
Algorithmics and complexity

TD 6/7 – Packing Problem

The goal of this TD is to compare different heuristics of the same family to solve/approximate an NP-complete
problem.

Exercise 1 : Problem Analysis

A company provides Cloud Computing services to its customers. This company has powerful machines available
upon reservation to perform computations that are CPU-intensive. Every customer can execute its tasks after
reserving some amount of computation time. Each task will be processed on a single machine.

The company has M servers available B minutes a day. It may need to rent additional servers but wishes, as
far as possible, to avoid this option. Every night, it must affect each of the N customers tasks to a machine.
The tasks are then executed the next day.

The company wants to design a software to know if it is possible to assign each task on a machine without the
need to rent additional servers.

Question 1

Give a formal definition of this problem (give the entries and the question of the problem).

Élements de correction :

The problem we want to solve is the Bin Packing.

BIN PACKING
Inputs :

• a set O of N objects of size oi ∈ N
• B ∈ N a bag size

• M a number of available bags

Question : Is there an assignment of the N objects in the M bags, such that the sum of sizes of the
items in each bag is less than or equal to B

Formally, we can represent the assignment in several ways :

• a function f which associates to each object number a bag number (f : [|1, N |] → [|1,M |]) verifying :
∀j ∈ [|1,M |].

∑
i∈f−1({j}) oi ≤ B ;

• a partition of the objects into M subsets;

• ...

1

Question 2

Show that the previously formalized problem is NP-Complete. You can use the NP-Complete Partition problem:

PARTITION
Inputs : Let E a set of natural numbers.
Question : is there a partition of E into two sets E1 and E2 such that:∑

ei∈E1

ei =
∑

ej∈E2

ej

Élements de correction :

We start by showing that the problem is in NP. We give an algorithm which checks a solution in polynomial
time.

In Python and in O(n logn):

O = [o1, o2, ..., oN]

M =

B =

Aff = bin_packing()

>>> Aff is a list of lists : Aff is a list of bags,

a bag is a list of objects, an object is an integer

def verify(O,Aff):

if len(Aff) > M: # M bags are enough

return False

Aff_flattened = [val for bin in Aff for val in bin]

if sorted(O) != sorted(Aff_flattened): # it is indeed an assignment

return False

for bin in Aff: # no bag is overflowing

if sum(bin) > B:

return False

return True

Then we show that we can reduce an NP-complete problem (here Partition) to our Bin Packing problem. From
an instance of Partition IPartition = ⟨E⟩, we build the instance IBinPacking = ⟨O,M,B⟩ of the Bin Packing
problem as follows:

• O = E

• M =2

• B = 1
2
×

∑
e∈E e

It remains to show that: IPartition is a positive instance if and only if IBinPacking is also a positive instance

2

Question 3

Define the corresponding optimization problem (give the entry and the question of the problem).

Élements de correction :

To formalize an optimization problem, we need to specify a function score to optimize (minimize or maximize):

BIN PACKING
Inputs :

• a set O of N objects of size oi ∈ N
• B ∈ N a bag size

Question : find an assignment (f : [|1, N |]→ N verifying ∀j ∈ img(f).
∑

i∈f−1({j}) oi ≤ B) minimizing

the number of bags i.e. score(f) = card(img(f)) where img(f) be the image set of f .

Question 4

Why do we think that there is no polynomial time algorithm to solve this problem?

Élements de correction :

If we solve the optimization problem in polynomial time, we answer the decision problem in polynomial time too.
It is sufficient to compare the optimal number of bags M∗ at the output of the optimization problem with the
number of bags M at the input of the decision problem. We answer ”yes” to the decision problem if and only if
M ≥M∗.

Finding a polynomial algorithm to solve an optimization problem associated with an NP-complete decision
problem is impossible under the postulate of P ̸= NP.

Exercice 2 : Resolution algorithms

We want to solve the Bin-Packing problem formalized above:

Question 1

Propose a greedy algorithm to solve the problem. Are there many?

Question 2

Write the algorithm (in pseudo-code or in Python) and give its complexity.

3

Question 3

Run your algorithm on an instance with a bin of size 10 and the following items:

4, 4, 5, 5, 5, 4, 4, 6, 6, 2, 2, 3, 3, 7, 7, 2, 2, 5, 5, 8, 8, 4, 4, 5

Élements de correction :

We build the solution step by step without ever questioning/changing a choice that has been made: once an
object has been added to a bag, we will never change it. For this allocation problem, we can consider many
strategies: First Fit, Best Fit, Next Fit...

First Fit (FF) : add the objects, one after the other, in the first possible bag (the one with the smallest number
and in which there is enough space). If there is no bag with eenough space, open a new one.

def FirstFit(O, B):

Aff = []

for o in O:

for bin in Aff:

if sum(bin) + o <= B :

bin.append(o) # if we find a bag where it fits

break

else:

Aff.append([o]) # otherwise we create a new bag

return Aff

BestFit (BF) : we put an object in the bag which is the most filled and in which there is enough space ;

def BestFit(O,B):

Aff = []

for o in O:

idx_bin = None

min_space = B

for idx in range(len(Aff)):

space = B - sum(Aff[idx])

if it has enough space for the object, it becomes the new best fit

if o <= space and space < min_space :

idx_bin = idx

min_space = space

if idx_bin == None:

If we found no bin for our object, use a new bin

Aff.append([o])

else:

Aff[idx_bin].append(o)

return Aff

The complexity of the FF and BF algorithms is O(N2). Indeed, the outer loop is executed exactly N times and,
in the worst case, we will use/run the N bags (inner loop).

The two algorithms above can be used/improved by having previously sorted the objects by decreasing order of
size. We obtain the algorithms First Fit Descreasing (FFD) and Best Fit Decreasing (BFD).

The worst-case complexity of these algorithms does not change because the cost of a sort O(N log(N)) is less
than the complexity of the rest O(N2).

4

Élements de correction :

Approach in O(N) :

NextFit (NF) : we put the element in the last opened bag when there is enough space left ; otherwise a new bag
is opened.

def NextFit(O,B):

Aff = [[]]

for o in O:

check if there is space left in the last bag

if sum(Aff[-1]) + o > B :

Aff.append([o]) # open a new bag and add the object

else :

Aff[-1].append(o) # add the object to the last bag

return Aff

Results:

• NF: 14 bags

• FF: 13

• FFD: 11! optimal (because the sum of the objects is equal to 110)

• BF: 12

• BFD: 11! optimal

For example, an instance for which the BFD and FFD do not find the optimal solution. Bag size 13, and the
elements (optimally grouped in 2 bags) : [3,5,5] [2,2,2,7].

In the TD-Practice, there is also an example where BFD and FFD do not give the same score.

Question 4

Estimate the efficiency of your algorithm : in the worst case, how far is your approximate solution from the
minimal number of servers you need?

Élements de correction :

First it is convenient to assume that each bag can contain the weight 1. The weight of the objects is normalized
with reference to the capacity of the bags: pi ←− oi

B
.

What is the minimum number of bags we need ?

The answer is immediate, ⌈
∑n

i=1 pi⌉. We can never have less than ⌈
∑n

i=1 pi⌉ bags. This answer is true for any
algorithm, not only FF.

What is a maximum number of bags we will use ?

Observation: there is at most one non-empty bag in which the available space is greater than or equal to 1
2
.

Proof: Suppose we have two bags i, j, i < j that are more than half empty. We see that the items in the bag j
could have been placed in bag i (whose number is lower) and FF should have put them in bag i. Our observation
is then true.

So we have all the bags (except, perhaps, one) at least half full. Therefore, we never need more than ⌈2
∑n

i=1 pi⌉
bags.

Conclusion: We are sure that a solution with FF never exceeds the optimal solution twice: k∗ ≤ k < 2k∗ where
k is our solution and k∗ is the optimal solution.

For information, FF and BF are 17/10-approxs and BFD and FFD are 11/9-approxs

5

