
Algorithmics and complexity

TD 7/7 – Resolution of NP-hard Problems

The goal of this TD is to work on solving NP-hard problems.

Exercise 1 : Knapsack problem

Let us consider three different practical problems.

Cabbin Luggage

You live a nomad life, always traveling
around the world. You have a set of
items which you value differently, for
exemple your laptop is something you
always want with you hence has a high
value. On the contrary, you like your
SF t-shirt, but you can always buy a t-
shirt at destination, so your SF t-shirt
has a small value. You only carry cabin
baggage. Different airlines put different
limits on the weight of cabin baggage,
for example 7kg or 10kg. How do you
maximize the value of items you can
bring with you, while remaining below
the maxium weight allowed ?

Robbery

A thief manages to break
into a jewelry. There are
many items he can rob :
watches, rings, necklaces...
All these items have dif-
ferent values and different
weights. The thief can only
carry a limited weight of
goods. Assume items can be
split into categories, each
category having a weight, a
value and a number of items
occuring in this category.
How should the thief chose
what to take ?

Balanced Lunch

You are given a list of nutri-
tional values for a portion of
each item served in the daily
menu of your favorite uni-
versity restaurant. For each
item, you get the number of
calories (or weight) and the
protein value of a portion
of the item. What do you
chose to eat to maximize
the proteins you get and wi-
thout overtaking a certain
amount of calories ?

Complexity

Question 1

All three problems can be formalized using the same framework. Give a formal description of this problem :
what are the inputs, what is the decision question, what is the optimization question ?

1

Solution elements :

All these problems are knapsack problems.

The binary decision problem is :

KNAPSACK - DECISION
Inputs :

— O a set of n objects o1, . . . , on, each oi has a weight wi and a value vi
— W a maximum Weight limit
— V the expected value

Question : Is there a subset S ⊆ {1, . . . , n} ? such that :
—

∑
i∈S wi ≤ W

—
∑

i∈S vi ≥ V

And the associated optimization problem is :

KNAPSACK - OPTIMIZATION
Inputs :

— O a set of n objects o1, . . . , on, each oi has a weight wi and a value vi
— W a weight limit

Question : What is the subset S ⊆ {1, . . . , n} having the maximum value for
∑

i∈S vi ? such that :
—

∑
i∈S wi ≤ W

For simplification, you can assume that all variables are integers.

Question 2

Show that this problem, known as KNAPSACK problem, is NP-complete. You can use the SUBSET-SUM
problem which is known to be NP-complete :

SUBSET SUM
Inputs :

— a set A of non-negative integers a1, . . . , an
— a value t ∈ N

Question : Is there a subset S ⊆ [1, n] with a total sum
∑

i∈S ai = t ?

Solution elements :

The NP-completeness is studied on the decision problem.

First, KNAPSACK is NP because we can write a polynomial (linear) algorithm to check a solution
(we only need to compute the sum of values

∑
i∈S vi and the sum of weights

∑
i∈S wi of the proposed solution

S ⊆ {1, . . . , n}).
Now, we must reduce SUBSET SUM to KNAPSACK. Given a subset-sum instance as above, we build
(polynomially) the following knapsack instance :

— O a set of n objects o1, . . . , on where wi = vi = ai (1)
— W = V = t (2)

We need to verify that S is a solution of the SUBSET SUM instance if and only if S is a solution of the targeted
KNAPSACK instance. Which is obvious since under (1) and (2) we have :∑

i∈S

wi ≤ W ∧
∑
i∈S

vi ≥ V ⇐⇒
∑
i∈S

ai = t

.

2

Backtracking

We Consider a backtracking algorithm that decides the presence or absence of an item in the solution (under
construction) at each step. We obtain the following branching binary tree of height n :

(o1)

(o1, o2)

(o1, o2, o3) (o1, o2,��o3)

(o1,��o2)

(o1,��o2 , o3) (o1,��o2 ,��o3)

(��o1)

(��o1 , o2) (��o1 ,��o2)

The backtracking algorithm will enumerate all possible solutions to find the one having the best score (the
greatest value here).

The backtracking algorithm will avoid to explore a branch if it already exceed the weight limit.

Question 3

Write the Python code of this algorithm. To help you, go to the practice page of the TD :

https://wdi.centralesupelec.fr/1CC2000/TD7ProgEn

Élements de correction :

computes the children of the current partial solution

def children(curParSol):

childrenSols = []

############### TODO : complete code ####################

if curParSol[’index’] < len(O_dict):

first_child = curParSol.copy() # It is not a deep copy (selected is not copied)

first_child[’index’] += 1

childrenSols.append(first_child)

next_obj = objs_list[curParSol[’index’]]

if curParSol[’weight’] + O_dict[next_obj][’w’] <= W:

second_child = {’selected’: curParSol[’selected’] | {next_obj}, # union

’index’: curParSol[’index’] + 1,

’weight’: curParSol[’weight’] + O_dict[next_obj][’w’],

’score’: curParSol[’score’] + O_dict[next_obj][’v’]}

childrenSols.append(second_child)

return childrenSols

Greedy

A greedy algorithm constructs a solution step by step without going back on decisions already taken. There is
no guaranty of optimality for the solution.

3

https://wdi.centralesupelec.fr/1CC2000/TD7ProgEn

Question 4

Propose a greedy algorithm as efficient as possible for the knapsack problem.

Solution elements :

We start by ordering the elements in a decreasing order based on the ratio value
wheight

.

Then we consider each element in order and we add it to the current solution if it fits in the bag.

Remark : be careful not to stop after the first element that does not fit.

Question 5

What is the time complexity of this algorithm?

Solution elements :

The most time consuming part of the algorithm is the sorting of the list.

The time complexity it therefore O(n ∗ log(n)).

Question 6

What would be the worst instance for this algorithm?

Solution elements :

Let B be the capacity of the bag. We consider n = 2 objects o1 and o2 such that w1 = B and v1 = B − 1 with
w2 = v2 = 1.

The greedy algorithm choose o2 and the stop (no more space for o1). However, the optimal solution consists in
selecting o1.

The solution obtained by the greedy algorithm is (B − 1) times worst than the optimal solution.

We say that the greedy algorithm is arbitrarily bad (for every value k, it is possible to create an instance of the
problem such that the obtained solution is k times worst than the optimal solution).

Question 7

Go back to the practice page of the TD. Complete the code concerning the greedy algorithm.

A benchmark is given in order to compare the execution time of backtracking and greedy on random instances.
An other benchmark is given to compare the quality of the solutions obtained by those algorithms.

Solution elements :

objs_list = sorted(O_dict.keys(), key = lambda obj: O_dict[obj][’v’] / O_dict[obj][’w’], \

reverse=True)

for obj_name in objs_list:

next_obj = O_dict[obj_name]

if sol[’weight’] + next_obj[’w’] > W :

continue

sol[’selected’].add(obj_name)

sol[’weight’] += next_obj[’w’]

sol[’score’] += next_obj[’v’]

Dynamic Programming

We want to propose a dynamic programming algorithm to solve the knapsack problem. We note V (i, j) the
maximum total value that can be inserted into the knapsack of capacity j picking up objects among o1, . . . , oi.

4

Question 8

What is the recursion formula that computes V (i, j) for all i and j in N ?

Solution elements :

We suppose here that all weights wi and W are strictly positive natural numbers. The recursive formula is as
follows :

— V (0, j) = 0
— V (i, 0) = 0
— 1 ≤ i and 1 ≤ j < wi then V (i, j) = V (i− 1, j)
— 1 ≤ i and wi ≤ j then V (i, j) = max (V (i− 1, j), vi + V (i− 1, j − wi))

Indeed, you can either obtain the best solution with the i − 1 first objects but without using the object oi, or
find the best solution using oi together with the best solution for the i − 1 first objects with maximum weight
reduced by wi.

Question 9

What would be the time and the space complexity of a dynamic programming algorithm implementing the
formula above ?

Solution elements :

To answer the KNAPSACK optimization problem we need to compute V (n,W).

In order to avoid repeating computations, we will use a matrix V of size (n+ 1)× (W + 1)

Both time and space complexity are in O(n×W).

Question 10

Does this means that P = NP ?

Solution elements :

At first sight, it seems that we solved an NP-hard problem in polynomial time ! !

This is tricky, you need to understand that the inputs are numbers given in binary representation. Only a
logarithmic number of bits is required to write a number !

The complexity of the algorithm is W×n and it is not polynomial in the size of the entry. You need an exponential
number of operations W = exp(log(W)) wrt the size of the entry log(W).

5

Question 11

Back to the practice page of the TD, write and test this dynamic programming algorithm.

A benchmark is given to compare the execution time between all the algorithms.

Élements de correction :

def Knapsack_DP(O_dict, W):

n = len(O_dict)

objs_list = sorted(O_dict.keys())

FILLING THE TABLE ITERATIVELY

V = np.zeros((n+1, W+1), dtype=’int32’)

############### TODO : complete code ####################

for i in range(1,n+1):

for c in range(1,W+1):

obj = O_dict[objs_list[i-1]]

if c >= obj[’w’]:

V[i,c] = max(V[i-1,c], V[i-1, c-obj[’w’]] + obj[’v’])

else:

V[i,c] = V[i-1,c]

RETRIEVE THE SOLUTION

selected = set()

############### TODO : complete code ####################

i, w = n , W

while i != 0:

if V[i,w] != V[i-1,w]:

obj = objs_list[i-1]

selected.add(objs_list[i-1])

w -= O_dict[obj][’w’]

i -= 1

return {’selected’: selected, ’score’: V[n,W]}

6

