
The Turing Machine Class NP Polynomial-time reduction Complements

Algorithmics and Complexity
Cours 6/7 : Theory of complexity

CentraleSupélec – Gif

ST2 – Gif

ST2 – Gif Algorithmics and Complexity 1/54

The Turing Machine Class NP Polynomial-time reduction Complements

Problems in algorithmics

We saw:
decision problems (existence of a path,. . .);
optimization problems (minimum spanning tree, maximum
flow, sequence alignment, . . .);
algorithms running in polynomial time O(nc) with n the size
of the instance and c a constant number.

Remaining questions
What can be computed?
What can be computed effectively?
−→ Is there always a polynomial time algorithm for any problem?
How to formalize the notion of complexity?
How to classify problems by complexity?

ST2 – Gif Algorithmics and Complexity 2/54

The Turing Machine Class NP Polynomial-time reduction Complements

Problems in algorithmics

We saw:
decision problems (existence of a path,. . .);
optimization problems (minimum spanning tree, maximum
flow, sequence alignment, . . .);
algorithms running in polynomial time O(nc) with n the size
of the instance and c a constant number.

Remaining questions
What can be computed?

What can be computed effectively?
−→ Is there always a polynomial time algorithm for any problem?
How to formalize the notion of complexity?
How to classify problems by complexity?

ST2 – Gif Algorithmics and Complexity 2/54

The Turing Machine Class NP Polynomial-time reduction Complements

Problems in algorithmics

We saw:
decision problems (existence of a path,. . .);
optimization problems (minimum spanning tree, maximum
flow, sequence alignment, . . .);
algorithms running in polynomial time O(nc) with n the size
of the instance and c a constant number.

Remaining questions
What can be computed?
What can be computed effectively?
−→ Is there always a polynomial time algorithm for any problem?

How to formalize the notion of complexity?
How to classify problems by complexity?

ST2 – Gif Algorithmics and Complexity 2/54

The Turing Machine Class NP Polynomial-time reduction Complements

Problems in algorithmics

We saw:
decision problems (existence of a path,. . .);
optimization problems (minimum spanning tree, maximum
flow, sequence alignment, . . .);
algorithms running in polynomial time O(nc) with n the size
of the instance and c a constant number.

Remaining questions
What can be computed?
What can be computed effectively?
−→ Is there always a polynomial time algorithm for any problem?
How to formalize the notion of complexity?
How to classify problems by complexity?

ST2 – Gif Algorithmics and Complexity 2/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Plan

1 The Turing Machine
Definition
Class P

2 Class NP

3 Polynomial-time reduction

4 Complements

ST2 – Gif Algorithmics and Complexity 3/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Model of computer: the Turing Machine, 1936

Resources

−→ Formalization

1 a data file as input

an input tape

2 the program instructions

a table of rules

3 a memory

a work tape

4 registers and execution stack

a register

5 a data file as output

an output tape

The Turing Machine
The Turing Machine is a formalization of this structure.

There are many definitions/variants of the Turing Machine
(number of tapes, alphabet. . .).

ST2 – Gif Algorithmics and Complexity 4/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Model of computer: the Turing Machine, 1936

Resources

−→ Formalization

1 a data file as input

an input tape

2 the program instructions

a table of rules

3 a memory

a work tape

4 registers and execution stack

a register

5 a data file as output

an output tape

The Turing Machine
The Turing Machine is a formalization of this structure.

There are many definitions/variants of the Turing Machine
(number of tapes, alphabet. . .).

ST2 – Gif Algorithmics and Complexity 4/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Model of computer: the Turing Machine, 1936

Resources −→ Formalization
1 a data file as input an input tape
2 the program instructions

a table of rules

3 a memory

a work tape

4 registers and execution stack

a register

5 a data file as output

an output tape

The Turing Machine
The Turing Machine is a formalization of this structure.

There are many definitions/variants of the Turing Machine
(number of tapes, alphabet. . .).

ST2 – Gif Algorithmics and Complexity 4/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Model of computer: the Turing Machine, 1936

Resources −→ Formalization
1 a data file as input an input tape
2 the program instructions a table of rules
3 a memory

a work tape

4 registers and execution stack

a register

5 a data file as output

an output tape

The Turing Machine
The Turing Machine is a formalization of this structure.

There are many definitions/variants of the Turing Machine
(number of tapes, alphabet. . .).

ST2 – Gif Algorithmics and Complexity 4/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Model of computer: the Turing Machine, 1936

Resources −→ Formalization
1 a data file as input an input tape
2 the program instructions a table of rules
3 a memory a work tape
4 registers and execution stack

a register

5 a data file as output

an output tape

The Turing Machine
The Turing Machine is a formalization of this structure.

There are many definitions/variants of the Turing Machine
(number of tapes, alphabet. . .).

ST2 – Gif Algorithmics and Complexity 4/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Model of computer: the Turing Machine, 1936

Resources −→ Formalization
1 a data file as input an input tape
2 the program instructions a table of rules
3 a memory a work tape
4 registers and execution stack a register
5 a data file as output

an output tape

The Turing Machine
The Turing Machine is a formalization of this structure.

There are many definitions/variants of the Turing Machine
(number of tapes, alphabet. . .).

ST2 – Gif Algorithmics and Complexity 4/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Model of computer: the Turing Machine, 1936

Resources −→ Formalization
1 a data file as input an input tape
2 the program instructions a table of rules
3 a memory a work tape
4 registers and execution stack a register
5 a data file as output an output tape

The Turing Machine
The Turing Machine is a formalization of this structure.

There are many definitions/variants of the Turing Machine
(number of tapes, alphabet. . .).

ST2 – Gif Algorithmics and Complexity 4/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Model of computer: the Turing Machine, 1936

Resources −→ Formalization
1 a data file as input an input tape
2 the program instructions a table of rules
3 a memory a work tape
4 registers and execution stack a register
5 a data file as output an output tape

The Turing Machine
The Turing Machine is a formalization of this structure.
There are many definitions/variants of the Turing Machine
(number of tapes, alphabet. . .).

ST2 – Gif Algorithmics and Complexity 4/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Turing Machine Illustration

. . . b b a a a a . . . Input Tape

. . . b b a a a a . . . Work Tape

. . . b b a a a a . . . Output Tape

q0q1

q2

q3 . . .
qn

Finite Control

.

.

.

ST2 – Gif Algorithmics and Complexity 5/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Principle of the Turing Machine, 1936

Each machine has:
a register that stores the current state (the number of possible
states is finite);
three tapes (input, work and output tape) divided into cells
storing symbols (finite alphabet);
three heads that can read or write on the tapes and move left
or right to the next cell on a tape;

a table of rules/actions which, depending on:
the current state
the values read on tapes

indicates :
what symbol to write on each tape
how to move the heads (left/right)
what is the next state.

ST2 – Gif Algorithmics and Complexity 6/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Principle of the Turing Machine, 1936

Each machine has:
a register that stores the current state (the number of possible
states is finite);
three tapes (input, work and output tape) divided into cells
storing symbols (finite alphabet);
three heads that can read or write on the tapes and move left
or right to the next cell on a tape;
a table of rules/actions which, depending on:

the current state
the values read on tapes

indicates :
what symbol to write on each tape
how to move the heads (left/right)
what is the next state.

ST2 – Gif Algorithmics and Complexity 6/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Demo

Addition of 27 and 17 in binary : 11011#10001
Simulator of Turing Machine available online :
https://turingmachinesimulator.com/

ST2 – Gif Algorithmics and Complexity 7/54

https://turingmachinesimulator.com/

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

The Church Turing thesis

Other models of computation exist. So far all were simulated
by a Turing Machine.

The Church Turing thesis
Any physical computing system (based on silicon, DNA, neurons or
any other alien technology) can be simulated by a Turing Machine.

This is not a theorem, only a widely accepted theory
It implies that what can be computed doesn’t depend on the
model of computation we use

ST2 – Gif Algorithmics and Complexity 8/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

The Church Turing thesis

Other models of computation exist. So far all were simulated
by a Turing Machine.

The Church Turing thesis
Any physical computing system (based on silicon, DNA, neurons or
any other alien technology) can be simulated by a Turing Machine.

This is not a theorem, only a widely accepted theory
It implies that what can be computed doesn’t depend on the
model of computation we use

ST2 – Gif Algorithmics and Complexity 8/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Limits of this model

We cannot compute everything using a Turing Machine.

Undecidable problems
There are some functions that are not computable by any Turing
Machine.

Example, halting problem (Turing, Church, 1936)
There is no Turing Machine M which takes as input a Turing
Machine M ′ and determines whether M ′ halts or not.

verify whether a piece of code terminates is undecidable

ST2 – Gif Algorithmics and Complexity 9/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Runtime of a Turing Machine

How to measure the execution time of a TM?
Each action of the machine is a step (reading, writing on a
tape, moving a head)

Computation requires reading the whole entry, we then
measure the execution time according to the size of the entry.

For an entry x , we note |x | the size of x .

A TM computes a function f in time T (n) if the computation
of f (x) of any entry x such that n = |x | requires at most
T (|x |) steps.

ST2 – Gif Algorithmics and Complexity 10/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Runtime of a Turing Machine

How to measure the execution time of a TM?
Each action of the machine is a step (reading, writing on a
tape, moving a head)

Computation requires reading the whole entry, we then
measure the execution time according to the size of the entry.

For an entry x , we note |x | the size of x .

A TM computes a function f in time T (n) if the computation
of f (x) of any entry x such that n = |x | requires at most
T (|x |) steps.

ST2 – Gif Algorithmics and Complexity 10/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Runtime of a Turing Machine

How to measure the execution time of a TM?
Each action of the machine is a step (reading, writing on a
tape, moving a head)

Computation requires reading the whole entry, we then
measure the execution time according to the size of the entry.

For an entry x , we note |x | the size of x .

A TM computes a function f in time T (n) if the computation
of f (x) of any entry x such that n = |x | requires at most
T (|x |) steps.

ST2 – Gif Algorithmics and Complexity 10/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

The class P

Definition of P
The class P is the set of problems that can be solved by Turing
Machines in polynomial time poly(n).

Simple Turing Machines vs complex ones
Any function f computable by a Turing Machine M with k
tapes and an alphabet Γ in time T (n) can be computed by a
Turing Machine M̃ with a single tape and a binary alphabet in
time poly(T (n)).
The class P does not depend on the Turing Machine model
we consider.

ST2 – Gif Algorithmics and Complexity 11/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

The class P

Definition of P
The class P is the set of problems that can be solved by Turing
Machines in polynomial time poly(n).

Simple Turing Machines vs complex ones
Any function f computable by a Turing Machine M with k
tapes and an alphabet Γ in time T (n) can be computed by a
Turing Machine M̃ with a single tape and a binary alphabet in
time poly(T (n)).
The class P does not depend on the Turing Machine model
we consider.

ST2 – Gif Algorithmics and Complexity 11/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Wide questions

Importance of P
P is the class/set of easy problems.

Criticism about P
Although one can question the efficiency of an algorithm with
a complexity of O(n100), in practice complexity does not
exceed O(n5) for problems in P.
Worst case analysis can be too restrictive
Other computing models should be investigated (quantum
computing, randomized computing).

ST2 – Gif Algorithmics and Complexity 12/54

The Turing Machine Class NP Polynomial-time reduction Complements
Definition Class P

Issue

P is the class of problems for which we have efficient
algorithms.
There is a class of problems for which there is no algorithm.
Is there something in between ?

P

Connexity

Shortest Path
Sort

Halt?

ST2 – Gif Algorithmics and Complexity 13/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

Plan

1 The Turing Machine

2 Class NP
Intuition
Formal definition
P and NP
Examples

3 Polynomial-time reduction

4 Complements

ST2 – Gif Algorithmics and Complexity 14/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

Eternity

Eternity puzzle
Puzzle of 209 pieces, released in june
1999, with a reward of £1’000’000.
Two mathematicians of Cambridge won in
October 2000.

Verifying vs Solving
In Eternity, it is simple to verify that a solution is correct but
it is extremely difficult to solve it.
The NP-complete problem have a similar property.

ST2 – Gif Algorithmics and Complexity 15/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

Decision problems

Definition
A decision problem divides the set D of instances into two
sub-sets:

D+ of positive instances (for which the answer is true);
D− of negative instances (for which the answer is false).

Solving a decision problem is to determine, given I ∈ D, if I ∈ D+

(or if I ∈ D−).

ST2 – Gif Algorithmics and Complexity 16/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

Class NP : Intuition
Intuition
The set of decision problems for which:
Each positive instance I ∈ D+ has a solution S that can be
checked/verified by a polynomial-time algorithm

The checking algorithm receives as input a solution and
answers yes to the decision problem
The checking algorithm is polynomial
No other constraint on the solving algorithm: it can be
exponential!

(which answers yes/no to the problem without being given a solution)
To illustrate!
we can understand and verify the proof of a theorem, even if it
would be difficult to find the proof by ourselves.

skip formal definition

ST2 – Gif Algorithmics and Complexity 17/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

Class NP : Intuition
Intuition
The set of decision problems for which:
Each positive instance I ∈ D+ has a solution S that can be
checked/verified by a polynomial-time algorithm

The checking algorithm receives as input a solution and
answers yes to the decision problem

The checking algorithm is polynomial
No other constraint on the solving algorithm: it can be
exponential!

(which answers yes/no to the problem without being given a solution)
To illustrate!
we can understand and verify the proof of a theorem, even if it
would be difficult to find the proof by ourselves.

skip formal definition

ST2 – Gif Algorithmics and Complexity 17/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

Class NP : Intuition
Intuition
The set of decision problems for which:
Each positive instance I ∈ D+ has a solution S that can be
checked/verified by a polynomial-time algorithm

The checking algorithm receives as input a solution and
answers yes to the decision problem
The checking algorithm is polynomial
No other constraint on the solving algorithm: it can be
exponential!

(which answers yes/no to the problem without being given a solution)

To illustrate!
we can understand and verify the proof of a theorem, even if it
would be difficult to find the proof by ourselves.

skip formal definition

ST2 – Gif Algorithmics and Complexity 17/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

Class NP : Intuition
Intuition
The set of decision problems for which:
Each positive instance I ∈ D+ has a solution S that can be
checked/verified by a polynomial-time algorithm

The checking algorithm receives as input a solution and
answers yes to the decision problem
The checking algorithm is polynomial
No other constraint on the solving algorithm: it can be
exponential!

(which answers yes/no to the problem without being given a solution)
To illustrate!
we can understand and verify the proof of a theorem, even if it
would be difficult to find the proof by ourselves.

skip formal definition

ST2 – Gif Algorithmics and Complexity 17/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

Class NP : Formal definition

Definition of NP
A decision problem belongs to NP if it exists a polynomial time
binary relation R and a polynomial p such that :

I ∈ D+ ⇔ ∃x . R(I, x) and |x | ≤ p(|I|)

Remarks
x is a certificate proving that the instance I is positive.
R is computable in polynomial time by a Turing Machine.
We only consider the positive instances.
NP means "Nondeterministic Polynomial Time Turing
Machine", it comes from the original definition of the class.

ST2 – Gif Algorithmics and Complexity 18/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

Relations between P and NP

P
?
⊆ NP

P ?= NP

P
?
⊇ NP

ST2 – Gif Algorithmics and Complexity 19/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

Relations between P and NP

obvious!

P ⊆ NP
The solving algorithm is a checking algorithm:

It produces a certificate (any solution) and answers yes to the
decision problem

conjecture!

P ⊊ NP NPP
•

Find an NP problem and prove it not in P
P ̸= NP is the most important conjecture of the computer science

ST2 – Gif Algorithmics and Complexity 20/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

Relations between P and NP

obvious!

P ⊆ NP
The solving algorithm is a checking algorithm:

It produces a certificate (any solution) and answers yes to the
decision problem

conjecture!

P ⊊ NP NPP
•

Find an NP problem and prove it not in P
P ̸= NP is the most important conjecture of the computer science

ST2 – Gif Algorithmics and Complexity 20/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

Example of problems in NP 1/2

Stable
Instance :

G = (V , E) a graph ;
k ∈ N

Question : is there a stable S (independent set) such that:
S ⊆ V (sub-graph) with |S| ≥ k
∀u, v ∈ S. {u, v} /∈ E (the sub-graph induced does not
contain any edge)

Stable is in NP
We can check whether a solution S ⊆ V (certificate) is a stable of
size greater than or equal to k in polynomial time w.r.t the size of
G .

ST2 – Gif Algorithmics and Complexity 21/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

Example of problems in NP 2/2

Non-prime number
Instance :

x ∈ N
Question : is x a non-prime number?

The non-prime problem is in NP
There is a polynomial size certificate (n, m) with n ≤ m < x .
We verify in polynomial time (in the size of x) that x = n × m.

ST2 – Gif Algorithmics and Complexity 22/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

List of problems in NP

Problems in P ⊆ NP
shortest path, minimum spanning tree, max flow

Problems in NP
Stable, knapsack, sudoku

In practice, for those NP problems of the second list, we failed
to find a P solving algorithm

Most of researchers believe that P ̸= NP

ST2 – Gif Algorithmics and Complexity 23/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

List of problems in NP

Problems in P ⊆ NP
shortest path, minimum spanning tree, max flow

Problems in NP
Stable, knapsack, sudoku

In practice, for those NP problems of the second list, we failed
to find a P solving algorithm

Most of researchers believe that P ̸= NP

ST2 – Gif Algorithmics and Complexity 23/54

The Turing Machine Class NP Polynomial-time reduction Complements
Intuition Formal definition P and NP Examples

How to deal with NP problems which seem not to be in P ?

Can we classify these problems ?

ST2 – Gif Algorithmics and Complexity 24/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Plan

1 The Turing Machine

2 Class NP

3 Polynomial-time reduction
Principle
NP-completeness
SAT
SAT ≤ Stable
SAT ≤ D-HAM

4 Complements

ST2 – Gif Algorithmics and Complexity 25/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Clique problem

Clique
Instance :

G = (V , E) a graph ;
k ∈ N

Question : is there a clique S such that:
S ⊆ V (sub-graph) with |S| ≥ k
∀u, v ∈ S. {u, v} ∈ E (the sub-graph induced is complete)

Clearly this problem belongs to NP.

ST2 – Gif Algorithmics and Complexity 26/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Solving Clique using Stable 1/2

Clique instance with k = 3

edges inversion

Stable instance with k = 3

Stable of size 3Clique of size 3

Resolution

ST2 – Gif Algorithmics and Complexity 27/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Solving Clique using Stable 2/2

Consequence of the previous algorithm
The previous transformation can be done in polynomial time.

If there is a polynomial time algorithm to solve stable then
we can solve clique in polynomial time!

This notion is polynomial time reduction

ST2 – Gif Algorithmics and Complexity 28/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Solving Clique using Stable 2/2

Consequence of the previous algorithm
The previous transformation can be done in polynomial time.

If there is a polynomial time algorithm to solve stable then
we can solve clique in polynomial time!

This notion is polynomial time reduction

ST2 – Gif Algorithmics and Complexity 28/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Polynomial time reduction D1 ≤ D2

Given D1 = (D+
1 , D−

1) and D2 = (D+
2 , D−

2) two decision problems.

We say that D1 is reduced to D2 using a Karp reduction
(D1 ≤K D2) if it exists a function f : D1 → D2 such that :

I ∈ D+
1 ⇐⇒ f (I) ∈ D+

2 ;
f is computable in polynomial time.

Algorithm for D1

I1
f I2

Algorithm for D2

+true, if I2 is in D2
false, else

ST2 – Gif Algorithmics and Complexity 29/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

NP-completeness

NP-hard
A decision problem D is NP-hard if D′ ≤ D, ∀D′ ∈ NP.

NP-complete
A decision problem D is NP-complete if D is NP-hard and
D ∈ NP.

Theorem
If D ≤ D′ and D′ ≤ D′′ then D ≤ D′′.
If D is NP-hard and D ∈ P then P = NP.
If D is NP-complete then: D ∈ P iff P = NP.

ST2 – Gif Algorithmics and Complexity 30/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

NP-completeness

NP

NP-complete

Corollary
We can reduce any decision problem of NP into an NP-complete
problem.

is there an NP-complete problem?

ST2 – Gif Algorithmics and Complexity 31/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

NP-completeness

NP

NP-complete

Corollary
We can reduce any decision problem of NP into an NP-complete
problem.

is there an NP-complete problem?

ST2 – Gif Algorithmics and Complexity 31/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Boolean satisfaction

SAT
Entry: a CNF formula (Conjunctive Normal Form)

A set U of variables
A collection C of disjunctive clauses of literals, where each
literal is a variable or the negation of a variable.

Question : Is there an assignment of values to variables such that
all clauses are true?

(U1 ∨ U2 ∨ ¬U3) ∧ (¬U1 ∨ ¬U4) ∧ (U1 ∨ U2 ∨ ¬U5 ∨ U4)

ST2 – Gif Algorithmics and Complexity 32/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Boolean satisfaction

SAT
Entry: a CNF formula (Conjunctive Normal Form)

A set U of variables
A collection C of disjunctive clauses of literals, where each
literal is a variable or the negation of a variable.

Question : Is there an assignment of values to variables such that
all clauses are true?

(U1 ∨ U2 ∨ ¬U3) ∧ (¬U1 ∨ ¬U4) ∧ (U1 ∨ U2 ∨ ¬U5 ∨ U4)

ST2 – Gif Algorithmics and Complexity 32/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Boolean satisfaction

SAT
Entry: a CNF formula (Conjunctive Normal Form)

A set U of variables
A collection C of disjunctive clauses of literals, where each
literal is a variable or the negation of a variable.

Question : Is there an assignment of values to variables such that
all clauses are true?

(U1 ∨ U2 ∨ ¬U3) ∧ (¬U1 ∨ ¬U4) ∧ (U1 ∨ U2 ∨ ¬U5 ∨ U4)

a first set of solutions. . .

ST2 – Gif Algorithmics and Complexity 32/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Boolean satisfaction

SAT
Entry: a CNF formula (Conjunctive Normal Form)

A set U of variables
A collection C of disjunctive clauses of literals, where each
literal is a variable or the negation of a variable.

Question : Is there an assignment of values to variables such that
all clauses are true?

(U1 ∨ U2 ∨ ¬U3) ∧ (¬U1 ∨ ¬U4) ∧ (U1 ∨ U2 ∨ ¬U5 ∨ U4)

a second set of solutions. . .

ST2 – Gif Algorithmics and Complexity 32/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Cook-Levin theorem, 1971

Theorem
SAT is NP-complete

Sketch of the proof
Proving that SAT belongs to NP is obvious
We admit that SAT is NP-hard :
Given a problem D ∈ NP and a Turing Machine M solving D. For
any instance I of D, it is possible to build in polynomial time a SAT
formula φ(I) which evaluates to true if and only if M verifies I.

ST2 – Gif Algorithmics and Complexity 33/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Cook-Levin theorem, 1971

Theorem
SAT is NP-complete

Sketch of the proof
Proving that SAT belongs to NP is obvious
We admit that SAT is NP-hard :
Given a problem D ∈ NP and a Turing Machine M solving D. For
any instance I of D, it is possible to build in polynomial time a SAT
formula φ(I) which evaluates to true if and only if M verifies I.

ST2 – Gif Algorithmics and Complexity 33/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

is there other NP-Complete problems?

ST2 – Gif Algorithmics and Complexity 34/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Proving stable is NP-complete

Stable recall
Instance :

G = (V , E) a graph ;
k ∈ N

Question : is there a stable S of size greater than or equal to k ?

How to prove that Stable is NP-complete?

Prove it in NP (done)
Prove that it is NP-hard?
We may reduce one NP-complete problem to Stable as
polynomial reduction is transitive.

ST2 – Gif Algorithmics and Complexity 35/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Proving stable is NP-complete

Stable recall
Instance :

G = (V , E) a graph ;
k ∈ N

Question : is there a stable S of size greater than or equal to k ?

How to prove that Stable is NP-complete?
Prove it in NP (done)

Prove that it is NP-hard?
We may reduce one NP-complete problem to Stable as
polynomial reduction is transitive.

ST2 – Gif Algorithmics and Complexity 35/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Proving stable is NP-complete

Stable recall
Instance :

G = (V , E) a graph ;
k ∈ N

Question : is there a stable S of size greater than or equal to k ?

How to prove that Stable is NP-complete?
Prove it in NP (done)
Prove that it is NP-hard?

We may reduce one NP-complete problem to Stable as
polynomial reduction is transitive.

ST2 – Gif Algorithmics and Complexity 35/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Proving stable is NP-complete

Stable recall
Instance :

G = (V , E) a graph ;
k ∈ N

Question : is there a stable S of size greater than or equal to k ?

How to prove that Stable is NP-complete?
Prove it in NP (done)
Prove that it is NP-hard?
We may reduce one NP-complete problem to Stable as
polynomial reduction is transitive.

ST2 – Gif Algorithmics and Complexity 35/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

SAT ≤ Stable
We consider a CNF of k clauses:
(U1 ∨ U2 ∨ ¬U3)

∧
(¬U1 ∨ ¬U4)

∧
(U1 ∨ U2 ∨ ¬U5 ∨ U4)

Method

1 one vertex for each variable occurrence within a clause
2 link the vertices of the same clause
3 link positive and negative occurrences

satisfiable ⇒ stable of size greater than or equal to k
➜ each clause is satisfied.
➜ build a stable of size k by selecting the true literal in each

clause.
stable of size k ⇒ satisfiable

➜ each vertex of the stable corresponds to a literal satisfying a
different clause.

➜ by definition, the stable does not contains a pair of vertices
corresponding to a variable and its negation.

ST2 – Gif Algorithmics and Complexity 36/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

SAT ≤ Stable
We consider a CNF of k clauses:
(U1 ∨ U2 ∨ ¬U3)

∧
(¬U1 ∨ ¬U4)

∧
(U1 ∨ U2 ∨ ¬U5 ∨ U4)

Method
1 one vertex for each variable occurrence within a clause

2 link the vertices of the same clause
3 link positive and negative occurrences

satisfiable ⇒ stable of size greater than or equal to k
➜ each clause is satisfied.
➜ build a stable of size k by selecting the true literal in each

clause.
stable of size k ⇒ satisfiable

➜ each vertex of the stable corresponds to a literal satisfying a
different clause.

➜ by definition, the stable does not contains a pair of vertices
corresponding to a variable and its negation.

ST2 – Gif Algorithmics and Complexity 36/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

SAT ≤ Stable
We consider a CNF of k clauses:
(U1 ∨ U2 ∨ ¬U3)

∧
(¬U1 ∨ ¬U4)

∧
(U1 ∨ U2 ∨ ¬U5 ∨ U4)

Method
1 one vertex for each variable occurrence within a clause
2 link the vertices of the same clause

3 link positive and negative occurrences

satisfiable ⇒ stable of size greater than or equal to k
➜ each clause is satisfied.
➜ build a stable of size k by selecting the true literal in each

clause.
stable of size k ⇒ satisfiable

➜ each vertex of the stable corresponds to a literal satisfying a
different clause.

➜ by definition, the stable does not contains a pair of vertices
corresponding to a variable and its negation.

ST2 – Gif Algorithmics and Complexity 36/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

SAT ≤ Stable
We consider a CNF of k clauses:
(U1 ∨ U2 ∨ ¬U3)

∧
(¬U1 ∨ ¬U4)

∧
(U1 ∨ U2 ∨ ¬U5 ∨ U4)

Method
1 one vertex for each variable occurrence within a clause
2 link the vertices of the same clause
3 link positive and negative occurrences

satisfiable ⇒ stable of size greater than or equal to k
➜ each clause is satisfied.
➜ build a stable of size k by selecting the true literal in each

clause.
stable of size k ⇒ satisfiable

➜ each vertex of the stable corresponds to a literal satisfying a
different clause.

➜ by definition, the stable does not contains a pair of vertices
corresponding to a variable and its negation.

ST2 – Gif Algorithmics and Complexity 36/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

SAT ≤ Stable
We consider a CNF of k clauses:
(U1 ∨ U2 ∨ ¬U3)

∧
(¬U1 ∨ ¬U4)

∧
(U1 ∨ U2 ∨ ¬U5 ∨ U4)

satisfiable ⇒ stable of size greater than or equal to k
➜ each clause is satisfied.
➜ build a stable of size k by selecting the true literal in each

clause.
stable of size k ⇒ satisfiable

➜ each vertex of the stable corresponds to a literal satisfying a
different clause.

➜ by definition, the stable does not contains a pair of vertices
corresponding to a variable and its negation.

ST2 – Gif Algorithmics and Complexity 36/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

SAT ≤ Stable

Conclusion
We defined a reduction f which for each instance
ISAT of SAT:

creates an instance of Stable IStable = f (ISAT)
ISAT is positive ⇒ IStable is positive
ISAT is negative ⇒ IStable is negative

by IStable is positive ⇒ ISAT is positive
f is polynomial time

SAT STABLE

➜ SAT ≤ Stable

ST2 – Gif Algorithmics and Complexity 37/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Network of reductions of NP-complete problems

∀D ∈ NP

SAT

Stable

Clique

skip next reduction

ST2 – Gif Algorithmics and Complexity 38/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Directed Hamiltonian problem

D-HAM
Instance :

G = (V , A) a directed graph;
Question : is there a Hamiltonian cycle, i.e., cycles passing through
each vertex exactly one time?

In this example, presented by Lord Hamilton, the graph is non
directed.

ST2 – Gif Algorithmics and Complexity 39/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

D-HAM is NP-Complete

First : D-HAM ∈ NP
Given an instance of D-HAM (a graph G = (V , A)) and a cycle C , it
is possible to verify in polynomial time whether C is a Hamiltonian
cycle. D-HAM is in NP.

Second: polynomial reduction, SAT ≤ D-HAM
Let’s reduce SAT to D-HAM

ST2 – Gif Algorithmics and Complexity 40/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

D-HAM is NP-Complete

First : D-HAM ∈ NP
Given an instance of D-HAM (a graph G = (V , A)) and a cycle C , it
is possible to verify in polynomial time whether C is a Hamiltonian
cycle. D-HAM is in NP.

Second: polynomial reduction, SAT ≤ D-HAM
Let’s reduce SAT to D-HAM

ST2 – Gif Algorithmics and Complexity 40/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

SAT ≤ D-HAM

Given I an instance of SAT with variables x1, . . . , xn and clauses
C1, . . . , Ck .

(x1 ∨ x2) ∧ (¬x3 ∨ x4 ∨ ¬x5) ∧ . . . ∧ (¬x1)

Sketch of the reduction
1 Build graph structures to represent the variables and the

clauses.
2 Organize the structures together to encode the formula.
3 Prove that the final structure has a Hamiltonian cycle iff the

formula is satisfiable.

ST2 – Gif Algorithmics and Complexity 41/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

SAT ≤ D-HAM

For each variable xi , we build the following structure

x i

The cycle have to go through these structures. As a convention,
we set the corresponding variable to false if the cycle passes
through the structure from left to right, else we set it to true.

ST2 – Gif Algorithmics and Complexity 42/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

SAT ≤ D-HAM

We add a vertex for each clause and we link it to the existing
variable structures.

x i

if x is in Ci j Cj if x is in Ci kCk

Remark : For each variable, the structures must be long enough to
place the clauses (at least 3 + k nodes). The total number of
nodes (3n + kn) remains polynomial depending on the size of the
SAT formula.

ST2 – Gif Algorithmics and Complexity 43/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

SAT ≤ D-HAM

x i

x 1

x 2

x n

C1

C2

C3

Ck

s

t

ST2 – Gif Algorithmics and Complexity 44/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

SAT ≤ D-HAM

x i

x 1

x 2

x n

C1

C2

C3

Ck

s

t

ST2 – Gif Algorithmics and Complexity 45/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

SAT ≤ D-HAM

Suppose it exists a Hamiltonian cycle
The cycle encode the assignments of the variables (depending
on the traversal direction).
The Hamiltonian cycle has to visit each clause structure.
When visited, a clause is satisfied by setting one of its literals
to true.
So if there is a Hamiltonian cycle, it exists an assignment
satisfying the formula.

Suppose the formula is satisfiable
The assignment describes a traversal (be careful not to re-visit
clauses already satisfied)

ST2 – Gif Algorithmics and Complexity 46/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Network of reductions of NP-complete problems

∀D ∈ NP

SAT

STABLE

CLIQUE

D-HAM

HAM

TSPLONGESTPATH

INTEGERPROGQUADEQ

3-SAT

3-COLSUBSETSUM

ST2 – Gif Algorithmics and Complexity 47/54

The Turing Machine Class NP Polynomial-time reduction Complements
Principle NP-completeness SAT SAT ≤ Stable SAT ≤ D-HAM

Network of reductions of NP-complete problems

∀D ∈ NP

SAT

STABLE

CLIQUE

D-HAM

HAM

TSPLONGESTPATH

INTEGERPROGQUADEQ

3-SAT

3-COLSUBSETSUM

ST2 – Gif Algorithmics and Complexity 47/54

The Turing Machine Class NP Polynomial-time reduction Complements
coNP Hierarchy

Plan

1 The Turing Machine

2 Class NP

3 Polynomial-time reduction

4 Complements
coNP
Hierarchy

ST2 – Gif Algorithmics and Complexity 48/54

The Turing Machine Class NP Polynomial-time reduction Complements
coNP Hierarchy

do we have classified all problems ?

NP contains only the decision problems D = D+ ∪ D− for
which it exists a certificate for positive instances (I ∈ D+...).

ST2 – Gif Algorithmics and Complexity 49/54

The Turing Machine Class NP Polynomial-time reduction Complements
coNP Hierarchy

Other complexity classes: coNP

coNP
NP is the group of decision problems for which verifying a
solution is polynomial.
coNP is the group of decision problems for which verifying a
counter-example is polynomial.
We suppose coNP ̸= NP
In a similar way, it exists coNP-complete problems.
P ⊆ NP ∩ coNP

ST2 – Gif Algorithmics and Complexity 50/54

The Turing Machine Class NP Polynomial-time reduction Complements
coNP Hierarchy

Examples of coNP problems

Tautology
Consider a boolean formula, is it true for any assignment?
It is easier to exhibit a counter example than to prove that it
is true for all assignments.

Primality
Testing the primality of a number is in coNP, we can exhibit a
factor as a certificate.
In contrary, finding a certificate proving that it is prime and
that no factors exists, seems to be more difficult. However,
since 2002, Primality is in P!

ST2 – Gif Algorithmics and Complexity 51/54

The Turing Machine Class NP Polynomial-time reduction Complements
coNP Hierarchy

Examples of coNP problems

Tautology
Consider a boolean formula, is it true for any assignment?
It is easier to exhibit a counter example than to prove that it
is true for all assignments.

Primality
Testing the primality of a number is in coNP, we can exhibit a
factor as a certificate.
In contrary, finding a certificate proving that it is prime and
that no factors exists, seems to be more difficult. However,
since 2002, Primality is in P!

ST2 – Gif Algorithmics and Complexity 51/54

The Turing Machine Class NP Polynomial-time reduction Complements
coNP Hierarchy

And now? do we have classified all problems ?

What if verifying the certificate is not in P?

ST2 – Gif Algorithmics and Complexity 52/54

The Turing Machine Class NP Polynomial-time reduction Complements
coNP Hierarchy

Hierarchy of complexity classes

P

?
NP coNP

Σ2

PSPACE...

EXPTIME

Examples
Σ2 : given a boolean formula
ϕ(x , y), satisfy ∃x∀yϕ(x , y)

PSPACE : Othello (Reversi),
QBF

EXPTIME : Chess, Go

ST2 – Gif Algorithmics and Complexity 53/54

The Turing Machine Class NP Polynomial-time reduction Complements
coNP Hierarchy

What you should remember

Definitions of the P and NP classes
Definition of polynomial reduction
Application of polynomial reduction on simple problems (see
tutorial #5 and above)
Classical problems (SAT, Stable, HAM)

✗ You don’t have to remember the reductions. . .
✓ . . . but you should understand them and be able to explain

them!

ST2 – Gif Algorithmics and Complexity 54/54

	The Turing Machine
	Definition
	Class P

	Class NP
	Intuition
	Formal definition
	P and NP
	Examples

	Polynomial-time reduction
	Principle
	NP-completeness
	SAT
	SAT Stable
	SAT D-HAM

	Complements
	coNP
	Hierarchy

