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Change making

Change making
Give back 3,57 EUR with coins worth 1 and 2 euros and 1, 2, 5,
10, 20 and 50 cents.

Solutions
A set of coins:

✓ 2€ + 1€ + 50¢ + 5¢ + 2¢
✓ 1€ + 1€ + 50¢ + 4×20¢ + 2×10¢ + 3×2¢ + 1¢
✓ 357×1¢
➜ With how many minimum number of coins can we return

3,57€?
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Optimization problem

Input data
S ∈ N+n a n-tuple of coins: S = (200, 100, 50, 20, 10, 5, 2, 1)

total ∈ N the amount to give back: total = 357

Output data
c the number of coins used to obtain the value total,
as it exists L ∈ Nn a n-tuple, checking:

total =
∑n−1

i=0 Li × Si L indicates the number of each piece

c =
∑n−1

i=0 Li c is the cost of the solution L

and c is minimal!

Example
L = (0, 2, 1, 4, 2, 0, 3, 1) → c = 13 ➜ not minimal!
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Some observations. . .

Solution
Coins of unit value → at least one solution ∀total ∈ N
We assume an infinity of coins for each of the values. . .

Problem size ?

n (the number of different coin values)
➜ The sum to be returned is a parameter of the problem

Goal
✓ Return the sum → a solution
✓ With a minimum number of coins → the optimal solution!

Optimal solution
We are looking for the cost of the optimal solution!
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Recursive algorithm

To return 3,57€, I can return:
one coin of 2 € then 1,57;
one coin of 1 € then 2,57;
one coin of 50 ¢ then 3,07;
etc. for every possible coin value

➜ The best solution is then:
1 + min(given_back(2, 57), given_back(1, 57), . . .)

Recursive calculation of the cost of the optimal solution
Denote by C(s) the minimum number of coins to obtain s.

Base case: C(0) = 0
General case: C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)
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Recursive approach
C(0) = 0
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si )

357: (0, 0, 0, 0, 0, 0, 0, 0)

157: (1, 0, 0, 0, 0, 0, 0, 0) 257: (0, 1, 0, 0, 0, 0, 0, 0) . . . 356: (0, 0, 0, 0, 0, 0, 0, 1)

⊥: (2, 0, 0, 0, 0, 0, 0, 0)
X

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

Exponential complexity!
Unbalanced n-ary exploration tree of depth within [ total

S0
, total

Sn−1
]

Complexity higher than nk where k = total
S0

.
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Recursive approach
C(0) = 0
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357: (0, 0, 0, 0, 0, 0, 0, 0)

157: (1, 0, 0, 0, 0, 0, 0, 0) 257: (0, 1, 0, 0, 0, 0, 0, 0) . . . 356: (0, 0, 0, 0, 0, 0, 0, 1)

⊥: (2, 0, 0, 0, 0, 0, 0, 0)
X

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .

156: (1, 0, 0, 0, 0, 0, 0, 1)

. . .
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Dynamic programming

Idea
✓ Solve optimization problems
✓ Where there is a recursive construction of the solution

➜ Dynamic programming

Principle
Store the intermediate solutions so as not to recalculate them
Invented by Bellman in the 1950s
Applies when the optimal solution of the problem is composed
of the optimal solutions of its subproblems
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Dynamic programming

Principle
Recursively, start by solving the smallest sub-problems, then
solve bigger and bigger sub-problems until the solution to the
global problem is obtained.

Keep the solutions to sub-problems in a table
to avoid redundant computations that make the recursive solution inefficient

Example: change making
We iterate from s = 0 to s = total

As we know how to make change for all s ′ < s:
→ we compute the min cost for s:

C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si )

We memorize the result in the array
→ needed later to compute the min cost of s + Si
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Dynamic programming

Optimal sub-structure
1 Divide the problem in sub-problems
2 Construct the optimal solution from optimal solutions of

sub-problems
3 Deduce a recurrence formula

Examples of applications
Sequence alignment
Change making
Shortest path
Knapsack
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Dynamic programming vs Divide and conquer

Similarity
Both methods need an optimal sub-structure (a recurrence
formula)

If the sub-problems are independents (all the sub-problems are
different)

Dynamic programming is useless
classic example: fact(n + 1) = (n + 1) × fact(n)

Otherwise
Dynamic programming is more efficient in time
(in return, we pay in space because nothing is free!)
classic example: fib(n + 2) = fib(n + 1) + fib(n)

ST2 – Gif Algorithmics and Complexity 12/51



Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming vs Divide and conquer

Similarity
Both methods need an optimal sub-structure (a recurrence
formula)

If the sub-problems are independents (all the sub-problems are
different)

Dynamic programming is useless
classic example: fact(n + 1) = (n + 1) × fact(n)

Otherwise
Dynamic programming is more efficient in time
(in return, we pay in space because nothing is free!)
classic example: fib(n + 2) = fib(n + 1) + fib(n)

ST2 – Gif Algorithmics and Complexity 12/51



Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Principle Comparison with the recursive approach Change making

Dynamic programming vs Divide and conquer

Similarity
Both methods need an optimal sub-structure (a recurrence
formula)

If the sub-problems are independents (all the sub-problems are
different)

Dynamic programming is useless
classic example: fact(n + 1) = (n + 1) × fact(n)

Otherwise
Dynamic programming is more efficient in time
(in return, we pay in space because nothing is free!)
classic example: fib(n + 2) = fib(n + 1) + fib(n)

ST2 – Gif Algorithmics and Complexity 12/51



Change making Dynamic programming Shortest Path Conclusion Sequence alignment
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Dynamic programming vs Divide and conquer

Divide and conquer (recursive approach)
def fib(n):

i f n==1 or n==2:
r e t u r n 1

r e t u r n fib(n -1)+ fib(n -2)

exponential complexity O(ϕn) (ϕ the golden ratio)

Dynamic programming
table = {0:0 , 1:1}
def fib(n):

i f not n i n table:
table[n] = fib(n -1) + fib(n -2)

r e t u r n table[n]

linear complexity O(n)
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Resolution with dynamic programming (Algorithm 1)
We reuse the previous recurrence formula while saving the
intermediate results:{

C(s) = 1 si ∃i ∈ [0, n − 1] tel que s = Si
C(s) = 1 + mini∈[0,n−1],Si ≤s C(s − Si)

Let S = (10, 5, 2, 1) and total = 14

1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

skip

12 12 125 125 125 125 12510 12510 12510 12510

computation time n × total
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Algorithm 1, recursive version

import math
S = (200 , 100, 50, 20, 10, 5, 2, 1); n= l en (S)
total = 357;
C = [math.inf f o r i i n range (total +1)]

def given_back (sum):
i f C[sum]== math.inf:

i f sum i n S:
C[sum]=1

e l s e :
best = math.inf
f o r i i n range (n):

i f S[i]<sum:
best = min(best , given_back (sum-S[i]))

C[sum] = best +1
r e t u r n C[sum]

p r i n t (" Number_of_coins :", given_back (total ))
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Algorithm 1, iterative version

import math
S = (200 , 100, 50, 20, 10, 5, 2, 1); n= l en (S)
total = 357;
C = [0]

f o r i i n range (1, total +1):
C. append (math.inf)
f o r j i n range (n):

i f i>=S[j] and 1+C[i-S[j]]<C[i]:
C[i] = 1+C[i-S[j]]

p r i n t (" Number_of_coins :", s t r (C[total ]))

➜ In both cases, we do not have the solution, only its cost
C(total).
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Plan

1 Change making

2 Dynamic programming

3 Shortest Path
Shortest Paths algorithm
Bellman-Ford
Algorithm
Negative weight cycles detection
Application: routing

4 Conclusion

5 Sequence alignment
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The Shortest Paths algorithm does not work with negative weights

s0

s1 s2

s3

+5
+3

-4

+1

+3

Node Distance Parent
s0 0 •
s1 ∞ •
s2 ∞ •
s3 ∞ •

Frontier = {s0}
x =

The Shortest Paths algorithm gives a wrong answer for s3!

Why would someone want to calculate a shortest path on a graph with
negative weights?
➜ answer to TD 4, exercise 1 (placement problem)
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The Shortest Paths algorithm does not work with negative weights
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s1 s2
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s1 s2
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Node Distance Parent
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s1 5 s0
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The Shortest Paths algorithm gives a wrong answer for s3!

Why would someone want to calculate a shortest path on a graph with
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➜ answer to TD 4, exercise 1 (placement problem)
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The Shortest Paths algorithm does not work with negative weights
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s3
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Node Distance Parent
s0 0 •
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s3 3 s0
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x = s2

The Shortest Paths algorithm gives a wrong answer for s3!

Why would someone want to calculate a shortest path on a graph with
negative weights?
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Bellman-Ford algorithm (1956, 1958)

Principle
Based on the principle of the dynamic programming
Calculate the cost of the shortest path
but we can recover the path from the memoization table. . .

Reminder: problem data
An arbitrary weighted and directed graph G , two vertices s and t
including negative weights. . .

➜ What is the length of the shortest path from s to t?

ST2 – Gif Algorithmics and Complexity 19/51



Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Bellman-Ford algorithm (1956, 1958)

Principle
Based on the principle of the dynamic programming
Calculate the cost of the shortest path
but we can recover the path from the memoization table. . .

Reminder: problem data
An arbitrary weighted and directed graph G , two vertices s and t
including negative weights. . .

➜ What is the length of the shortest path from s to t?

ST2 – Gif Algorithmics and Complexity 19/51



Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Attention to the negative weight cycles!

Definition: negative weight cycle

s0 s1 s2 s3

s4s5

s6 s7
+2 +1 +1

−1

+1

+1

−2

+1

c

The cycle c in this example is a negative weight cycle, because∑
e=(v ,u)∈c

ω(e) < 0.

Shortest path with negative weights
Need a more precise formulation:

➜ We are looking for the shortest path without cycle!

ST2 – Gif Algorithmics and Complexity 20/51



Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Shortest Paths algorithm Bellman-Ford Algorithm Negative weight cycles detection Application: routing

Attention to the negative weight cycles!
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s0 s1 s2 s3

s4s5

s6 s7
+2 +1 +1

−1

+1

+1

−2

+1

c

The cycle c in this example is a negative weight cycle, because∑
e=(v ,u)∈c

ω(e) < 0.

Shortest path with negative weights
Need a more precise formulation:

➜ We are looking for the shortest path without cycle!
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Bellman-Ford algorithm (1956, 1958)

Principle
Based on the principle of the dynamic programming
Calculate the cost of the shortest path
but we can recover the path from the memoization table. . .

Properties
✓ Supports negative weights (unlike Dijkstra)
✓ Detects if there is a negative weight cycle
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Principles of the Bellman-Ford algorithm

Divide into subproblems
Let OPT(i , v) be the length of the shortest path to the target
node t from a node v , v ̸= t, which contains at most i arcs.

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

Recursive construction of a solution
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Principles of the Bellman-Ford algorithm

Divide into subproblems
Let OPT(i , v) be the length of the shortest path to the target
node t from a node v , v ̸= t, which contains at most i arcs.

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

OPT(2,s1)=?

the length of the shortest path in 2 arcs from s1 to t (s5)
(in this case, it is 0 through s4)

Recursive construction of a solution
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Principles of the Bellman-Ford algorithm

Divide into subproblems
Let OPT(i , v) be the length of the shortest path to the target
node t from a node v , v ̸= t, which contains at most i arcs.

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

OPT(|V | − 1,s1)=?

the length of the shortest path from s1 to t (s5)
(in this case, it is -2)

Recursive construction of a solution
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Principles of the Bellman-Ford algorithm

Divide into subproblems
Let OPT(i , v) be the length of the shortest path to the target
node t from a node v , v ̸= t, which contains at most i arcs.

Recursive construction of a solution
OPT(i , v) = min(v ,u)∈E (OPT(i − 1, u) + ω((v , u)))

)
→ To reach t, first go to u by taking the shortest path in i − 1 steps.

Unless there is already a path in i − 1 steps from v which is
shorter than all the rest!
→ In which case OPT(i , v) = OPT(i − 1, v)
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Principles of the Bellman-Ford algorithm

Divide into subproblems
Let OPT(i , v) be the length of the shortest path to the target
node t from a node v , v ̸= t, which contains at most i arcs.

Recursive construction of a solution

OPT(i , v) = min
(
OPT(i − 1, v), min

u∈V
(OPT(i − 1, u) + ω((v , u)))

)

Store the OPT(i , v) → 2-dimensional array.
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Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3
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Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
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Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3

s0 = min(∞, min(−4 + ∞(by s1), −3 + 0(by s5)))
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Example

s0 s1 s2

s3 s4
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−4
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+4 +2
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s0 s1 s2 s3 s4 s5
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s1 = min(∞, min(−1 + ∞, −2 + ∞))
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Example
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s3 s4

s5 = t

−4
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−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
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1 −3 ∞ 3

s2 = min(∞, min(8 + ∞, 3 + 0))
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Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞ 3 4 2 0

we end the line on the same principle
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Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞ 3 4 2 0
2 −3 0 3 3 0 0

then we do the next line
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Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞ 3 4 2 0
2 −3 0 3 3 0 0
3 −4 −2 3 3 0 0

and so on. . .
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Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞ 3 4 2 0
2 −3 0 3 3 0 0
3 −4 −2 3 3 0 0
4 −6 −2 3 2 0 0
5 −6 −2 3 0 0 0
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When to stop?

Proprerty
In an acyclic graph, the shortest path contains at most
|V | − 1 arcs

➜ This is also true in every graph without negative weight cycle

s0 s1 s2 s3

s4s5

s6 s7
+2 +1 +1

−1

+1

+1

−2

+1

➜ Stop as soon as you have computed the paths with |V | − 1
arcs.
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One implementation of Bellman-Ford (adjacency matrix)

import math

# graph is an adjacency matrix
n = l en (graph)

# initialization of OPT table
OPT = [[ math.inf f o r _ i n range (n)] f o r _ i n range (n)]
OPT [0][5] = 0

# filling the table
f o r i i n range (1,n):

f o r v i n range (n):
OPT[i][v] = OPT[i -1][v]
f o r u i n range (n):

i f graph[v][u] != None and \
OPT[i][v] > OPT[i -1][u] + graph[v][u]:

OPT[i][v] = OPT[i -1][u] + graph[v][u]
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Bellman-Ford complexity

Complexity adjacency matrix
3 nested loops of |V | iterations each
an access in O(1) to ω((v , u)) at each turn of the inner loop!

➜ Hence, the total complexity of the algorithm is: O(|V |3).

Complexity adjacency list
do it home.
2 loops: for each of the |V | lines, we iterate over the |E | edges

➜ Hence, the total complexity of the algorithm is: O(|V | × |E |).
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Negative weight cycles detection (=⇒)

Proprerty (reminder)
In an graph without negative cycle, the shortest path has at most
|V | − 1 arcs.

➜ ∀v , OPT(|V | − 1, v) is the length of the shortest path

Contraposition
If a shortest path holds more than |V | − 1 arcs, then G has negative
cycles.

Corollary 1 (=⇒)
If one value in the row |V | is smaller than the one of the previous row:

∃v . OPT (|V |, v) < OPT (|V | − 1, v)

then there is a negative cycle in the graph.
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Negative weight cycles detection (⇐=)

Properties
1 If G contains a negative cycle, then for any node v from that cycle,

we can always improve its distance.
➜ ∃v . ∀n. ∃m > n OPT (m, v) < OPT (n, v)

2 If a row of the table is equal to the next one, then all the following
rows are equal to it as well

consequence of the recurrence formula

Corollary 2 (⇐=)
If G contains a negative cycle, then:

∃v . OPT (|V |, v) < OPT (|V | − 1, v)
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Negative weight cycles detection
Theorem
G contains a negative cycle iff

∃v . OPT (|V |, v) < OPT (|V | − 1, v)

# filling the table
f o r i i n range (1,n+1): # filling one more line

f o r v i n range (n):
OPT[i][v] = OPT[i -1][v]
f o r u i n range (n):

i f graph[v][u] != None and \
OPT[i][v] > OPT[i -1][u] + graph[v][u]:

OPT[i][v] = OPT[i -1][u] + graph[v][u]

# Detection of cycles
f o r v i n range (n):

i f OPT[n -1][v] > OPT[n][v]:
p r i n t ("Found: _negative_cycle !\n")
break ;
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Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞ 3 4 2 0
2 −3 0 3 3 0 0
3 −4 −2 3 3 0 0
4 −6 −2 3 2 0 0
5 −6 −2 3 0 0 0
6 −6 −2 3 0 0 0
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Example

s0 s1 s2

s3 s4

s5 = t

−4

−3

−2−1
+8 → +4

+3

+6

+4 +2

−3

s0 s1 s2 s3 s4 s5
0 ∞ ∞ ∞ ∞ ∞ 0
1 −3 ∞ 3 4 2 0
2 −3 0 3 3 0 0
3 −4 −2 3 3 0 0
4 −6 −2 2 2 0 0
5 −6 −2 2 0 −1 0
6 −6 −3 2 0 −1 0
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Example

Be careful
As soon as there is a negative weight cycle, the calculated cost for
s → t may be wrong !
. . . even if OPT (|V | − 1, s) = OPT (|V |, s)

s

t

1

2

1

0

-1
1

s 1 2 t
0 ∞ ∞ ∞ 0
1 1 ∞ ∞ 0
2 1 0 ∞ 0
3 0 0 ∞ 0
4 0 -1 ∞ 0
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Demo
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Distributed Bellman-Ford

Property
To compute the cost OPT (i , v) for node v at step i , we only need:

OPT (i − 1, v) the value at the previous step for v ;
OPT (i − 1, u) the value at the previous step for all the
neighbours u of v .

→ Each node can compute its cost independently, only by
communicating with its neighbours
. . . without being aware of the whole graph!

Application in telecommunication networks
Routing problem
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Routing in packet-switched communication networks

Problem
Find the best path to route packets up to their destinations.

Criteria (weights)
Shortest routes w.r.t number of links, minimal latency, . . .

Routing specifics
Each router holds a table (destination, next_router
(Next_Hop)).
Computations done locally in routers (without knowing the
configuration of the network)
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Routing in packet-switched communication networks

Data model (network)
routers are modeled by graph nodes
links between routers are modeled by graph arcs
distances (links numbers, latency) are modeled by arc weights

Communication
As soon as a router changes its routing table, it warns its
neighbours so that they can update their own tables also.
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Implementation

Each router runs a loop:

1 wait for a change notification of routing from one of its neighbours
2 recompute its own routing table (Final destination p → Next_Hop)
3 send its new distances to its neighbours
4 goto 1

Each router v keeps locally:
an array Mv with Mv [p] being the distance of the shortest path
between v and p

an array Next_Hopv where Next_Hopv [p] is the identifier of the
next router for any dispatch towards p
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Algorithm for each node v
Nv = ... # the list of neighbours of v

def process (u, Mu) :
"""
At each notification received from a neighbour u
:param Mu: routing table of u
"""

# update the local routing table
update = False
f o r p i n V:

i f Mu[p] + Timings [v][u] < Mv[p]:
Mv[p] = Mu[p] + Timings [v][u]
NextHop_v [p] = u
update = True

# notifying neighbours
i f update :

f o r u i n Nv:
send_update (u,Mv)
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Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms
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Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s2 s3
M1(p) 2 3
next(p) s2 s3

p s1 s4
M3(p) 3 1
next(p) s1 s4

p s1 s4
M2(p) 2 3
next(p) s1 s4

p s2 s3
M4(p) 3 1
next(p) s2 s3
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Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s1 s4
M3(p) 3 1
next(p) s1 s4

p s1 s4
M2(p) 2 3
next(p) s1 s4

p s2 s3
M4(p) 3 1
next(p) s2 s3

p s2 s3 s4
M1(p) 2 3 4
next(p) s2 s3 s3
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Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s1 s3 s4
M2(p) 2 4 3
next(p) s1 s4 s4

p s1 s2 s3
M4(p) 4 3 1
next(p) s3 s2 s3

p s1 s2 s4
M3(p) 3 4 1
next(p) s1 s4 s4

p s2 s3 s4
M1(p) 2 3 4
next(p) s2 s3 s3
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Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s1 s3 s4
M2(p) 2 4 3
next(p) s1 s4 s4

p s1 s2 s3
M4(p) 4 3 1
next(p) s3 s2 s3

p s1 s2 s4
M3(p) 3 4 1
next(p) s1 s4 s4

p s2 s3 s4
M1(p) 2 3 4
next(p) s2 s3 s3

X
network fault
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Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s1 s2 s4
M3(p) 3 4 1
next(p) s1 s4 s4

p s2 s3 s4
M1(p) 2 3 4
next(p) s2 s3 s3

X
network fault

p s1 s3 s4
M2(p) 2 4 ∞
next(p) s1 s4 null

p s1 s2 s3
M4(p) 4 ∞ 1
next(p) s3 null s3
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Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s2 s3 s4
M1(p) 2 3 4
next(p) s2 s3 s3

X
network fault

p s1 s2 s4
M3(p) 3 5 1
next(p) s1 s1 s4

p s1 s3 s4
M2(p) 2 4 6
next(p) s1 s4 s1

p s1 s2 s3
M4(p) 4 ∞ 1
next(p) s3 null s3
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Bellman-Ford algorithm as protocol

Distance Vector Protocol
This protocol is used in computer networks (e.g. on Internet)

→ Routing Information Protocol (RIP)

Example

s1

s2

s3

s4

2ms

3ms

3ms

1ms

p s2 s3 s4
M1(p) 2 3 4
next(p) s2 s3 s3

X
network fault

p s1 s2 s4
M3(p) 3 5 1
next(p) s1 s1 s4

p s1 s3 s4
M2(p) 2 4 6
next(p) s1 s4 s1

p s1 s2 s3
M4(p) 4 6 1
next(p) s3 s3 s3
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Main points to remember

« General » resolution method
Recurrence formula (sub-optimal structure)
The subproblems are not independent
Memoization technique: decrease the execution time by
memorizing the calculated values

➜ Classic compromise in computer science: time vs memory
Generally efficient but not always applicable
Shortest paths

✗ Be careful with negative weights!
✗ Be careful with negative cycles!

➜ Bellman-Ford algorithm: circumvents these two difficulties
Polynomial complexity (O(|V |3) or O(|V | × |E |))
Principle also used for packet routing
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Going further

Concret problem
In bioinformatics (computer science dedicated to biology),
sequence alignment allows two biological sequences (DNA, RNA or
proteins) to be closer, so as to explain the similar regions.
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Example

Given 2 sequences of any size: the first of size n and the second of
size m

C T A G C A G T C A

G A G C A T C A T C G

an alignment:

C T A G C A G − − T C A

G − A G C A T C A T C G

match substitution insert/delete

an other alignment:

C T A G C A G T C A − − −

− G A G C A − T C A T C G
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Which alignment to chose?

to each elementary operation we associate a score:
match : 1
substitution : -1
insert/delete : -2

The score of an alignment is the sum of the elementary scores

first alignment: −3 C T A G C A G − − T C A

G − A G C A T C A T C G

1 1 1 1 1 1-1 -1 -1-2 -2 -2
second alignment: −4

C T A G C A G T C A − − −

− G A G C A − T C A T C G
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Optimization problem

Sequence alignment
Given :

2 sequences
3 scores associated to the 3 elementary operations
(match, subst, ins/del)

Problem : find the alignment with the maximal score

Exponential Complexity!
Number of alignments:

∑n
i=0 C i

m+i × Cn−i
m = O(2n+m)
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Recursive Approach

Align([],[]) = 0
Align(S[0:n],[]) = n × score[′ins/del ′]
Align([],T [0:m]) = m × score[′ins/del ′]

Align(S[0:n],T [0:m]) = max



Align(S[0:n],T [0:m−1]) + score[′ins/del ′]
Align(S[0:n−1],T [0:m]) + score[′ins/del ′]

Align(S[0:n−1],T [0:m−1]) +
{

score[′match′] si S[n]=T [m]
score[′subst′] si S[n] ̸=T [m]

S : C T A G C A G T C A

T : G A G C A T C A T C G

C T A G C A G T C A −

G A G C A T C A T C G

-2

C T A G C A G T C A

G A G C A T C A T C G −

-2

C T A G C A G T C A

G A G C A T C A T C G

-1
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Recursive approach

Exponential complexity!
Ternary search tree of depth n + m
Complexity in O(3n+m)

Redundant computation!

S : C T A G C A G T C A

T : G A G C A T C A T C G

C T A G C A G T C A −

G A G C A T C A T C G

C T A G C A G T C A

G A G C A T C A T C G −

C T A G C A G T C A

G A G C A T C A T C G

C T A G C A G T C A −

G A G C A T C A T C − G

C T A G C A G T C − A

G A G C A T C A T C G −
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Recurrence formula

Sequence alignment
Let OPT (M, N) be the maximal score

of the alignment of the M first nucleotides of the first sequence
with the N first nucleotides of the second sequence

OPT (0, 0) = 0
OPT (N, M) = maximum among:

OPT (N − 1, M) + (−2) if insert Ne

OPT (N, M − 1) + (−2) if insert Me

OPT (N − 1, M − 1) + (±1) depending on match or supp
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Needleman and Wunsch algorithm (1970)
skipT

S G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

C T A G C A G − − T C A

G − A G C A T C A T C G

C T A G C A G T C A − − −

− G A G C A − T C A T C G
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Needleman and Wunsch algorithm (1970)
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Needleman and Wunsch algorithm (1970)
T

S

0

G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

skip

−2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

T
S

0

G

C

−2

−2 −1−4−4

−1-1 -3 -5 -5 -7 -9 -11 -13 -15 -17 -19

-3 -2 -4 -6 -6 -6 -8 -10 -12 -14 -16

-5 -2 -3 -5 -5 -7 -7 -7 -9 -11 -13

-5 -4 -1 -3 -6 -6 -8 -8 -8 -10 -10

-7 -6 -3 0 -2 -4 -5 -7 -9 -7 -9

-9 -6 -5 -2 1 -1 -3 -4 -6 -8 -8

-11 -8 -5 -4 -1 0 -2 -4 -5 -7 -7

-13 -10 -7 -6 -3 0 -1 -3 -3 -5 -7

-15 -12 -9 -6 -5 -2 1 -1 -3 -2 -4

-17 -14 -11 -8 -5 -4 -1 2 0 -2 -3

Goal: to find the alignment with the maximal score
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Needleman and Wunsch algorithm (1970)
T

S

0

G A G C A T C A T C G

C

T

A

G

C

A

G

T

C

A

skip

−2 −4 −6 −8 −10 −12 −14 −16 −18 −20 −22

−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

T
S

0

G

C

−2

−2 −1−4−4

−1-1 -3 -5 -5 -7 -9 -11 -13 -15 -17 -19

-3 -2 -4 -6 -6 -6 -8 -10 -12 -14 -16

-5 -2 -3 -5 -5 -7 -7 -7 -9 -11 -13

-5 -4 -1 -3 -6 -6 -8 -8 -8 -10 -10

-7 -6 -3 0 -2 -4 -5 -7 -9 -7 -9

-9 -6 -5 -2 1 -1 -3 -4 -6 -8 -8

-11 -8 -5 -4 -1 0 -2 -4 -5 -7 -7

-13 -10 -7 -6 -3 0 -1 -3 -3 -5 -7

-15 -12 -9 -6 -5 -2 1 -1 -3 -2 -4

-17 -14 -11 -8 -5 -4 -1 2 0 -2 -3

Step 1: we fill the first line and the first column

here score[’ins/del’] = -2 (→)
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Needleman and Wunsch algorithm (1970)
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Step 2: we fill every cells by maximizing on the 3 axes

here score[’match’] = 1 (→) and score[’subst’] = -1 (→)
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-7 -6 -3 0 -2 -4 -5 -7 -9 -7 -9

-9 -6 -5 -2 1 -1 -3 -4 -6 -8 -8

-11 -8 -5 -4 -1 0 -2 -4 -5 -7 -7

-13 -10 -7 -6 -3 0 -1 -3 -3 -5 -7

-15 -12 -9 -6 -5 -2 1 -1 -3 -2 -4

-17 -14 -11 -8 -5 -4 -1 2 0 -2 -3

Step 2: we fill every cells by maximizing on the 3 axes

here score[’match’] = 1 (→) and score[’subst’] = -1 (→)
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Change making Dynamic programming Shortest Path Conclusion Sequence alignment
Problem Exhaustive approach Dynamic programming Algorithm

Needleman and Wunsch algorithm (1970)

Among the 3n+m possible paths in the matrix, we found the
optimal alignment in n × m steps

Algorithm complexity
O(n × m) in time: size of the matrix

O(min(n, m)) in space: instead of keeping the complete matrix, we
keep only the current and precedent line
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