
Algorithmics and complexity

TD 7/7 – Resolution of NP-hard Problems

The goal of this TD is to work on solving NP-hard problems.

Exercise 1 : Knapsack problem

Let us consider three different practical problems.

Cabbin Luggage

You live a nomad life, always traveling
around the world. You have a set of
items which you value differently, for
exemple your laptop is something you
always want with you hence has a high
value. On the contrary, you like your
SF t-shirt, but you can always buy a t-
shirt at destination, so your SF t-shirt
has a small value. You only carry cabin
baggage. Different airlines put different
limits on the weight of cabin baggage,
for example 7kg or 10kg. How do you
maximize the value of items you can
bring with you, while remaining below
the maxium weight allowed ?

Robbery

A thief manages to break
into a jewelry. There are
many items he can rob :
watches, rings, necklaces...
All these items have dif-
ferent values and different
weights. The thief can only
carry a limited weight of
goods. Assume items can be
split into categories, each
category having a weight, a
value and a number of items
occuring in this category.
How should the thief chose
what to take ?

Balanced Lunch

You are given a list of nutri-
tional values for a portion of
each item served in the daily
menu of your favorite uni-
versity restaurant. For each
item, you get the number of
calories (or weight) and the
protein value of a portion
of the item. What do you
chose to eat to maximize
the proteins you get and wi-
thout overtaking a certain
amount of calories ?

Complexity

Question 1

All three problems can be formalized using the same framework. Give a formal description of this problem :
what are the inputs, what is the decision question, what is the optimization question ?

Question 2

Show that this problem, known as KNAPSACK problem, is NP-complete. You can use the SUBSET-SUM
problem which is known to be NP-complete :

SUBSET SUM
Inputs :

— a set A of non-negative integers a1, . . . , an
— a value t ∈ N

Question : Is there a subset S ⊆ [1, n] with a total sum
∑

i∈S ai = t ?

1



Backtracking

We Consider a backtracking algorithm that decides the presence or absence of an item in the solution (under
construction) at each step. We obtain the following branching binary tree of height n :

(o1)

(o1, o2)

(o1, o2, o3) (o1, o2,��o3 )

(o1,��o2 )

(o1,��o2 , o3) (o1,��o2 ,��o3 )

(��o1 )

(��o1 , o2) (��o1 ,��o2 )

The backtracking algorithm will enumerate all possible solutions to find the one having the best score (the
greatest value here).

The backtracking algorithm will avoid to explore a branch if it already exceed the weight limit.

Question 3

Write the Python code of this algorithm. To help you, go to the practice page of the TD :

https://wdi.centralesupelec.fr/1CC2000/TD7ProgEn

Greedy

A greedy algorithm constructs a solution step by step without going back on decisions already taken. There is
no guaranty of optimality for the solution.

Question 4

Propose a greedy algorithm as efficient as possible for the knapsack problem.

Question 5

What is the time complexity of this algorithm?

Question 6

What would be the worst instance for this algorithm?

Question 7

Go back to the practice page of the TD. Complete the code concerning the greedy algorithm.

A benchmark is given in order to compare the execution time of backtracking and greedy on random instances.
An other benchmark is given to compare the quality of the solutions obtained by those algorithms.

Dynamic Programming

We want to propose a dynamic programming algorithm to solve the knapsack problem. We note V (i, j) the
maximum total value that can be inserted into the knapsack of capacity j picking up objects among o1, . . . , oi.

Question 8

What is the recursion formula that computes V (i, j) for all i and j in N ?

2

https://wdi.centralesupelec.fr/1CC2000/TD7ProgEn


Question 9

What would be the time and the space complexity of a dynamic programming algorithm implementing the
formula above ?

Question 10

Does this means that P = NP ?

Question 11

Back to the practice page of the TD, write and test this dynamic programming algorithm.

A benchmark is given to compare the execution time between all the algorithms.

3


