Algorithmics and complexity

TD 7/7- Solving NP-hard problems

Training exercises

Note: The solution elements given here are not complete. Their purpose is only to guide you. We encourage you to write a proper answer, as you would do for the exam. If any question remains, feel free to ask your tutorial supervisor for help.

Exercice 1 : Greedy

Question 1

Propose a greedy algorithm for the change making problem.

Solution elements :

Select the coin with the highest value but less than the remaining sum. Update the remaining sum and repeat the process until reaching 0 .

Question 2

Does this algorithm return the optimal solution? Prove it.

Solution elements :

Not for the general case. A counter example: the set of coins $1,3,4$ and the amount 6 The greedy algorithm uses 3 coins while the optimal solution only uses 2 .

There exists sets of coins for which this greedy algorithm is optimal. Such sets are called canonical.

Exercice 2 : Approximation

Let's consider the vertex cover problem:

VERTEX COVER

Inputs :

- $G=(V, E)$ a non-oriented graph with $E=V \times V$
- $k \in \mathbb{N}$

Question : Is there a subset $S \subseteq V$ of size k such that each edge $(u, v) \in E$ is connected to at least on vertex of S (i.e. $u \in S \vee v \in S$)?

The corresponding optimisation problem (minimising the size of S) has practical applications life the installation of a video surveillance system for the subway which cover every allay with a minimal budget.
The vertex cover problem is NP-hard.
Let's consider the greedy algorithm that repeat those steps while there are still uncovered edges: Take one edge randomly from all the uncovered edges. Add both extremities to the current solution. Update the remaining uncovered edges.

Formally:
Function greedy_edges (graph $G=(V, E)$)
$S \leftarrow \emptyset ;$
uncovered_edges $\leftarrow E$;
while uncovered_edges $\neq \emptyset$ do
$e=\{u, v\} \leftarrow$ a random edge in uncovered_edges;
$S \leftarrow S \cup\{u, v\} ;$
v_cover $\leftarrow\{e: e \in E \wedge e=\{v, w\}\} ;$
u_cover $\leftarrow\{e: e \in E \wedge e=\{u, w\}\}$;
uncovered_edges \leftarrow uncovered_edges - v_cover - u_cover
end
return S

Question 1

Prove that this algorithm has an approximation ratio of 2 .

Solution elements

An approximation ratio of 2 means that the ratio between the solution returned by the algorithm and the optimal solution can never be more than 2 .
Let S be a solution returned by the greedy algorithm and S^{*} an optimal solution for Minimum Vertex Cover.
Let A be the set of edges selected by the greedy algorithm.
$|S|=2|A|$
$\bigwedge_{a, b \in A} a \cap b=\emptyset$
Therefore $|A| \leq\left|S^{*}\right|$
We deduce that $|A| \leq\left|S^{*}\right| \leq|S|=2|A| \leq 2\left|S^{*}\right|$
Finally $1 \leq \frac{|S|}{\left|S^{*}\right|} \leq 2$
The greedy algorithm is a 2-approximation.

