, M) = maximum among:

OPT (N − 1, M) + (−2) if insert Ne

OPT (N, M − 1) + (−2) if insert Me

OPT (N − 1, M − 1) + (±1) depending on match or supp

ST2 – Gif Algorithmics and Complexity 48/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
skipT

S G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

C T A G C A G − − T C A

G − A G C A T C A T C G

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 49/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
skipT

S G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

C T A G C A G − − T C A

G − A G C A T C A T C G

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 49/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
skipT

S G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

C T A G C A G − − T C A

G − A G C A T C A T C G

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 49/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
skipT

S G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

C T A G C A G − − T C A

G − A G C A T C A T C G

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 49/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
skipT

S G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

C T A G C A G − − T C A

G − A G C A T C A T C G

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 49/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
skipT

S G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

C T A G C A G − − T C A

G − A G C A T C A T C G

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 49/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
skipT

S G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

C T A G C A G − − T C A

G − A G C A T C A T C G

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 49/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
skipT

S G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

C T A G C A G − − T C A

G − A G C A T C A T C G

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 49/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)

skip

T
S G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

C T A G C A G − − T C A

G − A G C A T C A T C G

C T A G C A G T C A − − −

− G A G C A − T C A T C G

ST2 – Gif Algorithmics and Complexity 49/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
T

S

0

G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

skip

−2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

T
S

0

G

C

−2

−2 −1−4−4

−1-1 -3 -5 -5 -7 -9 -11 -13 -15 -17 -19

-3 -2 -4 -6 -6 -6 -8 -10 -12 -14 -16

-5 -2 -3 -5 -5 -7 -7 -7 -9 -11 -13

-5 -4 -1 -3 -6 -6 -8 -8 -8 -10 -10

-7 -6 -3 0 -2 -4 -5 -7 -9 -7 -9

-9 -6 -5 -2 1 -1 -3 -4 -6 -8 -8

-11 -8 -5 -4 -1 0 -2 -4 -5 -7 -7

-13 -10 -7 -6 -3 0 -1 -3 -3 -5 -7

-15 -12 -9 -6 -5 -2 1 -1 -3 -2 -4

-17 -14 -11 -8 -5 -4 -1 2 0 -2 -3

Goal: to find the alignment with the maximal score

ST2 – Gif Algorithmics and Complexity 50/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
T

S

0

G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

skip

−2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

T
S

0

G

C

−2

−2 −1−4−4

−1-1 -3 -5 -5 -7 -9 -11 -13 -15 -17 -19

-3 -2 -4 -6 -6 -6 -8 -10 -12 -14 -16

-5 -2 -3 -5 -5 -7 -7 -7 -9 -11 -13

-5 -4 -1 -3 -6 -6 -8 -8 -8 -10 -10

-7 -6 -3 0 -2 -4 -5 -7 -9 -7 -9

-9 -6 -5 -2 1 -1 -3 -4 -6 -8 -8

-11 -8 -5 -4 -1 0 -2 -4 -5 -7 -7

-13 -10 -7 -6 -3 0 -1 -3 -3 -5 -7

-15 -12 -9 -6 -5 -2 1 -1 -3 -2 -4

-17 -14 -11 -8 -5 -4 -1 2 0 -2 -3

Step 1: we fill the first line and the first column

here score[’ins/del’] = -2 (→)

ST2 – Gif Algorithmics and Complexity 50/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
T

S

0

G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

skip

−2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

T
S

0

G

C

−2

−2

−1−4−4

−1-1 -3 -5 -5 -7 -9 -11 -13 -15 -17 -19

-3 -2 -4 -6 -6 -6 -8 -10 -12 -14 -16

-5 -2 -3 -5 -5 -7 -7 -7 -9 -11 -13

-5 -4 -1 -3 -6 -6 -8 -8 -8 -10 -10

-7 -6 -3 0 -2 -4 -5 -7 -9 -7 -9

-9 -6 -5 -2 1 -1 -3 -4 -6 -8 -8

-11 -8 -5 -4 -1 0 -2 -4 -5 -7 -7

-13 -10 -7 -6 -3 0 -1 -3 -3 -5 -7

-15 -12 -9 -6 -5 -2 1 -1 -3 -2 -4

-17 -14 -11 -8 -5 -4 -1 2 0 -2 -3

Step 2: we fill every cells by maximizing on the 3 axes

here score[’match’] = 1 (→) and score[’subst’] = -1 (→)

ST2 – Gif Algorithmics and Complexity 50/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
T

S

0

G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

skip

−2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

T
S

0

G

C

−2

−2

−1

−4

−4

−1-1 -3 -5 -5 -7 -9 -11 -13 -15 -17 -19

-3 -2 -4 -6 -6 -6 -8 -10 -12 -14 -16

-5 -2 -3 -5 -5 -7 -7 -7 -9 -11 -13

-5 -4 -1 -3 -6 -6 -8 -8 -8 -10 -10

-7 -6 -3 0 -2 -4 -5 -7 -9 -7 -9

-9 -6 -5 -2 1 -1 -3 -4 -6 -8 -8

-11 -8 -5 -4 -1 0 -2 -4 -5 -7 -7

-13 -10 -7 -6 -3 0 -1 -3 -3 -5 -7

-15 -12 -9 -6 -5 -2 1 -1 -3 -2 -4

-17 -14 -11 -8 -5 -4 -1 2 0 -2 -3

Step 2: we fill every cells by maximizing on the 3 axes

here score[’match’] = 1 (→) and score[’subst’] = -1 (→)

ST2 – Gif Algorithmics and Complexity 50/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
T

S

0

G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

skip

−2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

T
S

0

G

C

−2

−2 −1

−4−4

−1-1 -3 -5 -5 -7 -9 -11 -13 -15 -17 -19

-3 -2 -4 -6 -6 -6 -8 -10 -12 -14 -16

-5 -2 -3 -5 -5 -7 -7 -7 -9 -11 -13

-5 -4 -1 -3 -6 -6 -8 -8 -8 -10 -10

-7 -6 -3 0 -2 -4 -5 -7 -9 -7 -9

-9 -6 -5 -2 1 -1 -3 -4 -6 -8 -8

-11 -8 -5 -4 -1 0 -2 -4 -5 -7 -7

-13 -10 -7 -6 -3 0 -1 -3 -3 -5 -7

-15 -12 -9 -6 -5 -2 1 -1 -3 -2 -4

-17 -14 -11 -8 -5 -4 -1 2 0 -2 -3

Step 2: we fill every cells by maximizing on the 3 axes

here score[’match’] = 1 (→) and score[’subst’] = -1 (→)

ST2 – Gif Algorithmics and Complexity 50/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
T

S

0

G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

skip

−2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

T
S

0

G

C

−2

−2

−1−4

−4

−1-1 -3 -5 -5 -7 -9 -11 -13 -15 -17 -19

-3 -2 -4 -6 -6 -6 -8 -10 -12 -14 -16

-5 -2 -3 -5 -5 -7 -7 -7 -9 -11 -13

-5 -4 -1 -3 -6 -6 -8 -8 -8 -10 -10

-7 -6 -3 0 -2 -4 -5 -7 -9 -7 -9

-9 -6 -5 -2 1 -1 -3 -4 -6 -8 -8

-11 -8 -5 -4 -1 0 -2 -4 -5 -7 -7

-13 -10 -7 -6 -3 0 -1 -3 -3 -5 -7

-15 -12 -9 -6 -5 -2 1 -1 -3 -2 -4

-17 -14 -11 -8 -5 -4 -1 2 0 -2 -3

Step 2: we fill every cells by maximizing on the 3 axes

here score[’match’] = 1 (→) and score[’subst’] = -1 (→)

ST2 – Gif Algorithmics and Complexity 50/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
T

S

0

G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

skip

−2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

T
S

0

G

C

−2

−2 −1

−4−4

−1

-1 -3 -5 -5 -7 -9 -11 -13 -15 -17 -19

-3 -2 -4 -6 -6 -6 -8 -10 -12 -14 -16

-5 -2 -3 -5 -5 -7 -7 -7 -9 -11 -13

-5 -4 -1 -3 -6 -6 -8 -8 -8 -10 -10

-7 -6 -3 0 -2 -4 -5 -7 -9 -7 -9

-9 -6 -5 -2 1 -1 -3 -4 -6 -8 -8

-11 -8 -5 -4 -1 0 -2 -4 -5 -7 -7

-13 -10 -7 -6 -3 0 -1 -3 -3 -5 -7

-15 -12 -9 -6 -5 -2 1 -1 -3 -2 -4

-17 -14 -11 -8 -5 -4 -1 2 0 -2 -3

Step 2: we fill every cells by maximizing on the 3 axes

here score[’match’] = 1 (→) and score[’subst’] = -1 (→)

ST2 – Gif Algorithmics and Complexity 50/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
T

S

0

G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

skip

−2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

T
S

0

G

C

−2

−2 −1−4−4

−1

-1 -3 -5 -5 -7 -9 -11 -13 -15 -17 -19

-3 -2 -4 -6 -6 -6 -8 -10 -12 -14 -16

-5 -2 -3 -5 -5 -7 -7 -7 -9 -11 -13

-5 -4 -1 -3 -6 -6 -8 -8 -8 -10 -10

-7 -6 -3 0 -2 -4 -5 -7 -9 -7 -9

-9 -6 -5 -2 1 -1 -3 -4 -6 -8 -8

-11 -8 -5 -4 -1 0 -2 -4 -5 -7 -7

-13 -10 -7 -6 -3 0 -1 -3 -3 -5 -7

-15 -12 -9 -6 -5 -2 1 -1 -3 -2 -4

-17 -14 -11 -8 -5 -4 -1 2 0 -2

-3

Step 2: we fill every cells by maximizing on the 3 axes

here score[’match’] = 1 (→) and score[’subst’] = -1 (→)

ST2 – Gif Algorithmics and Complexity 50/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
T

S

0

G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

skip

−2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

T
S

0

G

C

−2

−2 −1−4−4

−1

-1 -3 -5 -5 -7 -9 -11 -13 -15 -17 -19

-3 -2 -4 -6 -6 -6 -8 -10 -12 -14 -16

-5 -2 -3 -5 -5 -7 -7 -7 -9 -11 -13

-5 -4 -1 -3 -6 -6 -8 -8 -8 -10 -10

-7 -6 -3 0 -2 -4 -5 -7 -9 -7 -9

-9 -6 -5 -2 1 -1 -3 -4 -6 -8 -8

-11 -8 -5 -4 -1 0 -2 -4 -5 -7 -7

-13 -10 -7 -6 -3 0 -1 -3 -3 -5 -7

-15 -12 -9 -6 -5 -2 1 -1 -3 -2 -4

-17 -14 -11 -8 -5 -4 -1 2 0 -2 -3

Step 3: at the end of the table, we get the maximal score and the
optimal alignments

ST2 – Gif Algorithmics and Complexity 50/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)
T

S

0

G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

skip

−2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

T
S

0

G

C

−2

−2 −1−4−4

−1

-1 -3 -5 -5 -7 -9 -11 -13 -15 -17 -19

-3 -2 -4 -6 -6 -6 -8 -10 -12 -14 -16

-5 -2 -3 -5 -5 -7 -7 -7 -9 -11 -13

-5 -4 -1 -3 -6 -6 -8 -8 -8 -10 -10

-7 -6 -3 0 -2 -4 -5 -7 -9 -7 -9

-9 -6 -5 -2 1 -1 -3 -4 -6 -8 -8

-11 -8 -5 -4 -1 0 -2 -4 -5 -7 -7

-13 -10 -7 -6 -3 0 -1 -3 -3 -5 -7

-15 -12 -9 -6 -5 -2 1 -1 -3 -2 -4

-17 -14 -11 -8 -5 -4 -1 2 0 -2 -3

Step 3: at the end of the table, we get the maximal score and the
optimal alignments

ST2 – Gif Algorithmics and Complexity 50/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)

Among the 3n+m possible paths in the matrix, we found the
optimal alignment in n × m steps

Algorithm complexity
O(n × m) in time: size of the matrix

O(min(n, m)) in space: instead of keeping the complete matrix, we
keep only the current and precedent line

ST2 – Gif Algorithmics and Complexity 51/51

Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)

Among the 3n+m possible paths in the matrix, we found the
optimal alignment in n × m steps

Algorithm complexity
O(n × m) in time: size of the matrix

O(min(n, m)) in space: instead of keeping the complete matrix, we
keep only the current and precedent line

ST2 – Gif Algorithmics and Complexity 51/51

	Change making
	Problem
	Algorithms
	Dynamic programming

	Dynamic programming
	Principle
	Comparison with the recursive approach
	Change making

	Shortest Path
	Shortest Paths algorithm
	Bellman-Ford
	Algorithm
	Negative weight cycles detection
	Application: routing

	Conclusion
	Sequence alignment
	Problem
	Exhaustive approach
	Dynamic programming
	Algorithm

