Algorithmics and complexity

TD 3/7- Flow graphs

Training exercises

Note: The solution elements given here are not complete. Their purpose is only to guide you. We encourage you to write a proper answer, as you would do for the exam. If any question remains, feel free to ask your tutorial supervisor for help.

Exercice 1 : Routing

A storage server S is connected to a terminal T through a network deployed upon four routers A, B, C, D. The link capacities, expressed in Mbps, are given below:

	A	B	C	D	T
S	2	6	4		
A		3		7	
B				2	5
C		1			
D	3				6

A user at the terminal T has to download a voluminous file stored at the server S. Through which links the file should be transmitted to shorten the user waiting time.

Question 1

Which well-known problem corresponds to this routing problem? Which algorithm could be used to solve it?

Solution elements :

- This is an optimization problem: Maximum Flow problem on a flow graph (routed network here).
- Ford Fulkerson Algorithm.

Question 2

Model this instance of the problem, and run this resolution algorithm step by step. Give the minimum cut.

Élements de correction :

We apply for example a DFS at each step of the algorithm to find an augmenting path:

- $S \rightarrow A \rightarrow B \rightarrow T: 2$
- $S \rightarrow B \rightarrow T: 3$
- $S \rightarrow B \rightarrow D \rightarrow T: 2$
- $S \rightarrow B \leftarrow A \rightarrow D \rightarrow T: 1$
- $S \rightarrow C \rightarrow B \leftarrow A \rightarrow D \rightarrow T: 1$
- the last call to find an augmenting path visits S and C and stops

The max flow is 9 , the minimum cut is $\{S, C\}$, and we obtain the following flow graph :

Question 3

What is the throughput of the routing found? How much time does it take to transfer a 100 MB file ($1 M B=$ 2^{23} bits)?

Solution elements :
Maximum flow $=9 \mathrm{Mbits} / \mathrm{s}$ according the the previous question. Sending the file will require:

$$
\frac{100 \times 2^{23}[\mathrm{bits}]}{9 \cdot 2^{20}[\mathrm{bits} / \mathrm{s}]}=88,8[\mathrm{~s}] .
$$

Exercice 2: Graph cut

Let $G=(V, E)$ be a non-oriented connected graph and let s and p be two vertices of the graph.
A sub-set of edges $S \subseteq E$ is an (s, p)-separator if any path between s and p go necessarily through an edge of S.

A set of paths between s and p are edge-disjoint if each pair of paths P_{i} and P_{j} with $i \neq j$ has no edges in common.

Menger's theorem: The maximum number of edge-disjoint paths that can be found between s and p in G is equal to the size of the minimum (s, p)-separator of G

Question 1

Prove the Menger's theorem.

Solution elements :

You need to turn G into a flow graph and then use the min-cut theorem presented in the lecture.
Each non-directed edge $\{u, v\}$ will give rise to two directed $\operatorname{arcs}(u, v)$ and (v, u), except those issuing from s or entering p. These edges will only be turned into a single arc directed "in the right direction". Write this transformation properly!
We set the capacity of each arc to 1 . We can observe that:

- The maximum number of edge-disjoint chains between s and p is equals to the maximum flow, since all capacities have been set to 1 (each edge can only be used once).
- The size of the minimum (s, p)-separator in G is equal to the capacity of the minimum (s, p)-cut in G^{\prime}.

Using the min-cut theorem, we have:

$$
\begin{aligned}
\max \text { number of edge-disjoint chains } & =\max \text { flow } \\
& =\min \text { cut } \\
& =\text { size of the smallest }(s, p) \text {-separator. }
\end{aligned}
$$

