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Problem

Concrete problem
Consider a set of cities and the distances between them, what
is the shortest possible route that visits each city once and
returns to the departure city?

This is the Travelling Salesman Problem (TSP) (In french le
problème du voyageur de commerce).
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Traveling Salesman Problem (TSP)

Optimization Problem
Instance :

G = (V , E ) a complete and undirected graph with |V | = n
d : E → R a weight function that associates a distance to each
edge

Question :
Find S = [s1, ..., sn] a list of elements of V , such that

Constraints:
Each element of V appears exactly once in S
We minimize Score(S) =

∑
si ∈S

d(si , si+1)

(we set sn+1 = s1 to simplify the notations)
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What to do at this stage?

1 Browse a catalog of known problems to learn about existing
results

example: the compendium of Viggo Kann

2 Suppose (which is false) that this problem does not exist in
the literature, we should study it starting by this question:

➜ Is it in NP?
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TSP as a decision problem

Decision Problem
Instance :

G = (V , E ) a complete undirected graph with |V | = n
d : E → R a weight function that associates a distance to each
edge
B ∈ R an upper bound

Question :
is there S = [s1, ..., sn] a list of elements of V , such that

Constraints:
Each element of V appears exactly once in S∑
si ∈S

d(si , si+1) ≤ B
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TSP as a decision problem

TSP is in NP?
The algorithm verifying a solution S of some positive instance
(V , E ) of the problem should check the two constraints of the
problem:

Each element of V appears exactly once in S

➜ can be done in O(n) (n = |V |)

∑
si ∈S

d(si , si+1) ≤ B

➜ can be done in O(n) (using an adjacency matrix)
Thus we have a polynomial algorithm to check a solution.

Conclusion
➜ The Traveling Salesman Problem is indeed in NP.
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TSP as a decision problem

Is TSP NP-complete?
We know that the problem is NP, now we should either:

Find a polynomial solving algorithm;
or Show that the problem is NP-complete.

. . . by performing a polynomial reduction from a known problem

List of problems already addressed
Clique
Stable
HAM/D-HAM
SAT
...
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Hamiltonian cycle

Hamiltonian cycle problem HAM
Instance :

G = (V , E ) a undirected graph with |V | = n
Question :

Is there S = [s1, ..., sn] an ordered list of element of V , such
that

Constraints :
Each element of V occurs exactly once in S
∀si ∈ S, {si , si+1} ∈ E

D-HAM ≤ HAM
D-HAM seen last lecture reduced to HAM skip reduction
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D-HAM ≤ HAM

A common reduction from a directed graph to a undirected
one:

a

b

v

c

d

e

aout

bout

vin v vout

cin

din

ein
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Reduction from the Hamiltonian cycle problem

Can we reduce the Hamiltonian Cycle problem to the Traveling
Salesman problem?

We want to show that :

Hamiltonian cycle ≤ Traveling Salesman
HAM ≤ TSP

We present a polynomial reduction of each instance of the
Hamiltonian Cycle to an instance of the Traveling Salesman

problem
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Polynomial Reduction 1/2

Reduction
Let G = (V , E ) be an instance of HAM, we construct
⟨G ′ = (V ′, E ′), d , B⟩ with:

V ′ =

V
We keep the same vertices. . .

E ′ =

{{u, v}, ∀u, v ∈ V ∧ u ̸= v}
. . . but we construct a complete graph G’!
∀e ∈ E ′,

d(e) =

0 if e ∈ E ,
d(e) = 1 if e /∈ E

B =

0
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Polynomial Reduction 2/2

Let’s show that it is indeed a polynomial reduction
NB: The transformation is polynomial (check each operation)

=⇒ Let S = [s1, ..., sn] be a solution of the instance G of HAM
S also defines a cycle in G ′ of weight 0 (all d(e) are 0)

➜ So there is a solution for TSP.

⇐= Let S = [s1, ..., sn] be a solution of the instance ⟨G ′, d , B⟩ of
TSP obtained by transformation from G
B = 0 and d(e) = 1 for all e /∈ E , so the solution only borrows edges from E !

➜ S also defines a solution to the G instance of HAM
By contraposition: no sol. for HAM instance ⇒ no sol. for TSP instance

HAM ≤ TSP

ST2 – Gif Algorithmics and Complexity 13/46
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TSP complexity

TSP is NP-Complete
Travelling Salesman is in NP
Hamiltonian Cycle is NP-complete
Hamiltonian Cycle ≤ Travelling Salesman

➜ Travelling Salesman (decision problem) is NP-complete

Conclusion
It is not possible to compute an optimal solution in polynomial
time (unless P=NP . . . )
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Handle NP-hard optimization problems

Exact methods
We look for the best solution . . . by trying to be efficient!
Examples: Backtracking, Branch & Bound, Linear programming, . . .

Methods not necessarily exact, but in polynomial time
heuristics algorithms and approximation algorithms
➜ ex: greedy, see go further in the course

Randomized algorithms (Monte Carlo, Las Vegas)
General methods of exploring solution space
➜ metaheuristics (ex: simulated annealing, genetic algorithms . . . )
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Exact methods
We look for the best solution . . . by trying to be efficient!
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programming, . . .
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Brute Force (exhaustive search)

Principle
1 Enumerate successively all configurations. All possible

solutions!
in TSP: all lists of |V | nodes (all possible cycles)

➜
|V −1|!

2 possible solutions

2 Evaluate the score of each configuration
in TSP: compute for each cycle the sum of edges’ weights

3 Keep the best configuration
in TSP: choose the cycle with the lowest score

Exponential complexity
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Backtracking

Principle
Iterative construction of solutions

➜ Determine the set of possible configurations

Example:
In TSP, at each step, we separate cases depending on :

Option 1 : the next node to visit
Option 2 : adding or eliminating an edge

We explore the solutions space.
➜ Backtracking is an exploration by branching over the

solutions space
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Exploration of the solutions space

Principle
➜ The solutions space can be seen as a tree

where branches correspond to the iterative construction of the
solutions
Example: in TSP, append a new element to the list (option 1)

[ a ]

[ a, b ] [ a, z ]. . .

[ a, b, c ] [ a, b, z ]. . .

➜ Leaves contain possible solutions.
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[ a, b ] [ a, z ]. . .

[ a, b, c ] [ a, b, z ]. . .

➜ Solution space seen as a tree.
Enumerate solutions by a depth-first exploration of this tree.
→ The aim is to choose an optimal solution by examining possible
solutions in the leaves.
→ We say that this tree is implicit when it is built as the exploration
progresses. We do not represent the solution tree in memory!
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TSP example (option 2)

Branching depending on edges
At each step, we separate the set of Hamiltonian cycles, between
those who will take a chosen edge {i , j} and those who will not.

➜ Binary tree of height |E |
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TSP example (option 1)

Branching depending on next nodes
At each step: choose a city among non-visited ones;

➜ Tree : each node has as many children as remaining nodes.

v1

v2

v3

...
...

v4

...
...

v3

v2

...
...

v4

...
...

n
cities
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Backtracking algorithm
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Backtracking algorithm

Principle
For any partial or terminal solution s, we assume that we have the
following functions:

children(s): returns next step partial solutions of s
terminal(s): returns true if the solution is terminal, false
otherwise
score(s): returns the score of the terminal solution s
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Backtracking algorithm

code skeleton

1 bestScore = Inf
2 bestSol = None
3 def backtracking (s) :
4 if terminal (s) :
5 if score(s) < bestScore :
6 bestScore = score(s)
7 bestSol = s
8 else :
9 for c in children (s):

10 backtracking (c)
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Improving the algorithm
How to improve this algorithm?

Principle
We explore the space of solutions while pruning/cutting
non-promising branches. Please note: improvements do not
reduce complexity, which will remain exponential!

Travelling Salesman case
We note the score of the current best terminal solution: BestScore
A branch is a partial solution: s = [s1, ..., sk ]
(the beginning of a Hamiltonian path)

➜ A non-promising branch is a partial solution that is already longer
than BestScore:

∑
si ∈s

d(si , si+1) > BestScore

✗ We stop the exploration of that branch!

ST2 – Gif Algorithmics and Complexity 27/46



Traveling Salesman Problem Exact methods Heuristics and Approximation Conclusion
Brute Force Backtracking Solutions space Algorithm Improvement

Improving the algorithm
How to improve this algorithm?

Principle
We explore the space of solutions while pruning/cutting
non-promising branches. Please note: improvements do not
reduce complexity, which will remain exponential!

Travelling Salesman case
We note the score of the current best terminal solution: BestScore
A branch is a partial solution: s = [s1, ..., sk ]
(the beginning of a Hamiltonian path)

➜ A non-promising branch is a partial solution that is already longer
than BestScore:

∑
si ∈s

d(si , si+1) > BestScore

✗ We stop the exploration of that branch!

ST2 – Gif Algorithmics and Complexity 27/46



Traveling Salesman Problem Exact methods Heuristics and Approximation Conclusion
Brute Force Backtracking Solutions space Algorithm Improvement

Improving the algorithm
How to improve this algorithm?

Principle
We explore the space of solutions while pruning/cutting
non-promising branches. Please note: improvements do not
reduce complexity, which will remain exponential!

Travelling Salesman case
We note the score of the current best terminal solution: BestScore
A branch is a partial solution: s = [s1, ..., sk ]
(the beginning of a Hamiltonian path)

➜ A non-promising branch is a partial solution that is already longer
than BestScore:

∑
si ∈s

d(si , si+1) > BestScore

✗ We stop the exploration of that branch!

ST2 – Gif Algorithmics and Complexity 27/46



Traveling Salesman Problem Exact methods Heuristics and Approximation Conclusion
Brute Force Backtracking Solutions space Algorithm Improvement

Backtracking improvement
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Polynomial time algorithms for hard problems

Problem
The algorithms producing an optimal solution have an exponential
complexity

they can handle small instances

For large instances, you have to be satisfied with a solution that
will not necessarily be optimal . . .
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Let us take a TSP instance...

...so small that an optimal solution is obvious.

a b

cd

1

3

6 2

3

1
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...so small that an optimal solution is obvious.

a b

cd
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Optimal solution = 1+3+1+3=8
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Greedy TSP

Idea of a greedy algorithm
1 Choose a starting vertex v arbitrarily
2 Repeat until the entire tour is made

1 Chose among all neighbors of v the closest to it and not
included in the tour under construction, v ′,

2 v ′ becomes a new current vertex, v ← v ′.

And its complexity
Our algorithm is in polynomial time (as it looks like as one of the
graph traversals).

skip greedy in python
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Its possible implementation (based upon DFS, the graphe definad
as a matrix)

1 def ClstNeighbor_TSP (graph ,v): # v - current
2 tour. append (v)
3 if len(tour )== len(graph ):
4 return tour # complet tour
5
6 min_dist = math.inf; candidat = None
7 for n in graph[v]:
8 if not n in tour:
9 if graph[v][n]< min_dist :

10 min_dist = graph[v][n]
11 candidat = n
12
13 ClstNeighbor_TSP (graph , candidat )
14
15 tour = [] # to collect the vertex order
16 ClstNeighbor_TSP (graph , arbitrary_start )
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Solution according to “the closest neighbor” approach
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Solution according to “the closest neighbor” approach

a b

cd
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Greedy solution = 1+2+1+6=10
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Solution quality of the “the closest neighbor” approach

a b

cd
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Greedy solution = 1+2+1+6=10
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Solution quality of the “the closest neighbor” approach

a b

cd
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Greedy solution = 1+2+1+100=104
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Solution quality of the “the closest neighbor” approach

a b

cd

1

3

100 2

3

1

Greedy solution = 1+2+1+100=104

The last edge determines the solution quality.
Replacing the distance 6 by a huge value degrades the solution
quality.
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Solution quality of the “the closest neighbor” approach

a b

cd

1

3

huge value 2

3

1

Greedy solution = 1+2+1+huge value = huge value
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Solution quality of the “the closest neighbor” approach

a b

cd

1

3

huge value 2

3

1

Greedy solution = 1+2+1+huge value = huge value

Conclusion
The quality of a solution produced by our algorithm is not
guaranteed.
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Solution quality

Heuristics
A heuristic algorithm solves a difficult problem in polynomial time
without guarantee of the solution quality.

Approximation algorithm
An approximation algorithm produces a solution to a difficult
problem in polynomial time whose quality is known. We know
how many times at worst the solution produced for a problem of

minimization is greater than the optimal solution
maximization is smaller than the optimal solution.

ST2 – Gif Algorithmics and Complexity 37/46



Traveling Salesman Problem Exact methods Heuristics and Approximation Conclusion

Solution quality

Heuristics
A heuristic algorithm solves a difficult problem in polynomial time
without guarantee of the solution quality.

Approximation algorithm
An approximation algorithm produces a solution to a difficult
problem in polynomial time whose quality is known. We know
how many times at worst the solution produced for a problem of

minimization is greater than the optimal solution
maximization is smaller than the optimal solution.

ST2 – Gif Algorithmics and Complexity 37/46



Traveling Salesman Problem Exact methods Heuristics and Approximation Conclusion

For an idea...

...of how to proceed we will present you an approximation
algorithm solving TSP.

We restrict ourselves to metric spaces
where the triangular inequality is valid and we proceed by
construction∗.

∗No, it will not be greedy this time!

Before starting
Our algorithm is in three steps. In their description OPT denotes
the length of the optimal solution of TSP that we do not know.
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First step : Find a solution T to MST for G

a b

cd

1

3

6 2

3

1

Observation

weight(T ) ≤ OPT

see lecture 3 on MST: the weight of an MST will never be greater
than the length of an optimal TSP solution which is a cycle
Complexity: polynomial (the same as Kruskal/Prim)
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Second step: Do a DFS of T
a b

cd

1

3

6 22

3

11

TD is a DFS tree of T such that any T edge is traversed twice.
Starting from b : TD = (b, a, b, c, d , c, b).

Observation

length(TD) ≤ 2OPT

the length of the TD traversal is at most twice as large as the
weight of T .
Complexity: polynomial (the same as DFS).
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Third step: Transform TD into a cycle C

Keep only the first occurrence of a vertex in TD:
TD = (b, a, b, c, d , c, b)→ (b, a,�Sb, c, d , �Ac,�Sb)→ (b, a, c, d) = C .

a b

cd

1

3

6 22

3

11

Observation
Thanks to the triangular inequality: length(C) ≤ length(TD)
consequently: length(C) ≤ length(TD) ≤ 2OPT.
Complexity: polynomial (linear in |V |).
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To end with TSP

Recap
our approximation algorithm produces a solution never twice
longer than an optimal solution in a space where the
triangular inequality holds,
there is an approximation algorithm taking advantage of the
triangular inequality that yields a solution never 3

2 times
longer than an optimal solution (Christofides’ algorithm: a
five-step construction, its first step being a solution to MST),
it is impossible to find an approximation algorithm for TSP in
non-metric spaces.
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Approximation formally

Let P be an optimization problem, f the function for evaluating
the solutions of P and A an approximation algorithm.

Definition
Let I be an instance of P, and S be a solution for I produced by A
and S∗ be one optimal solution of I.

the approximation ratio of S on I is: ρ(I, S) = f (S)
f (S∗)

the algorithm A is a ρ -approximation for P if and only if:
ρ(I, S) ≤ ρ
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Pros and cons of an approximation algorithm

Pros and cons of an approximation algorithm
✓ Polynomial time
✓ Solution quality guaranteed
✓ In practice, a solution obtained is potentially better than the

theoretical guarantee
✗ Impossible to find such an algorithm∗

✗ Polynomial time, but execution in practice too long§

✗ Difficult to implement§

✗ Solutions produced “far from” an exact solution§

∗for some problems they do not exist
§possible
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Keep in mind

NP-hard optimization problem . . .
Exact solution only for small instances
because the complexity of an exact algorithm is a priori exponential

Large instances → approximate method
➜ We will look in polynomial time for solutions “ which are
not that bad ” (but they are not necessarily optimal).
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