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(. The Turing Machine Class NP Polynomial-time reduction Complements
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Problems in algorithmics

We saw:
@ decision problems (existence of a path,...);

@ optimization problems (minimum spanning tree, maximum
flow, sequence alignment, ...);

@ algorithms running in polynomial time O(n€) with n the size
of the instance and ¢ a constant number.

ST2 - Gif Algorithmics and Complexity 2/54



(. The Turing Machine Class NP Polynomial-time reduction Complements
()

Problems in algorithmics

We saw:
@ decision problems (existence of a path,...);
@ optimization problems (minimum spanning tree, maximum
flow, sequence alignment, ...);
@ algorithms running in polynomial time O(n€) with n the size
of the instance and ¢ a constant number.

Remaining questions
@ What can be computed?

ST2 - Gif Algorithmics and Complexity 2/54



(. The Turing Machine Class NP Polynomial-time reduction Complements
()

Problems in algorithmics

We saw:
@ decision problems (existence of a path,...);

@ optimization problems (minimum spanning tree, maximum
flow, sequence alignment, ...);

@ algorithms running in polynomial time O(n€) with n the size
of the instance and ¢ a constant number.

Remaining questions
@ What can be computed?
@ What can be computed effectively?

— Is there always a polynomial time algorithm for any problem?

ST2 - Gif Algorithmics and Complexity 2/54



(. The Turing Machine Class NP Polynomial-time reduction Complements
()

Problems in algorithmics

We saw:
@ decision problems (existence of a path,...);
@ optimization problems (minimum spanning tree, maximum
flow, sequence alignment, ...);
@ algorithms running in polynomial time O(n€) with n the size
of the instance and ¢ a constant number.

Remaining questions
@ What can be computed?

@ What can be computed effectively?
— Is there always a polynomial time algorithm for any problem?

@ How to formalize the notion of complexity?

@ How to classify problems by complexity?
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Plan

@ The Turing Machine
@ Definition
o Class P
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Model of computer: the Turing Machine, 1936

Resources
© a data file as input
@ the program instructions
© a memory
@ registers and execution stack

© a data file as output
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Complements

Model of computer: the Turing Machine, 1936

Resources —
O a data file as input
@ the program instructions
© a memory
@ registers and execution stack

© a data file as output

Formalization
an input tape
a table of rules
a work tape

a register

an output tape |

The Turing Machine

@ The Turing Machine is a formalization of this structure.

@ There are many definitions/variants of the Turing Machine

(number of tapes, alphabet...).
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Turing Machine lllustration

b|lblala|a]a -+« QOutput Tape
b|lblal|al|ala -+« Work Tape
b|bl|lal|al|al|a -+ Input Tape

Finite Control
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Principle of the Turing Machine, 1936

Each machine has:
@ a register that stores the current state (the number of possible
states is finite);
o three tapes (input, work and output tape) divided into cells
storing symbols (finite alphabet);
@ three heads that can read or write on the tapes and move left
or right to the next cell on a tape;
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Principle of the Turing Machine, 1936

Each machine has:

@ a register that stores the current state (the number of possible
states is finite);

o three tapes (input, work and output tape) divided into cells
storing symbols (finite alphabet);

@ three heads that can read or write on the tapes and move left
or right to the next cell on a tape;
@ a table of rules/actions which, depending on:
e the current state
o the values read on tapes
indicates :
o what symbol to write on each tape
o how to move the heads (left/right)
o what is the next state.
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Demo

o Addition of 27 and 17 in binary : 11011410001

o Simulator of Turing Machine available online :
https://turingmachinesimulator.com/

Binary addition

State: g5 Word Accepted! Steps: 26
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The Church Turing thesis

@ Other models of computation exist. So far all were simulated
by a Turing Machine.
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The Church Turing thesis

@ Other models of computation exist. So far all were simulated
by a Turing Machine.

The Church Turing thesis

Any physical computing system (based on silicon, DNA, neurons or
any other alien technology) can be simulated by a Turing Machine.

o This is not a theorem, only a widely accepted theory

o It implies that what can be computed doesn’'t depend on the
model of computation we use
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Limits of this model

We cannot compute everything using a Turing Machine.

Undecidable problems

There are some functions that are not computable by any Turing
Machine.

Example, halting problem (Turing, Church, 1936)

There is no Turing Machine M which takes as input a Turing
Machine M’ and determines whether M’ halts or not.

o verify whether a piece of code terminates is undecidable
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Runtime of a Turing Machine

How to measure the execution time of a TM?

e Each action of the machine is a step (reading, writing on a
tape, moving a head)
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Runtime of a Turing Machine

How to measure the execution time of a TM?

e Each action of the machine is a step (reading, writing on a
tape, moving a head)

o Computation requires reading the whole entry, we then
measure the execution time according to the size of the entry.

o For an entry x, we note |x| the size of x.

@ A TM computes a function f in time T(n) if the computation
of f(x) of any entry x such that n = |x| requires at most
T(|x|) steps.
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The class P

Definition of P

The class P is the set of problems that can be solved by Turing
Machines in polynomial time poly(n).
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The class P

Definition of P

The class P is the set of problems that can be solved by Turing
Machines in polynomial time poly(n).

Simple Turing Machines vs complex ones
@ Any function f computable by a Turing Machine M with k
tapes and an alphabet I in time T(n) can be computed by a
Turing Machine M with a single tape and a binary alphabet in
time poly(T(n)).
@ The class P does not depend on the Turing Machine model
we consider.
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Wide questions

Importance of P

@ P is the class/set of easy problems.

Criticism about P

@ Although one can question the efficiency of an algorithm with
a complexity of O(n'), in practice complexity does not
exceed O(n®) for problems in P.

o Worst case analysis can be too restrictive

@ Other computing models should be investigated (quantum
computing, randomized computing).
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Class NP Polynomial-time reduction Complements

e The Turing Machine
D) Definition Class P

Issue

@ P is the class of problems for which we have efficient
algorithms.
@ There is a class of problems for which there is no algorithm.

@ Is there something in between ?

Connexity
* Sort

Shortest Path *
% X
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Plan
© Class NP
@ Intuition
@ Formal definition
@ P and NP
@ Examples
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Eternity

Eternity puzzle

o Puzzle of 209 pieces, released in june
1999, with a reward of £1'000'000.

@ Two mathematicians of Cambridge won in
October 2000.

Verifying vs Solving
@ In Eternity, it is simple to verify that a solution is correct but
it is extremely difficult to solve it.

@ The NP-complete problem have a similar property.
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Decision problems

Definition
A decision problem divides the set D of instances into two
sub-sets:
e DT of positive instances (for which the answer is true);
@ D~ of negative instances (for which the answer is false).

Solving a decision problem is to determine, given / € D, if | € Dt
(orif 1 € D).
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Class NP : Intuition

Intuition

The set of decision problems for which:
Each positive instance / € D has a solution S that can be
checked /verified by a polynomial-time algorithm
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Class NP : Intuition

Intuition

The set of decision problems for which:
Each positive instance / € D has a solution S that can be
checked /verified by a polynomial-time algorithm

@ The checking algorithm receives as input a solution and
answers yes to the decision problem
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Class NP : Intuition

Intuition

The set of decision problems for which:
Each positive instance / € D has a solution S that can be
checked /verified by a polynomial-time algorithm

@ The checking algorithm receives as input a solution and
answers yes to the decision problem

@ The checking algorithm is polynomial

@ No other constraint on the solving algorithm: it can be
exponential!

(which answers yes/no to the problem without being given a solution)
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Class NP : Intuition

Intuition

The set of decision problems for which:

Each positive instance / € D has a solution S that can be
checked /verified by a polynomial-time algorithm

@ The checking algorithm receives as input a solution and
answers yes to the decision problem

@ The checking algorithm is polynomial

@ No other constraint on the solving algorithm: it can be
exponential!
(which answers yes/no to the problem without being given a solution)
To illustrate!
we can understand and verify the proof of a theorem, even if it
would be difficult to find the proof by ourselves.

» skip formal definition
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Class NP : Formal definition

Definition of NP

A decision problem belongs to NP if it exists a polynomial time
binary relation R and a polynomial p such that :

I € DT < 3x. R(1,x) and |x| < p(|/])

Remarks
@ x is a certificate proving that the instance / is positive.
@ R is computable in polynomial time by a Turing Machine.
@ We only consider the positive instances.

@ NP means "Nondeterministic Polynomial Time Turing
Machine", it comes from the original definition of the class.
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Relations between P and NP
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Relations between P and NP

obvious!

P C NP

@ The solving algorithm is a checking algorithm:

o It produces a certificate (any solution) and answers yes to the
decision problem
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Relations between P and NP

obvious!

P C NP

@ The solving algorithm is a checking algorithm:

o It produces a certificate (any solution) and answers yes to the
decision problem

conjecture!

P C NP

@ Find an NP problem and prove it not in P

@ P # NP is the most important conjecture of the computer science
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Example of problems in NP 1/2

Stable
Instance :
e G=(V,E) agraph;
e keN
Question : is there a stable S (independent set) such that:
e S C V (sub-graph) with |S| > k
o Yu,veS. {u,v} ¢ E (the sub-graph induced does not
contain any edge)

Stable is in NP

We can check whether a solution S C V (certificate) is a stable of
size greater than or equal to k in polynomial time w.r.t the size of
G.

.
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Example of problems in NP 2/2

Non-prime number
Instance :
e xeN

Question : is x a non-prime number?

The non-prime problem is in NP

@ There is a polynomial size certificate (n, m) with n < m < x.

o We verify in polynomial time (in the size of x) that x = n x m.
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List of problems in NP

Problems in P C NP J

shortest path, minimum spanning tree, max flow

Problems in NP
Stable, knapsack, sudoku J
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List of problems in NP

Problems in P C NP

shortest path, minimum spanning tree, max flow )

Problems in NP
Stable, knapsack, sudoku )

@ In practice, for those NP problems of the second list, we failed
to find a P solving algorithm

@ Most of researchers believe that P # NP
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How to deal with NP problems which seem not to be in P ?

Can we classify these problems ?
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Polynomial-time reduction

e The Turing Machine Class NP
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

Complements

Plan

© Polynomial-time reduction

]

o
]
o
o

Principle
NP-completeness
SAT

SAT < Stable
SAT < D-HAM
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Clique problem

Clique
Instance :
e G=(V,E) a graph ;
e keN
Question : is there a clique S such that:
e S C V (sub-graph) with |S| > k
o Yu,veS. {u,v} € E (the sub-graph induced is complete)

v

Clearly this problem belongs to NP.
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Solving Clique using Stable 1/2

edges inversion

Clique instance with k = 3 Stable instance with k =3

Resolution

Clique of size 3 Stable of size 3
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Solving Clique using Stable 2/2

Consequence of the previous algorithm

@ The previous transformation can be done in polynomial time.
If there is a polynomial time algorithm to solve stable then
we can solve clique in polynomial time!
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Solving Clique using Stable 2/2

Consequence of the previous algorithm

@ The previous transformation can be done in polynomial time.
If there is a polynomial time algorithm to solve stable then
we can solve clique in polynomial time!

@ This notion is polynomial time reduction
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Polynomial time reduction D; < D,

Given Dy = (D{",D;) and D, = (D5, D;) two decision problems.

We say that D; is reduced to D, using a Karp reduction
(D1 <k D») if it exists a function f : D; — D, such that :

o | € Df — f(I)e Dy ;

o f is computable in polynomial time.

e
|

Algorithm for D,

- true, if lpis in Dy
. |2 Nigorithim for Dy|—p,1c 20

le* D,
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NP-completeness

NP-hard
A decision problem D is NP-hard if D' < D,VD' € NP.

NP-complete
A decision problem D is NP-complete if D is NP-hard and
D e NP.

Theorem
o If D< D and D' < D" then D < D".
o If Dis NP-hard and D € P then P = NP.
e If D is NP-complete then: D € P iff P = NP.

ST2 - Gif Algorithmics and Complexity
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NP-completeness

M N
NP-complete

We can reduce any decision problem of NP into an NP-complete
problem.

Corollary
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NP-completeness

P
NP-complete

We can reduce any decision problem of NP into an NP-complete
problem.

Corollary

is there an NP-complete problem?
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Boolean satisfaction

SAT
Entry: a CNF formula (Conjunctive Normal Form)
o A set U of variables

@ A collection C of disjunctive clauses of literals, where each
literal is a variable or the negation of a variable.

(Ul VvV Uy VvV —|U3) A (—|U1 V —|U4) VAN (Ul VUV —=UsV U4)
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Boolean satisfaction

SAT
Entry: a CNF formula (Conjunctive Normal Form)
@ A set U of variables

o A collection C of disjunctive clauses of literals, where each
literal is a variable or the negation of a variable.

Question : Is there an assignment of values to variables such that
all clauses are true?

(Ul VvV Uy VvV —|U3) A (—|U1 V —|U4) A (Ul VUV —=UsV U4)
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Boolean satisfaction

SAT
Entry: a CNF formula (Conjunctive Normal Form)
@ A set U of variables
o A collection C of disjunctive clauses of literals, where each
literal is a variable or the negation of a variable.
Question : Is there an assignment of values to variables such that
all clauses are true? )

(Ul VvV U V —|U3) A (—|U1 V —|U4) A (Ul VvV Uy V—=UsV U4)

a first set of solutions. . .
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Boolean satisfaction

SAT
Entry: a CNF formula (Conjunctive Normal Form)
@ A set U of variables

o A collection C of disjunctive clauses of literals, where each
literal is a variable or the negation of a variable.

Question : Is there an assignment of values to variables such that
all clauses are true?

(U1 VvV Uy VvV —|U3) A (—|U1 V —|U4) A (Ul VUV —=UsV U4)

a second set of solutions. ..
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Cook-Levin theorem, 1971

Theorem
o SAT is NP-complete J
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Cook-Levin theorem, 1971

Theorem
o SAT is NP-complete

Sketch of the proof
@ Proving that SAT belongs to NP is obvious

@ We admit that SAT is NP-hard :
Given a problem D € NP and a Turing Machine M solving D. For
any instance | of D, it is possible to build in polynomial time a SAT

formula (1) which evaluates to true if and only if M verifies |I.
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is there other NP-Complete problems?
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Proving stable is NP-complete

Stable recall
Instance :

e G=(V,E) a graph ;

e keN

Question : is there a stable S of size greater than or equal to k 7

y

How to prove that Stable is NP-complete?
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Proving stable is NP-complete

Stable recall
Instance :

e G=(V,E) a graph ;

e keN

Question : is there a stable S of size greater than or equal to k 7

y

How to prove that Stable is NP-complete?
@ Prove it in NP (done)
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Proving stable is NP-complete

Stable recall
Instance :

e G=(V,E) a graph ;

e keN

Question : is there a stable S of size greater than or equal to k 7

y

How to prove that Stable is NP-complete?
@ Prove it in NP (done)
@ Prove that it is NP-hard?
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Proving stable is NP-complete

Stable recall
Instance :

e G=(V,E) a graph ;

e keN

Question : is there a stable S of size greater than or equal to k 7

How to prove that Stable is NP-complete?
@ Prove it in NP (done)

@ Prove that it is NP-hard?
We may reduce one NP-complete problem to Stable as

polynomial reduction is transitive.
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SAT < Stable
We consider a CNF of k clauses:
(U1VU2\/—|U3) A (—\Ul\/—\U4) A (U1\/U2\/—\U5\/U4)

Method
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SAT < Stable
We consider a CNF of k clauses:
(U1VU2\/—|U3) A (—\Ul\/—\U4) A (U1\/U2\/—\U5\/U4)

Method

@ one vertex for each variable occurrence within a clause
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e The Turing Machine Class NP Polynomial-time reduction Complements
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SAT < Stable
We consider a CNF of k clauses:

(U1VU2\/—|U3) A (—\Ul\/—\U4) A (U1\/U2\/—\U5\/U4)

— Fe

Method

@ one vertex for each variable occurrence within a clause

@ link the vertices of the same clause

ST2 - Gif Algorithmics and Complexity 36/54



e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

SAT < Stable
We consider a CNF of k clauses:
(U1VU2\/ﬁU3) A (ﬁUl\/ﬁUz;) A (U1\/U2\/ﬁU5\/U4)

Method
@ one vertex for each variable occurrence within a clause
@ link the vertices of the same clause

© link positive and negative occurrences
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e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

SAT < Stable
We consider a CNF of k clauses:
(U1VU2\/—\U3) A (—|U1\/—|U4) A (Ul\/UQ\/—'U5\/U4)

o satisfiable = stable of size greater than or equal to k
=» each clause is satisfied.
=» build a stable of size k by selecting the true literal in each
clause.
@ stable of size k = satisfiable
=» each vertex of the stable corresponds to a literal satisfying a
different clause.
=» by definition, the stable does not contains a pair of vertices
corresponding to a variable and its negation.
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e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

SAT < Stable
Conclusion
We defined a reduction f which for each instance
ISAT of SAT:
@ creates an instance of Stable /Istape = f(IsaT) ﬁ‘a
@ [gaT is positive = Igtaple is positive ’
@ IsaT is negative = Ispaple is Negative f
o by Isaple is positive = Isat is positive SAT ————>STABLE
e f is polynomial time
=» SAT < Stable )
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e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

Network of reductions of NP-complete problems

VD e NP

SAT

Stable

Clique

» skip next reduction
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e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

Directed Hamiltonian problem

D-HAM
Instance :
o G=(V,A) a directed graph;
Question : is there a Hamiltonian cycle, i.e., cycles passing through
each vertex exactly one time?

In this example, presented by Lord Hamilton, the graph is non
directed.
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e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

D-HAM is NP-Complete

First : D-HAM € NP

Given an instance of D-HAM (a graph G = (V,A)) and a cycle C, it
is possible to verify in polynomial time whether C is a Hamiltonian
cycle. D-HAM is in NP.
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e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

D-HAM is NP-Complete

First : D-HAM € NP

Given an instance of D-HAM (a graph G = (V,A)) and a cycle C, it
is possible to verify in polynomial time whether C is a Hamiltonian
cycle. D-HAM is in NP.

Second: polynomial reduction, SAT < D-HAM
Let's reduce SAT to D-HAM
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e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

SAT < D-HAM

Given [ an instance of SAT with variables x1, ..., x, and clauses
G, ..., C.

(A Vx)A(x3VxgVoxs)A...A(—x1)

Sketch of the reduction
© Build graph structures to represent the variables and the
clauses.
@ Organize the structures together to encode the formula.
© Prove that the final structure has a Hamiltonian cycle iff the
formula is satisfiable. )
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e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

SAT < D-HAM

For each variable x;, we build the following structure

The cycle have to go through these structures. As a convention,
we set the corresponding variable to false if the cycle passes
through the structure from left to right, else we set it to true.
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e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

SAT < D-HAM

We add a vertex for each clause and we link it to the existing
variable structures.

ifX;is in C; ifx; is in Cy

Remark : For each variable, the structures must be long enough to
place the clauses (at least 3 + k nodes). The total number of
nodes (3n + kn) remains polynomial depending on the size of the
SAT formula.
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e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

SAT < D-HAM

Xi
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e The Turing Machine Class NP Polynomial-time reduction Complements
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SAT < D-HAM
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e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

SAT < D-HAM

Suppose it exists a Hamiltonian cycle

@ The cycle encode the assignments of the variables (depending
on the traversal direction).

@ The Hamiltonian cycle has to visit each clause structure.

@ When visited, a clause is satisfied by setting one of its literals
to true.

@ So if there is a Hamiltonian cycle, it exists an assignment
satisfying the formula.

Suppose the formula is satisfiable

The assignment describes a traversal (be careful not to re-visit
clauses already satisfied)

ST2 - Gif Algorithmics and Complexity
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e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

Network of reductions of NP-complete problems

VD e NP

SAT

D-HAM STABLE

CLIQUE
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e The Turing Machine Class NP Polynomial-time reduction Complements
() Principle NP-completeness SAT SAT < Stable SAT < D-HAM

Network of reductions of NP-complete problems

VD e NP
SAT
D-HAM STABLE 3-SAT
HAM CLIQUE SUBSETSUM 3-CoL
\
LONGESTPATH TSP

QUADEQ INTEGERPROG
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e The Turing Machine Class NP Polynomial-time reduction Complements
() coNP Hierarchy

Plan

@ Complements
o coNP
@ Hierarchy
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e The Turing Machine Class NP Polynomial-time reduction Complements
() coNP Hierarchy

do we have classified all problems ?

NP contains only the decision problems D = D" U D~ for
which it exists a certificate for positive instances (/ € D*...).
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e The Turing Machine Class NP Polynomial-time reduction Complements
() coNP Hierarchy

Other

complexity classes: coNP

coNP

@ NP is the group of decision problems for which verifying a
solution is polynomial.

@ colNP is the group of decision problems for which verifying a
counter-example is polynomial.

@ We suppose coNP #= NP
@ In a similar way, it exists coNP-complete problems.
e PC NPNcoNP

ST2 - Gif
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e The Turing Machine Class NP Polynomial-time reduction Complements
() coNP Hierarchy

Examples of coNP problems

Tautology
o Consider a boolean formula, is it true for any assignment?

@ It is easier to exhibit a counter example than to prove that it
is true for all assignments.
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The Turing Machine Class NP Polynomial-time reduction Complements
coNP Hierarchy

Examples of coNP problems

Tautology
o Consider a boolean formula, is it true for any assignment?

@ It is easier to exhibit a counter example than to prove that it
is true for all assignments.

Primality
@ Testing the primality of a number is in coNP, we can exhibit a
factor as a certificate.
@ In contrary, finding a certificate proving that it is prime and
that no factors exists, seems to be more difficult. However,
since 2002, Primality is in P!
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e The Turing Machine Class NP Polynomial-time reduction Complements
() coNP Hierarchy

And now? do we have classified all problems ?

What if verifying the certificate is not in P?
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e The Turing Machine Class NP Polynomial-time reduction Complements
() colNP Hierarchy

Hierarchy of complexity classes

Examples

@ X, : given a boolean formula
¢(x,y), satisfy IxVyd(x, y)

@ PSPACE : Othello (Reversi),
QBF

@ EXPTIME : Chess, Go
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e The Turing Machine Class NP Polynomial-time reduction Complements
() coNP Hierarchy

What you should remember

@ Definitions of the P and NP classes

@ Definition of polynomial reduction

@ Application of polynomial reduction on simple problems (see
tutorial #5 and above)

o Classical problems (SAT, Stable, HAM)

X You don't have to remember the reductions. ..
v/ ...but you should understand them and be able to explain

them!

ST2 - Gif Algorithmics and Complexity 54/54



	The Turing Machine
	Definition
	Class P

	Class NP
	Intuition
	Formal definition
	P and NP
	Examples

	Polynomial-time reduction
	Principle
	NP-completeness
	SAT
	SAT  Stable
	SAT  D-HAM

	Complements
	coNP
	Hierarchy


