
Algorithmics and complexity

TD 5/7 – Complexity theory

This tutorial session is about complexity and polynomial reduction.

Exercice 1 : Vertex Cover Problem

We know the Independent Set problem. We are also aware that it is NP-complete.

Instance:

• undirected connected graph G = (V,E),

• k ∈ N+

Question : Is there an independent set S (there are no edges between S vertices) such that |S| ≥ k ?

But, we do not know yet the problem of k-Vertex Cover which definition is:

Instance:

• undirected connected graph G = (V,E),

• k ∈ N+.

Question : Is there a subset V ′ ⊆ V of size |V ′| ≤ k, such that any edge {u, v} ∈ E has at least one of its
endpoints in V ′, u ∈ V ′ ∨ v ∈ V ′?

Question 1

Prove that
S is an independent set ⇐⇒ V − S is a vertex cover.

Solution elements :

⇒
Suppose that S is a stable and e = (u, v) an edge. At most one end of (u, v) can be in S. So at least one is in
V − S. So V − S is a vertex cover.

⇐
Suppose that V − S is a vertex cover and u ∈ S, v ∈ S. There can be no edge (u, v) ∈ E (otherwise it would not
be covered by V − S. So S is a stable.

1

Question 2

Prove that the k-Vertex Cover problem is NP-complete.

Solution elements :

Step 1. First, we need to show that the problem is NP: we can write an algorithm in Python that checks that
a subset V ′ is a solution to an instance (G = (V,E), k) of the vertex cover problem:
def verifier(V,E,k,V’):

if len(V’) > k:

return False

for v in V’:

if not v in V:

return False

for (u, v) in E:

if (u not in V’) and (v not in V’):

return False

return True

The verification of V ′ consists in browsing all the edges by checking if at least one of the two endpoints is in V ′.
This is done in O(|E| × |V ′|) if we use a list for V ′ and we can do better on average if we use a hashSet for V ′.
It doesn’t matter, as long as the complexity is polynomial in instance size.

Step 2. We will now show that the vertex cover problem is NP-hard using a polynomial reduction from the
Stable problem.

Let IStable = ⟨G = (V,E), k⟩ be an instance of the k-Stable problem. We simply build an instance IV C =
⟨G = (V,E), k′⟩ of the Vertex-Cover problem: the graph does not change and k′ = |V | − k. This transformation
algorithm is clearly polynomial!

We must show that: IStable is a positive instance ⇐⇒ IV C is a positive instance

Let us suppose that IStable is a positive instance of Stable, it admits a solution S ⊆ V with |S| ≥ k. From the
previous question, V ′ = V −S is a vertex cover and we have |V ′| = |V |− |S| ≤ |V |−k = k′. So IV C is a positive
instance of Vertex Cover which admits V ′ as solution.

Conversely, if IV C is a positive instance of Vertex Cover that admits V ′ (V ′ ⊆ V ∧ |V ′| ≤ k′) as a solution. From
the previous question, S = V −V ′ is a Stable and we have |S| = |V |− |V ′| ≥ |V |−k′ = k. So IStable is a positive
instance of Stable which admits S as a solution.

Step 3. In conclusion, there is a polynomial reduction from Stable (which is NP-complete and therefore NP-hard)
to Vertex Cover, so Vertex Cover is NP-hard. And since it is NP, it is also NP-complete.

Exercise 2 : Set Cover problem

We say that an element e is covered by a set U if e belongs to U . Let U be a finite set and S = {Si, i ∈ I} ⊂ P(U)
be a family of subsets of U . The problem consists in finding a cover of all the elements of U with a subfamily
of S.

For example, consider U = {0, 1, 2, 3, 4} and S = {{0, 1}︸ ︷︷ ︸
S0

, {2, 3}︸ ︷︷ ︸
S1

, {3, 4}︸ ︷︷ ︸
S2

, {0, 1, 2}︸ ︷︷ ︸
S3

}. One can cover U with

{S0, S1, S2}, but the cover composed of the minimal number of subsets is {S2, S3}.

2

Question 1

Formalize the corresponding decision problem.

Solution elements :

Data :

• a set of elements U

• a family S ⊂ P(U) of subsets of U .

• k ∈ N+, a positive natural number

Question : Is there a subfamily S′ ⊆ S such that:

• S′ covers U , i.e.: U = ∪Si∈S′Si

• the subfamily S′ is of size less than or equal to k, i.e.: card(S′) ≤ k.

Question 2

Show that the problem belongs to the complexity class NP.

Solution elements :

We will write in Python a function that returns true if and only if S′ is a coverage of U of size less than or equal
to k.

We propose a representation of the subfamily S′ ⊆ S by a simple list S′ of m = |S| booleans [s′0, . . . , s′m−1] such
that s′j = 1 if and only if Sj ∈ S′ (i.e., the set Sj is retained for the coverage S′).

U = [0,1,2,3,4]

S = [[0,1],[2,3],[3,4],[0,1,2]]

def SetCover_verif(U, S, SS, k):

subfamily size verification

if sum(SS) > k:

return False

coverage verification

for i in range(len(U)):

for j in range(len(S)):

if (SS[j] == 1) and i in S[j]:

break

else:

return False

return True

SetCover_verif(U, S, [1, 1, 1, 0], 3) # >>> True

SetCover_verif(U, S, [1, 0, 1, 0], 2) # >>> False

SetCover_verif(U, S, [0, 0, 1, 1], 2) # >>> True

We have a double loop |U |×|S| with each time a search in O(|U |) (i in S[j]), we obtain a polynomial complexity
in O(|U |2|S|). So we can check a solution in polynomial time: the problem is in NP.

3

Cameras in the subway

In a subway station, 360◦ cameras can be installed at each passage intersection to control users traffic. To
diminish costs, we want to install the minimum number of cameras but each corridor must be monitored by at
least one camera.

We consider the following plan of the subway station:

train line

exit

access gate

platform

Ticket counter

Question 3

Model the subway station using a graph whose nodes represent the intersections, exits or access to the platforms
and the edges represent the corridors. Can you cover the entire station with only 8 cameras? And with only 5?

Solution elements :

With 8, there’s plenty of solutions! But there is only two solutions with 5 cameras:

4

Question 4

It is natural to model the problem of placing cameras in the subway station as an instance of Vertex Cover
seen in the first exercise. We consider the graph G = (V,E) built for the subway station and we want to know
whether k vertices (where we will position the cameras) can cover all the edges (corridors).

Alternatively, model this problem as an instance of Set Cover seen in the second exercise.

Hint : Number all corridors

Solution elements :

The corridors are numbered as follows:

0

1

2

3

4

5 6

7

8

9

10 1112

0

1 2

3

4
5

6 7

8
9

10

11 12

We consider the set U = {0, . . . , 12} corresponding to the numbers of edges (of corridors) and the family of subsets:
S0 = {0, 3, 4, 6}, S1 = {0, 1, 2}, S2 = {1}, . . . , S6 = {5, 7, 9}, . . . , corresponding to each vertex (intersection, exit
or platform) and containing the ingoing edges.

the question is: is there a subfamily S′ ⊆ S such that |S′| ≤ k and S′ is covering U?

Question 5

Using a generalisation of the modeling exercise you did on the subway station instance, prove that the Set Cover
problem is NP-hard. What can you deduce from this?

Solution elements :

To show NP-hard, we need to propose a polynomial reduction from Vertex Cover to Set Cover.

Given an instance of vertex cover IV C = ⟨G = (V,E), k⟩, we will construct an instance of the Set Cover problem
ISC = (U, S = (Si), k) such that:

• U = E, the elements are the edges of the graph

• The vertices V are numbered from 1 to n (I = V = [1, n]). Then we define n subsets Si of U such that Si

is the set of edges for which the vertex i is an endpoint, Si = {(u, v) ∈ E|u = i ∨ v = i}.

This transformation is clearly polynomial in size of the instance O(|V |+ |E|).
Then we have to show that:

⇒ If V ′ ⊆ V is a vertex cover solution of size at most k then C = {Si, i ∈ V ′} is a family of size less than or
equal to k. And it is indeed a set cover, because any element e = (u, v) ∈ U = E, being an edge of G is
necessarily covered by at least one vertex, either u, or v, or both. Suppose that u is a covering vertex, we
obtain by construction that e ∈ Su ∈ C.

⇐ If C = {Si, i ∈ I ′} is a set cover of size less than or equal to k, the set of vertices V ′ = I ′ whose numbers are
indexing Si from C is of size at most k. The set V ′ is a vertex cover in the graph: if there exists an edge
(u, v) = e ∈ E = U , we know by construction of C that Su ∈ C or Sv ∈ C because e is covered by C. e is
thus covered in the graph either by u ∈ V ′, or by v ∈ V ′, or by these two vertices.

Conclusion: Set Cover is NP and also NP-hard, so it is NP-complete.

5

