Algorithmics and Complexity

Lecture 7/7 : Approaches for Hard Problems

CentraleSupélec - Gif

ST2 - Gif
(1) Traveling Salesman Problem

- Formal definition
- Complexity

(2) Exact methods

(3) Heuristics and Approximation
4. Conclusion

Problem

Concrete problem

- Consider a set of cities and the distances between them, what is the shortest possible route that visits each city once and returns to the departure city?

This is the Travelling Salesman Problem (TSP) (In french le problème du voyageur de commerce).

Traveling Salesman Problem (TSP)

Optimization Problem

- Instance :
- $G=(V, E)$ a complete and undirected graph with $|V|=n$
- $d: E \rightarrow \mathbb{R}$ a weight function that associates a distance to each edge

Traveling Salesman Problem (TSP)

Optimization Problem

- Instance :
- $G=(V, E)$ a complete and undirected graph with $|V|=n$
- $d: E \rightarrow \mathbb{R}$ a weight function that associates a distance to each edge
- Question :
- Find $S=\left[s_{1}, \ldots, s_{n}\right]$ a list of elements of V, such that

Traveling Salesman Problem (TSP)

Optimization Problem

- Instance :
- $G=(V, E)$ a complete and undirected graph with $|V|=n$
- $d: E \rightarrow \mathbb{R}$ a weight function that associates a distance to each edge
- Question :
- Find $S=\left[s_{1}, \ldots, s_{n}\right]$ a list of elements of V, such that
- Constraints:
- Each element of V appears exactly once in S
- We minimize $\operatorname{Score}(S)=\sum_{s_{i} \in S} d\left(s_{i}, s_{i+1}\right)$
(we set $s_{n+1}=s_{1}$ to simplify the notations)

What to do at this stage?

(1) Browse a catalog of known problems to learn about existing results

- example: the compendium of Viggo Kann

What to do at this stage?

(1) Browse a catalog of known problems to learn about existing results

- example: the compendium of Viggo Kann
(2) Suppose (which is false) that this problem does not exist in the literature, we should study it starting by this question:
\rightarrow Is it in NP?

TSP as a decision problem

TSP as a decision problem

Decision Problem

- Instance :
- $G=(V, E)$ a complete undirected graph with $|V|=n$
- $d: E \rightarrow \mathbb{R}$ a weight function that associates a distance to each edge
- $B \in \mathbb{R}$ an upper bound
- Question :
- is there $S=\left[s_{1}, \ldots, s_{n}\right]$ a list of elements of V, such that
- Constraints:
- Each element of V appears exactly once in S
- $\sum_{s_{i} \in S} d\left(s_{i}, s_{i+1}\right) \leq B$

TSP as a decision problem

TSP is in NP?
The algorithm verifying a solution S of some positive instance (V, E) of the problem should check the two constraints of the problem:

- Each element of V appears exactly once in S
- $\sum_{s_{i} \in S} d\left(s_{i}, s_{i+1}\right) \leq B$

TSP as a decision problem

TSP is in NP?
The algorithm verifying a solution S of some positive instance (V, E) of the problem should check the two constraints of the problem:

- Each element of V appears exactly once in S
\rightarrow can be done in $\mathcal{O}(n)(n=|V|)$
- $\sum_{s_{i} \in S} d\left(s_{i}, s_{i+1}\right) \leq B$
\rightarrow can be done in $\mathcal{O}(n)$ (using an adjacency matrix)

TSP as a decision problem

TSP is in NP?

The algorithm verifying a solution S of some positive instance (V, E) of the problem should check the two constraints of the problem:

- Each element of V appears exactly once in S
\rightarrow can be done in $\mathcal{O}(n)(n=|V|)$
- $\sum_{s_{i} \in S} d\left(s_{i}, s_{i+1}\right) \leq B$
\rightarrow can be done in $\mathcal{O}(n)$ (using an adjacency matrix)
Thus we have a polynomial algorithm to check a solution.

Conclusion

\rightarrow The Traveling Salesman Problem is indeed in NP.

TSP as a decision problem

Is TSP NP-complete?
We know that the problem is $N P$, now we should either:

- Find a polynomial solving algorithm;
- or Show that the problem is NP-complete.

TSP as a decision problem

Is TSP NP-complete?
We know that the problem is $N P$, now we should either:

- Find a polynomial solving algorithm;
- or Show that the problem is NP-complete.
... by performing a polynomial reduction from a known problem

List of problems already addressed

- Clique
- Stable
- HAM/D-HAM
- SAT
- ...

Hamiltonian cycle

Hamiltonian cycle problem

 Instance :- $G=(V, E)$ a undirected graph with $|V|=n$

Question:

- Is there $S=\left[s_{1}, \ldots, s_{n}\right]$ an ordered list of element of V, such that

Constraints :

- Each element of V occurs exactly once in S
- $\forall s_{i} \in S,\left\{s_{i}, s_{i+1}\right\} \in E$

Hamiltonian cycle

Hamiltonian cycle problem

 Instance :- $G=(V, E)$ a undirected graph with $|V|=n$

Question:

- Is there $S=\left[s_{1}, \ldots, s_{n}\right]$ an ordered list of element of V, such that
Constraints :
- Each element of V occurs exactly once in S
- $\forall s_{i} \in S,\left\{s_{i}, s_{i+1}\right\} \in E$

D-HAM \leq HAM
D-HAM seen last lecture reduced to HAM

D-HAM \leq HAM

- A common reduction from a directed graph to a undirected one:

Reduction from the Hamiltonian cycle problem

Reduction from the Hamiltonian cycle problem

Can we reduce the Hamiltonian Cycle problem to the Traveling Salesman problem?

Reduction from the Hamiltonian cycle problem

Can we reduce the Hamiltonian Cycle problem to the Traveling Salesman problem?

We want to show that :
Hamiltonian cycle \leq Traveling Salesman HAM \leq TSP

Reduction from the Hamiltonian cycle problem

Can we reduce the Hamiltonian Cycle problem to the Traveling Salesman problem?

We want to show that :
Hamiltonian cycle \leq Traveling Salesman HAM \leq TSP

We present a polynomial reduction of each instance of the Hamiltonian Cycle to an instance of the Traveling Salesman problem

Polynomial Reduction

Reduction

Let $G=(V, E)$ be an instance of HAM, we construct $\left\langle G^{\prime}=\left(V^{\prime}, E^{\prime}\right), d, B\right\rangle$ with:

- $V^{\prime}=$
- $E^{\prime}=$

Polynomial Reduction

Reduction

Let $G=(V, E)$ be an instance of HAM, we construct $\left\langle G^{\prime}=\left(V^{\prime}, E^{\prime}\right), d, B\right\rangle$ with:

- $V^{\prime}=V$

We keep the same vertices...

- $E^{\prime}=$

Polynomial Reduction

Reduction

Let $G=(V, E)$ be an instance of HAM, we construct $\left\langle G^{\prime}=\left(V^{\prime}, E^{\prime}\right), d, B\right\rangle$ with:

- $V^{\prime}=V$

We keep the same vertices...

- $E^{\prime}=\{\{u, v\}, \forall u, v \in V \wedge u \neq v\}$
... but we construct a complete graph G^{\prime} !

Polynomial Reduction

Reduction

Let $G=(V, E)$ be an instance of HAM, we construct $\left\langle G^{\prime}=\left(V^{\prime}, E^{\prime}\right), d, B\right\rangle$ with:

- $V^{\prime}=V$

We keep the same vertices...

- $E^{\prime}=\{\{u, v\}, \forall u, v \in V \wedge u \neq v\}$
... but we construct a complete graph G^{\prime} !
- $\forall e \in E^{\prime}$,

$$
d(e)=
$$

- $B=$

Polynomial Reduction

Reduction

Let $G=(V, E)$ be an instance of HAM, we construct $\left\langle G^{\prime}=\left(V^{\prime}, E^{\prime}\right), d, B\right\rangle$ with:

- $V^{\prime}=V$

We keep the same vertices...

- $E^{\prime}=\{\{u, v\}, \forall u, v \in V \wedge u \neq v\}$
... but we construct a complete graph G^{\prime} !
- $\forall e \in E^{\prime}$,

$$
\begin{aligned}
& d(e)=0 \text { if } e \in E, \\
& d(e)=1 \text { if } e \notin E
\end{aligned}
$$

- $B=$

Polynomial Reduction

Reduction

Let $G=(V, E)$ be an instance of HAM, we construct $\left\langle G^{\prime}=\left(V^{\prime}, E^{\prime}\right), d, B\right\rangle$ with:

- $V^{\prime}=V$

We keep the same vertices...

- $E^{\prime}=\{\{u, v\}, \forall u, v \in V \wedge u \neq v\}$
... but we construct a complete graph G^{\prime} !
- $\forall e \in E^{\prime}$,

$$
\begin{aligned}
& d(e)=0 \text { if } e \in E, \\
& d(e)=1 \text { if } e \notin E
\end{aligned}
$$

- $B=0$

Polynomial Reduction

Let's show that it is indeed a polynomial reduction

NB: The transformation is polynomial (check each operation)

Let's show that it is indeed a polynomial reduction
NB: The transformation is polynomial (check each operation)
\Longrightarrow Let $S=\left[s_{1}, \ldots, s_{n}\right]$ be a solution of the instance G of HAM

Polynomial Reduction

Let's show that it is indeed a polynomial reduction
NB: The transformation is polynomial (check each operation)
\Longrightarrow Let $S=\left[s_{1}, \ldots, s_{n}\right]$ be a solution of the instance G of HAM S also defines a cycle in G^{\prime} of weight 0 (all $d(e)$ are 0)
\rightarrow So there is a solution for TSP.

Polynomial Reduction

Let's show that it is indeed a polynomial reduction
NB: The transformation is polynomial (check each operation)
\Longrightarrow Let $S=\left[s_{1}, \ldots, s_{n}\right]$ be a solution of the instance G of HAM S also defines a cycle in G^{\prime} of weight 0 (all d(e) are 0)
\rightarrow So there is a solution for TSP.
\Longleftarrow Let $S=\left[s_{1}, \ldots, s_{n}\right]$ be a solution of the instance $\left\langle G^{\prime}, d, B\right\rangle$ of TSP obtained by transformation from G

Polynomial Reduction

Let's show that it is indeed a polynomial reduction
NB: The transformation is polynomial (check each operation)
\Longrightarrow Let $S=\left[s_{1}, \ldots, s_{n}\right]$ be a solution of the instance G of HAM S also defines a cycle in G^{\prime} of weight 0 (all $d(e)$ are 0)
\rightarrow So there is a solution for TSP.
\Longleftarrow Let $S=\left[s_{1}, \ldots, s_{n}\right]$ be a solution of the instance $\left\langle G^{\prime}, d, B\right\rangle$ of TSP obtained by transformation from G $B=0$ and $d(e)=1$ for all $e \notin E$, so the solution only borrows edges from E !

Polynomial Reduction

Let's show that it is indeed a polynomial reduction
NB: The transformation is polynomial (check each operation)
\Longrightarrow Let $S=\left[s_{1}, \ldots, s_{n}\right]$ be a solution of the instance G of HAM S also defines a cycle in G^{\prime} of weight 0 (all $d(e)$ are 0)
\rightarrow So there is a solution for TSP.
\Longleftarrow Let $S=\left[s_{1}, \ldots, s_{n}\right]$ be a solution of the instance $\left\langle G^{\prime}, d, B\right\rangle$ of TSP obtained by transformation from G $B=0$ and $d(e)=1$ for all $e \notin E$, so the solution only borrows edges from E !
$\rightarrow S$ also defines a solution to the G instance of HAM By contraposition: no sol. for HAM instance \Rightarrow no sol. for TSP instance

Polynomial Reduction

Let's show that it is indeed a polynomial reduction
NB: The transformation is polynomial (check each operation)
\Longrightarrow Let $S=\left[s_{1}, \ldots, s_{n}\right]$ be a solution of the instance G of HAM S also defines a cycle in G^{\prime} of weight 0 (all $d(e)$ are 0) \rightarrow So there is a solution for TSP.
\Longleftarrow Let $S=\left[s_{1}, \ldots, s_{n}\right]$ be a solution of the instance $\left\langle G^{\prime}, d, B\right\rangle$ of TSP obtained by transformation from G $B=0$ and $d(e)=1$ for all $e \notin E$, so the solution only borrows edges from E !
$\rightarrow S$ also defines a solution to the G instance of HAM By contraposition: no sol. for HAM instance \Rightarrow no sol. for TSP instance

$$
\mathrm{HAM} \leq \mathrm{TSP}
$$

TSP complexity

TSP is NP-Complete

- Travelling Salesman is in NP
- Hamiltonian Cycle is NP-complete
- Hamiltonian Cycle \leq Travelling Salesman

TSP complexity

TSP is NP-Complete

- Travelling Salesman is in NP
- Hamiltonian Cycle is NP-complete
- Hamiltonian Cycle \leq Travelling Salesman
\rightarrow Travelling Salesman (decision problem) is NP-complete

TSP complexity

TSP is NP-Complete

- Travelling Salesman is in NP
- Hamiltonian Cycle is NP-complete
- Hamiltonian Cycle \leq Travelling Salesman
\rightarrow Travelling Salesman (decision problem) is NP-complete

Conclusion

It is not possible to compute an optimal solution in polynomial time (unless $\mathrm{P}=\mathrm{NP} . .$.)

(1) Traveling Salesman Problem

(2) Exact methods

- Brute Force
- Backtracking
- Solutions space
- Algorithm
- Improvement

(3) Heuristics and Approximation

Handle NP-hard optimization problems

Exact methods

We look for the best solution ... by trying to be efficient!
Examples: Backtracking, Branch \& Bound, Linear programming, ...

Handle NP-hard optimization problems

Exact methods

We look for the best solution ... by trying to be efficient!
Examples: Backtracking, Branch \& Bound, Linear programming, ...

Methods not necessarily exact, but in polynomial time

- heuristics algorithms and approximation algorithms
\rightarrow ex: greedy, see go further in the course
- Randomized algorithms (Monte Carlo, Las Vegas)
- General methods of exploring solution space
\rightarrow metaheuristics (ex: simulated annealing, genetic algorithms ...)

Handle NP-hard optimization problems

Exact methods

We look for the best solution ... by trying to be efficient!
Examples: Brute Force, Backtracking, Branch \& Bound, Linear programming, ...

Brute Force (exhaustive search)

Principle

(1) Enumerate successively all configurations. All possible solutions!
in TSP: all lists of $|V|$ nodes (all possible cycles)
(2) Evaluate the score of each configuration in TSP: compute for each cycle the sum of edges' weights
(3) Keep the best configuration in TSP: choose the cycle with the lowest score

Brute Force (exhaustive search)

Principle

(1) Enumerate successively all configurations. All possible solutions!
in TSP: all lists of $|V|$ nodes (all possible cycles)
$\rightarrow \frac{|V-1|!}{2}$ possible solutions
(2) Evaluate the score of each configuration in TSP: compute for each cycle the sum of edges' weights
(3) Keep the best configuration in TSP: choose the cycle with the lowest score

Exponential complexity

Backtracking

Principle

- Iterative construction of solutions
\rightarrow Determine the set of possible configurations

Backtracking

Principle

- Iterative construction of solutions
\rightarrow Determine the set of possible configurations

Example:
In TSP, at each step, we separate cases depending on :

- Option 1: the next node to visit
- Option 2 : adding or eliminating an edge

Backtracking

Principle

- Iterative construction of solutions
\rightarrow Determine the set of possible configurations

Example:
In TSP, at each step, we separate cases depending on :

- Option 1: the next node to visit
- Option 2 : adding or eliminating an edge
- We explore the solutions space.

Backtracking

Principle

- Iterative construction of solutions
\rightarrow Determine the set of possible configurations

Example:
In TSP, at each step, we separate cases depending on :

- Option 1: the next node to visit
- Option 2 : adding or eliminating an edge
- We explore the solutions space.
\rightarrow Backtracking is an exploration by branching over the solutions space

Exploration of the solutions space

Principle

\rightarrow The solutions space can be seen as a tree
where branches correspond to the iterative construction of the solutions
Example: in TSP, append a new element to the list (option 1)

Exploration of the solutions space

Principle

\rightarrow The solutions space can be seen as a tree
where branches correspond to the iterative construction of the solutions
Example: in TSP, append a new element to the list (option 1)

Exploration of the solutions space

Principle

\rightarrow The solutions space can be seen as a tree
where branches correspond to the iterative construction of the solutions
Example: in TSP, append a new element to the list (option 1)

\rightarrow Leaves contain possible solutions.

Exploration of the solutions space

Principle

Example: in TSP, append a new element to the list (option 1)

\rightarrow Solution space seen as a tree.

- Enumerate solutions by a depth-first exploration of this tree.
\rightarrow The aim is to choose an optimal solution by examining possible solutions in the leaves.
\rightarrow We say that this tree is implicit when it is built as the exploration progresses. We do not represent the solution tree in memory!

Exploration of the solutions space

Principle

Example: in TSP, append a new element to the list (option 1)

\rightarrow Solution space seen as a tree.

- Enumerate solutions by a depth-first exploration of this tree.
\rightarrow The aim is to choose an optimal solution by examining possible solutions in the leaves.
\rightarrow We say that this tree is implicit when it is built as the exploration progresses. We do not represent the solution tree in memory!

Branching depending on edges

- At each step, we separate the set of Hamiltonian cycles, between those who will take a chosen edge $\{i, j\}$ and those who will not.
\rightarrow Binary tree of height $|E|$

TSP example

Branching depending on edges

- At each step, we separate the set of Hamiltonian cycles, between those who will take a chosen edge $\{i, j\}$ and those who will not.
\rightarrow Binary tree of height $|E|$
all Hamiltonian cycles

taking $\{i, j\}$
not taking $\{i, j\}$

TSP example

Branching depending on next nodes

- At each step: choose a city among non-visited ones;
\rightarrow Tree : each node has as many children as remaining nodes.

Backtracking algorithm

Backtracking algorithm

Backtracking algorithm

Backtracking algorithm

Backtracking algorithm

Principle

For any partial or terminal solution s, we assume that we have the following functions:

- children(s): returns next step partial solutions of s
- terminal(s): returns true if the solution is terminal, false otherwise
- score(s): returns the score of the terminal solution s

Backtracking algorithm

code skeleton

1	bestScore = Inf
2	bestSol = None
3	def backtracking(s) :
4	if terminal(s) :
5	if score(s) < bestScore
6	bestScore = score(s)
7	bestSol = s
8	else
9	for c in children(s):
10	backtracking(c)

How to improve this algorithm?

Improving the algorithm

How to improve this algorithm?

Principle

We explore the space of solutions while pruning/cutting non-promising branches. Please note: improvements do not reduce complexity, which will remain exponential!

Improving the algorithm

How to improve this algorithm?

Principle

We explore the space of solutions while pruning/cutting non-promising branches. Please note: improvements do not reduce complexity, which will remain exponential!

Travelling Salesman case

- We note the score of the current best terminal solution: BestScore
- A branch is a partial solution: $s=\left[s_{1}, \ldots, s_{k}\right]$ (the beginning of a Hamiltonian path)
\rightarrow A non-promising branch is a partial solution that is already longer than BestScore: $\sum_{s_{i} \in s} d\left(s_{i}, s_{i+1}\right)>$ BestScore
x We stop the exploration of that branch!

Backtracking improvement

(1) Traveling Salesman Problem

(3) Heuristics and Approximation

Polynomial time algorithms for hard problems

Problem

The algorithms producing an optimal solution have an exponential complexity

- they can handle small instances

For large instances, you have to be satisfied with a solution that will not necessarily be optimal

Let us take a TSP instance...

...so small that an optimal solution is obvious.

Let us take a TSP instance...

...so small that an optimal solution is obvious.

Optimal solution $=1+3+1+3=8$

Greedy TSP

Idea of a greedy algorithm
(1) Choose a starting vertex v arbitrarily
(2) Repeat until the entire tour is made
(1) Chose among all neighbors of v the closest to it and not included in the tour under construction, v^{\prime},
(2) v^{\prime} becomes a new current vertex, $v \leftarrow v^{\prime}$.

And its complexity

Our algorithm is in polynomial time (as it looks like as one of the graph traversals).

* skip greedy in python

Its possible implementation (based upon DFS, the graphe definad

 as a matrix)```
def ClstNeighbor_TSP(graph,v): # v - current
 tour.append(v)
 if len(tour)==len(graph):
 return tour # complet tour
 min_dist = math.inf; candidat = None
 for n in graph[v]:
 if not n in tour:
 if graph[v][n]<min_dist:
 min_dist = graph[v][n]
 candidat = n
 ClstNeighbor_TSP(graph, candidat)
tour = [] # to collect the vertex order
ClstNeighbor_TSP(graph, arbitrary_start)
```


## Solution according to "the closest neighbor" approach



Greedy solution $=1+2+1+6=10$

## Solution quality of the "the closest neighbor" approach



Greedy solution $=1+2+1+6=10$

## Solution quality of the "the closest neighbor" approach



Greedy solution $=1+2+1+100=104$

## Solution quality of the "the closest neighbor" approach



Greedy solution $=1+2+1+100=104$
The last edge determines the solution quality.
Replacing the distance 6 by a huge value degrades the solution quality.

## Solution quality of the "the closest neighbor" approach



Greedy solution $=1+2+1+$ huge value $=$ huge value

## Solution quality of the "the closest neighbor" approach



Greedy solution $=1+2+1+$ huge value $=$ huge value

## Conclusion

The quality of a solution produced by our algorithm is not guaranteed.

## Solution quality

## Heuristics

A heuristic algorithm solves a difficult problem in polynomial time without guarantee of the solution quality.

## Solution quality

## Heuristics

A heuristic algorithm solves a difficult problem in polynomial time without guarantee of the solution quality.

## Approximation algorithm

An approximation algorithm produces a solution to a difficult problem in polynomial time whose quality is known. We know how many times at worst the solution produced for a problem of

- minimization is greater than the optimal solution
- maximization is smaller than the optimal solution.


## For an idea...

...of how to proceed we will present you an approximation algorithm solving TSP.

For an idea...
...of how to proceed we will present you an approximation algorithm solving TSP.

We restrict ourselves to metric spaces where the triangular inequality is valid and we proceed by construction*.
*No, it will not be greedy this time!

For an idea...
...of how to proceed we will present you an approximation algorithm solving TSP.

We restrict ourselves to metric spaces where the triangular inequality is valid and we proceed by construction*.
*No, it will not be greedy this time!

## Before starting

Our algorithm is in three steps. In their description OPT denotes the length of the optimal solution of TSP that we do not know.

## First step: Find a solution $T$ to MST for $G$



## First step : Find a solution $T$ to MST for $G$



Observation

$$
\text { weight }(T) \leq \text { OPT }
$$

## First step : Find a solution $T$ to MST for $G$



Observation

$$
\text { weight }(T) \leq \text { OPT }
$$

see lecture 3 on MST: the weight of an MST will never be greater than the length of an optimal TSP solution which is a cycle Complexity: polynomial (the same as Kruskal/Prim)

## Second step: Do a DFS of $T$


$T_{D}$ is a DFS tree of $T$ such that any $T$ edge is traversed twice. Starting from $b: T_{D}=(b, a, b, c, d, c, b)$.

## Second step: Do a DFS of $T$


$T_{D}$ is a DFS tree of $T$ such that any $T$ edge is traversed twice. Starting from $b: T_{D}=(b, a, b, c, d, c, b)$.

Observation

$$
\text { length }\left(T_{D}\right) \leq 2 \mathrm{OPT}
$$

## Second step: Do a DFS of $T$


$T_{D}$ is a DFS tree of $T$ such that any $T$ edge is traversed twice. Starting from $b: T_{D}=(b, a, b, c, d, c, b)$.

Observation

$$
\text { length }\left(T_{D}\right) \leq 2 \mathrm{OPT}
$$

the length of the $T_{D}$ traversal is at most twice as large as the weight of $T$.
Complexity: polynomial (the same as DFS).

## Third step: Transform $T_{D}$ into a cycle $C$

Keep only the first occurrence of a vertex in $T_{D}$ :
$T_{D}=(b, a, b, c, d, c, b) \rightarrow(b, a, \nmid \angle, c, d, \not \subset, \nmid z) \rightarrow(b, a, c, d)=C$.


## Third step: Transform $T_{D}$ into a cycle $C$

Keep only the first occurrence of a vertex in $T_{D}$ :
$T_{D}=(b, a, b, c, d, c, b) \rightarrow(b, a, \nmid \angle, c, d, \not \subset, \nmid z) \rightarrow(b, a, c, d)=C$.


Observation

## Third step: Transform $T_{D}$ into a cycle $C$

Keep only the first occurrence of a vertex in $T_{D}$ :
$T_{D}=(b, a, b, c, d, c, b) \rightarrow(b, a, \nmid \nmid, c, d, \not \subset, \nmid \mathcal{Z}) \rightarrow(b, a, c, d)=C$.


## Observation

Thanks to the triangular inequality: length $(C) \leq \operatorname{length}\left(T_{D}\right)$

## Third step: Transform $T_{D}$ into a cycle $C$

Keep only the first occurrence of a vertex in $T_{D}$ :
$T_{D}=(b, a, b, c, d, c, b) \rightarrow(b, a, \nmid \nmid, c, d, \not \subset, \nmid \mathcal{Z}) \rightarrow(b, a, c, d)=C$.


## Observation

Thanks to the triangular inequality: length $(C) \leq l e n g t h\left(T_{D}\right)$ consequently: length $(C) \leq$ length $\left(T_{D}\right) \leq 2 O P T$.

## Third step: Transform $T_{D}$ into a cycle $C$

Keep only the first occurrence of a vertex in $T_{D}$ :
$T_{D}=(b, a, b, c, d, c, b) \rightarrow(b, a, \nmid \angle, c, d, \not \subset, \nmid z) \rightarrow(b, a, c, d)=C$.


## Observation

Thanks to the triangular inequality: length $(C) \leq \operatorname{length}\left(T_{D}\right)$ consequently: length $(C) \leq$ length $\left(T_{D}\right) \leq 2 O P T$.
Complexity: polynomial (linear in $|V|$ ).

## To end with TSP

## Recap

- our approximation algorithm produces a solution never twice longer than an optimal solution in a space where the triangular inequality holds,
- there is an approximation algorithm taking advantage of the triangular inequality that yields a solution never $\frac{3}{2}$ times longer than an optimal solution (Christofides' algorithm: a five-step construction, its first step being a solution to MST),
- it is impossible to find an approximation algorithm for TSP in non-metric spaces.


## Approximation formally

Let $\mathcal{P}$ be an optimization problem, $f$ the function for evaluating the solutions of $\mathcal{P}$ and $\mathcal{A}$ an approximation algorithm.

## Approximation formally

Let $\mathcal{P}$ be an optimization problem, $f$ the function for evaluating the solutions of $\mathcal{P}$ and $\mathcal{A}$ an approximation algorithm.

## Definition

Let $I$ be an instance of $\mathcal{P}$, and $S$ be a solution for $I$ produced by $\mathcal{A}$ and $S^{*}$ be one optimal solution of $I$.

- the approximation ratio of $S$ on $I$ is: $\rho(I, S)=\frac{f(S)}{f\left(S^{*}\right)}$
- the algorithm $\mathcal{A}$ is a $\rho$-approximation for $\mathcal{P}$ if and only if: $\rho(I, S) \leq \rho$


## Pros and cons of an approximation algorithm

Pros and cons of an approximation algorithm
$\checkmark$ Polynomial time
$\checkmark$ Solution quality guaranteed
$\checkmark$ In practice, a solution obtained is potentially better than the theoretical guarantee
$X$ Impossible to find such an algorithm*
$x$ Polynomial time, but execution in practice too long§
$x$ Difficult to implement ${ }^{\S}$
$X$ Solutions produced "far from" an exact solution§

> *for some problems they do not exist
> §possible

## (1) Traveling Salesman Problem


(3) Heuristics and Approximation

4 Conclusion

## Keep in mind

NP-hard optimization problem ...

- Exact solution only for small instances
because the complexity of an exact algorithm is a priori exponential
- Large instances $\rightarrow$ approximate method
$\rightarrow$ We will look in polynomial time for solutions " which are not that bad " (but they are not necessarily optimal).

