
Frédéric Boulanger
(Frederic.Boulanger@supelec.fr)
Supélec - Service Informatique
Plateau de Moulon
F - 91192 Gif-sur-Yvette Cedex

occ++ version 4.8.1

OC to C++ translator

Available by anonymous ftp at:
ftp://ftp.supelec.fr//pub/cs/distrib/occ++

and on:
http://wwwdi.supelec.fr/fb/recherche.html

Version 4.8.1 January 2010

mailto:Frederic.Boulanger@supelec.fr
http://www.supelec.fr
http://wwwsi.supelec.fr
ftp://ftp.supelec.fr//pub/cs/distrib/occ++
ftp://ftp.supelec.fr//pub/cs/distrib/occ++
http://wwwdi.supelec.fr/fb/recherche.html
http://wwwdi.supelec.fr/fb/recherche.html

Contents
1 Syntax 2

2 Description 2

3 Options 2

4 Interface of the C++ classes produced by occ++ 5

5 Interface to asynchronous tasks (execs) 7

6 The future of asynchronous tasks 8

7 Differences between occ and occ++ 9

8 Support for C++ types and operators 9
8.1 Types . 9
8.2 Constants . 10
8.3 Procedures . 10
8.4 Functions . 10

9 Installation 11

10 Disclaimer and Copyright 12

1

1 Syntax
occ++ [-v] [-version] [-B baseName] [-D outDir]

[-H defFilename | -Hnone] [-cut nbAct] [-debug]
[-tab | -tabB stateTableBasename] [-mdf | -mdfB mdfFilename]
[-setparam] [-param] [-noref] [-inc libSyncInterface] [-awaited]
[-notick] [-access] [-info] ocFilename

occ++ is normally called by the Esterel compiler. To compile ‘foo.strl’
into C++, use the command: esterel -Ac++ foo.strl or esterel -Sc++
foo.strl. To give options to occ++ on the esterel command line, put them in a
quoted string after a colon, as in: esterel -Ac++:"occ++ options" foo.strl.

2 Description
occ++ translates the oc code of an Esterel module or a Lustre node into a C++

class. Versions 2, 3, 4 without tasks, and 5 of oc are accepted. OC 5 code from
Esterel v5.01 (with initialized signals) is now supported.

The name of the class is the name of the module. occ++ produces two files:

moduleName.H contains the interface of class moduleName.

moduleName.C contains the code of class moduleName.

The class moduleName produced by occ++ is a subclass of Esterel. Class
Esterel is defined in libSync.H and libSync.a (see libSync).

Note: classes produced by occ++ are always subclasses of Esterel, even if the oc code
was produced by Lustre. Class Esterel should be renamed OcMachine, but keeps
its name for historical reasons.

If there are several root modules in the oc source file, the base name of the
files is the name of the first root module. These files will contain the interface
and the code of all the corresponding C++ classes. For example, if ‘foo.strl’
describes the module foo and the module bar, ‘foo.H’ will contain the interface
of class foo and the interface of class bar.

If the module uses external declarations (types, functions, constants or pro-
cedures) a file moduleNameDef.H is #included by moduleName.H

3 Options
The following options are supported:

-v verbose output. With this option, occ++ will show what it sees in the oc
source file (submodules, root module, signals, variables etc...)

-version prints the version number of occ++ (currently version 4.8.1)

-B baseName set the base name for output files. For example, the command
occ++ -B bar foo.oc will produce ‘bar.H’ and ‘bar.C’. If the name of
the module defined in ‘foo.oc’ is foo, the name of the class will be ‘foo’
because the -B option only sets the base name of the files.

2

Note that the esterel compiler uses this option to give the basename of
the output files to occ++. So, the command esterel -Ac++:"-B bar"
foo.strl will not produce ‘bar.H’ and ‘bar.C’ because esterel forces the
-B foo option.

-D outDir set the output directory. The files moduleName.H and module-
Name.C will be placed in the directory outDir.

-H defFilename set the name of the auxiliary definition file. If the mod-
ule uses external definitions, moduleName.H will #include defFilename
instead of moduleNameDef.H

-Hnone do not use an auxiliary definition file. moduleName.H will not #include
an external definition file, even if the module uses external definitions.
This option allows the use of constants, types, functions and procedures
of the C++ class in the Esterel code. Those entities are declared in the
definition of the class and do not need to be declared as external defini-
tions.
Note that the -Hnone option is inherited from previous versions of occ++

and will probably disappear since a new scheme is developed to support
built-in types, C++ operators and member access.

-cut nbAct cut long lines in state tables to nbAct actions per line. This option
is useful for state machines with numerous actions to avoid too long lines.
(some preprocessors do not support very long lines).

-debug insert debugging code in the state machine. This code will be compiled
if the symbol _SYNC_DEBUG_ is defined. The debugging code will print the
name of the module and the current operation on the standard error file.
The debugged operations are:

• reset of output signals. In this phase, the module resets its output
signals to the non-present state.

• reset of input signals. In this phase, the module resets its input
signals to the non-present state.

• set of input signals. In this phase, the module gets the value of its
input signals. The debugging code will display the value of each input
signal.

• state machine actions. The debugging code will display the name of
the module, the current state and the name of the action. The name
of the actions are kType _argument _actionNumber . For example if
action 3 is the output of signal toc, its name will be kOutput_toc_3.

-tab produces state and dag tables in separate files. occ++ will place each
state table in a separate file named moduleNameTabstateNum.C, where
stateNum is the number of the corresponding state, and each dag table
in a separate file named moduleNameDagdagnum.C, where dagnum is the
number of the dag. This option is useful for huge state machines because
some preprocessors do not handle very big files. Furthermore, it makes it
easier to edit the C++ file.

3

-tabB baseName same as -tab, but set a prefix for tab file names. For ex-
ample, the command esterel -Ac++:"-tabB moof" foo.strl will pro-
duce ‘foo.H’, ‘foo.C’ and the files ‘mooffooTabstateNum.C’ and ‘moof-
fooDagdagnum.C’. This option can be used to store the table files in
a specific directory, for example with esterel -Lc++:"-tabB tables/"
foo.strl, which will store the table files in the directory ‘tables’.

-mdf produce a Module Description File. occ++ will produce a file named
moduleName.mdf that contains a description of the module to be used
with mdlc. The name of the mdf file is not affected by the -B or -D
options.

-mdfB mdfBaseName same as -mdf, but set a prefix for the name of the mdf
file. This option works for mdf files just the same as -tabB for table files.

-param consider Esterel constants as parameters for the constructor. The de-
fault is to consider Esterel constants as class constants (static const mem-
bers of the class). With this option, Esterel constants are considered as
const members, and must be initialized when a new instance is created.
The initialization is done with an additional parameter of the constructor.
This parameter is a reference on a structure of type moduleNameConsts,
which is defined in moduleName.H. This structure contains members of
the same type and the same name as each constant used by the module.
For example, if the module foo uses two constants: moof, of type integer
and waaf of type bar, we will get:

struct fooConsts {
integer moof;
bar waaf;

};

-setparam consider Esterel constants as settable parameters of the object.
With this option, the constructor does not take the additional initiali-
sation parameter used with -param. Instead, the C++ class has two new
methods to set and get the value of the parameters:

virtual void setParams(const moduleName Consts& newParams);
virtual void getParams(moduleName Consts& theParams) const;

where moduleNameConsts is the same structure as with -param.

Warning: With this option, the behavior of the object may not be exactly the same
as the behavior of the Esterel module or Lustre node. Differences may
appear if you modify the parameters of an object that has already reacted
to events. The behavior will be correct only if the setParams() method is
called on new objects.

-noref Asks occ++ not to use C++ references to pass argument by reference in
procedure calls. The default is to use references, so that the Esterel pro-
cedure myproc(int a)(int b) should be declared as void myproc(int&
a, int b) in C++. With the -noref option, pointers are used instead of
references, so the same procedure should be declared as void myproc(int
*a, int b).

4

-inc libSyncInterface Use libSyncInterface as the name of the file that gives
the interface of the Synchronous Library. The default value is<Esterel/libSync.H>.
The command occ++ -inc libSync.H x.oc or occ++ -inc ’"libSync.H"’
x.oc will use “libSync.H”. The command occ++ -inc "<anotherFile.H>"
x.oc will use <anotherFile.H>. Be sure to quote the name ’<xxx.H>’ to
prevent the shell from interpreting < and > as input/output redirection.

-awaited Add a waitSigList() method to the class if the oc code contains
information on awaited input signals. This method returns a null termi-
nated list of the awaited input signals in the current state of the module. If
there is no information on awaited signals in the oc code, or if this option
is not given, the waitSigList() method is not defined in the class. In
versions of libSync greater or equal to 4.1, this method is defined in class
Synchronous and returns the list of all input signals as a default behavior.

-notick Overload the activate()method of class Esterel so that the automa-
ton engine is not called when no input signal is present. The module will
not receive the tick signal if no other input signal is present. Do not use
this option for a module that uses the Esterel tick signal.

-access Display access rights to occ++ (included for Esterel compatibility).

-info Display information about the compilation of occ++ (when, where, by
whom).

4 Interface of the C++ classes produced by occ++

The C++ classes produced by occ++ are subclasses of Esterel, which is itself a
subclass of Synchronous. Those classes are defined in libSync.H and libSync.a.
For example, the following Esterel module:

module foo:
input inp(integer);
output out(integer);

every inp do
emit out(2 * ?inp);

end every
end module

becomes the following class through occ++:

class foo : public Esterel {
protected:

enum { // Automaton action numbers
kSequence,
kExecuteODAG,
kGotoCDAG,
kBranchAlways,
kPresent_inp_4,
kOutput_out_5,
kCall__assign_integer_6

5

};

static const Esterel::tStateNumber *const *const cfooStates;
void doAction(Esterel::tActionNumber op, Esterel::tActionNumber *i);
InSignal<integer> finp;
OutSignal<integer> fout;

public:
virtual InSignal<integer>& inp();
virtual OutSignal<integer>& out();
virtual void resetOutputs();
virtual void resetInputs();
virtual void setInputs();
virtual const InputSignal** inSigList() const;

// returns a null terminated list of input signals
virtual const OutputSignal** outSigList() const;

// returns a null terminated list of output signals
virtual const InputSignal** waitSigList() const;

// returns a null terminated list of awaited signals
foo(const char* name = "foo", const boolean schedule = true);

// Constructor
~foo(); // Destructor

private:
foo(const foo &); // Private copy constructor

};

In the protected part, the enum gives the names of the actions of the state
machine. This state machine is described in cfooStates which is the table
of the actions to do for each state of the machine. The automaton engine is
provided by the class Esterel.

The doAction() method is called by the automaton engine to execute the
actions associated to the action numbers of the state table (and of the dag table
if there are dags).

finp and fout are the signals of the module. Their class is a template which
is instantiated with the type of the signal (integer in our example).

If the state of the module is not limited to the state of its automaton, a
pointer named pf_backup_copy_ is used to point to the storage area that con-
tains the saved state of the module. This area will be allocated when backup()
is called for the first time, and released when the module is destroyed. The
Esterel class manages the backup and restore of the state machine.

In the public part, the methods inp() and out() give access to the signals
of the module.

The setInputs() method fetches the value of the input signals of the mod-
ule.

The resetOutputs() method is called to reset the output signals of the
module to their non-present state.

The resetInputs() method is called to reset the input signals of the module
to their non-present state. This is necessary to reset input signals that have lost
their source and will not be updated.

6

The inSigList() method yields a null terminated list of these input signals.
In this list, signals are considered as instances of InputSignal, because they
are only used to walk through the interconnection graph of the modules.

The outSigList() method yields a null terminated list of these output
signals. In this list, signals are considered as instances of OutputSignal, because
they are only used to know how many signal are connected to them (cref()
method).

The waitSigList()method yields a null terminated list of the awaited input
signals. This method is defined only if the -awaited option was given and there
is information on which signals are awaited in each state in the oc source code.

The backup() method calls the backup method of class Esterel, allocates
the backup storage area if it has not been allocated yet, and saves the current
state of the module in this area. This method is defined only if the state of the
module is not limited to the state of the automaton.

The restore() method calls the restore method of class Esterel and sets
the state of the module to the saved state. If there is no saved state, restore()
does nothing. This method is defined only if the state of the module is not
limited to the state of the automaton.

The constructor foo() is used to build new instances of foo. The first ar-
gument is the name of the object. This name is mainly used for debugging
purposes and is optional. The second argument is optional too, and tells if we
want the new object to register itself on the current clock and to be automat-
ically scheduled by this clock. If the module uses constants with the -param
option, the first argument is a reference on a struct fooConsts that contains
the values of the constants. name and schedule become the second and third
arguments.

The copy constructor is declared private to prohibit its use. Copying syn-
chronous objects has no meaning. Since no operator= is declared, synchronous
objects cannot be assigned either.

5 Interface to asynchronous tasks (execs)
occ++ assumes that each exec in an Esterel module is an instance of a task
class. The name of the class is built from the name of the module and the name
of the Esterel task as moduleName Task_taskName . For example, if a module
foo has a task T, the class for the execs of this task will be named fooTask_T.
This class must be defined in moduleNameDef.H or any other file specified with
the -H option. Each exec of a task is an instance of this class, and the name of
this instance is taskName _taskNum _execNum .

A task class must implement the following required interface:

"Class"(unsigned taskNum,unsigned execNum,const char* name);
// Constructor

void tstart(...); // implements the Esterel start action
void tkill(); // implements the Esterel kill action
void tsuspend(); // implements the Esterel suspend action
void tactivate(); // implements the Esterel activate action
void treturn(); // implements the Esterel return action
void setReturn(); // set value of return signal

7

PureOutSignal& returnSig(); or OutSignal<"sigType">& returnSig();
// access method to the return signal.

The taskNum and execNum arguments to the constructor are the task number
(each task has a unique number in an Esterel module) and the exec number (each
exec has a unique number in a module).

The tstart method takes arguments as specified by the task declaration in
the Esterel module. For instance, if you declared:

task add(integer)(integer,integer)
the tstart method must be declared as:
void tstart(integer& x, integer a, integer b);
If you invoked occ++ with the -noref option, the reference x becomes a

pointer.
The tstart method must start the execution of the task with the given

parameters. Note that the value of the reference arguments should not be
modified until the treturn method is called. So you will need to work on a
copy of those arguments.

The tkill method must kill the exec, if possible. This is OS dependent.
The return signal of a killed exec should not be emitted.

The tsuspend method must suspend the execution of the task, if possible.
This is OS dependent. The return signal of a suspended exec should not be
emitted.

The tactivate method must re-activate a suspended execution.
The treturn method is called by the Esterel module when it has received

the return signal of the exec. This method must update the reference arguments
of the exec (they should not have been modified before this).

The setReturn method must set the return signal according to the status
of the exec.

The returnSig method must return a reference to the return signal of the
exec. This signal is emitted by the exec to inform the Esterel module of the
completion of this exec. To handle the emission of this signal, you should store
the status of the exec in a variable, and emit the return signal in the setReturn
method when the status indicates that the exec has returned, has not been
killed, and is not suspended.

Note that with the implementation of asynchronous tasks in occ++, a task
must have return signals of the same type for all its execs. This is not enforced
by the Esterel compiler.

6 The future of asynchronous tasks
In a future release of libSync, there may be an AsyncTask abstract class for asyn-
chronous tasks. This class should handle generic operations for asynchronous
tasks (status maintenance, ...). Subclasses of AsyncTask may implement asyn-
chronous tasks with different mechanisms (Unix processes, threads, RPC, ...),
and a particular task could inherit from those classes and just implement what
is specific to the job it is designed for.

8

7 Differences between occ and occ++

The C++ code produced by occ++ uses the standard C++ operators. So, it is
not necessary to define the set of functions that implement these operators as
with the C code produced by occ.

For example, the _TYPE function used by occ to assign a value to a variable of
type TYPE is replaced by the = C++ operator, the _eq_TYPE function is replaced
by the == operator, the _cond_TYPE function is replaced by the ?: operator
and so on. Of course, these operators must be defined for the corresponding
class. The string type of Esterel and Lustre is implemented by the String
class in libSync. This class defines the standard operators (=, ==, >, >=, <,
<=) for strings. The boolean type of Lustre and Esterel is implemented by the
boolean class in libSync. This class defines the logical operators !, && and ||,
but since the evaluation of && and || does not require the evaluation of their
two arguments, two methods EvalBoth_AND and EvalBoth_OR are defined in
class Esterel to force this evaluation when it is required.

A word about simulation: there is no need to build synchronous classes in a
special way to build simulators. To simulate a system of synchronous objects,
you just have to connect the inputs of the system to instances of InputModule,
and the outputs of the system to instances of OutputModule (see libSync). The
_text_to_TYPE, _TYPE_to_text and check_TYPE functions that were required
by the simulation library of occ are no longer required with occ++. Input and
output of values from a text stream rely on the << and >> C++ operators.
Checking that a string is suitable for a type is the task of the InputModule.
What you have to do is to define the << and >> operators for any class that
you define and want to use for signal values. These operators are already defined
for the basic C++ types (int, char, . . .), and libSync defines them for boolean
and String (which match the boolean and string types of Esterel and Lustre).

See the mdlc documentation for building text oriented, Motif or protocol
based simulation programs.

8 Support for C++ types and operators
New in occ++ v4.8 a special naming scheme has been developed to support
C++ built-in types, operators and member access.

8.1 Types
Type names begining with CC_ are recognized as special types. First, the CC_
prefix is removed, then, if what follows is ptr_, the type is a pointer type, if
what follows is ref_, the type is a reference type. ’_’ are replaced by spaces in
the remaining part of the type name.

For example, the Esterel type name CC_ptr_unsigned_long is translated
into unsigned long*

The type name TypeOfThis is translated into the type of the generated class.
So CC_ptr_TypeOfThis is the type of the built-in C++ this pointer.

9

8.2 Constants
You may declare an Esterel constant named this to refer to the instance of
the synchronous class. occ++ knows about it and will not look for an external
definition of this constant.

8.3 Procedures
All procedures begining with CC_op_ are recognized as C++ operators. The
syntax is: CC_op_<type name>_<op tag> where <type name> is the name of
the type for which the operator is defined, and <op tag> is one of:

inc for the ++ postfix operator
dec for the -- postfix operator
pinc for the ++ prefix operator
pdec for the -- prefix operator
addd for the += operator
subb for the -= operator
mull for the *= operator
modd for the %= operator
divv for the /= operator
bitorr for the |= operator
bitandd for the &= operator

For example, if i is an integer, CC_op_int_addd(i,3) is translated into
i += 3 by occ++.

8.4 Functions
All functions begining with CC_op_ are recognized as C++ operators. The syntax
is: CC_op_<type name>_<op tag> where <type name> is the name of the type
for which the operator is defined, and <op tag> is one of:

10

eq for the == binary operator
ne for the != binary operator
not for the ! unary operator
or for the || binary operator
and for the && binary operator
lt for the < binary operator
le for the <= binary operator
gt for the > binary operator
ge for the >= binary operator
add for the + binary operator
sub for the - binary operator
mul for the * binary operator
mod for the % binary operator
div for the / binary operator
opp for the - unary operator
bitor for the | binary operator
bitand for the & binary operator
bitnot for the ~ unary operator
index for the [] binary operator
ls for the << binary operator
rs for the >> binary operator

For example, if tab is an array of integers, CC_op_int_index(tab,3) is
translated into tab[3] by occ++.

All functions begining with CC_cons_ are recognized as constructor calls.
For example, if you declare an Esterel function

CC_cons_Complex(integer,integer):Complex
and c is a complex variable, the Esterel statement

c := CC_cons_Complex(0,-1);
will be translated into

c = Complex(0,-1);
by occ++.

All functions begining with CC_arrow_ or CC_dot_ are recognized respec-
tively as operator -> and operator .. If the function takes only one argument,
it is considered to be a member access (no function call), else it is considered to
be a member function call, the first argument (this) being skipped. This scheme
does not allow the call of a member function that takes no argument. This may
be fixed in a future version with a special CC_call_ prefix.

9 Installation
You may install occ++ in any directory that is in the path of your shell. How-
ever, if you want to be able to specify C++ as a target language to Esterel, you
should install occ++ (or best: a symbolic link to it) in the distribution directory
of Esterel which is /usr/local/esterelvX_XX by default. You can check your
installation with the esterel -version command: if occ++ appears in the
version list, occ++ is correctly installed.

11

10 Disclaimer and Copyright
occ++ is Copyright Supélec, 1992-2010. All Rights Reserved.
Redistribution and use are permitted provided that:

1. distributions including source files retain this entire copyright notice and
comment

2. distributions including binaries display the following acknowledgment: “This
product includes software developed by Supélec and its contributors” in
the documentation or other materials provided with the distribution, and
in all advertising material mentioning features or use of this software.

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.
However, bug reports, remarks and suggestions may be send to:

Frédéric Boulanger <Frederic.Boulanger@supelec.fr>
Supélec - Service Informatique
Plateau de Moulon, F - 91192 Gif-sur-Yvette Cedex

12

	Syntax
	Description
	Options
	Interface of the C++ classes produced by occ++
	Interface to asynchronous tasks (execs)
	The future of asynchronous tasks
	Differences between occ and occ++
	Support for C++ types and operators
	Types
	Constants
	Procedures
	Functions

	Installation
	Disclaimer and Copyright

