
Proof of the equivalence of the order-based
and the ring-based definitions of the GCD

Frédéric Boulanger

May 16, 2016

Contents

1 Introduction 1

2 Common divisors 1

3 Greatest common divisor, defined on order 3

4 Greatest common divisor, ring definition 5

5 Proof of the equivalence of the two definitions 5

1 Introduction

This Isabelle theory presents a proof of the equivalence of the natural def-
inition of the Greatest Common Divisor for integers (as a common divisor
that is greater than all other common divisors), and the definition on rings
(as a common divisor that is divided by all other common divisors).
We finally show the equivalence between our definitions of the GCD using
predicates, and the functional definition in Isabelle, which relies on Euclid’s
algorithm.

theory IntGCD
imports Main GCD

begin

2 Common divisors

We define a predicate for characterizing common divisors of two integers,
and prove some theorems that will be needed for proving properties of the
GCD.

1

definition common_div :: "int ⇒ int ⇒ int ⇒ bool"
where

"common_div a b p ≡ p dvd a ∧ p dvd b"

lemma common_div_comm:
"common_div a b p = common_div b a p"

using common_div_def by blast

Two integers have 0 as common divisor only if one of them is 0:

lemma cdiv_0: "common_div a b 0 ←→ a = 0 ∧ b = 0"
using common_div_def by simp

Common divisors are not changed by absolute values:

theorem common_div_abs:
"common_div a b d = common_div |a| |b| d"

using common_div_def by simp

The common divisors of a and b are the common divisors of a−b and b. This
theorem is the basis of the proof of the equivalence of the two definitions of
the GCD.

lemma common_div_ab_dir:
assumes "common_div a b p"
shows "common_div (a - b) b p"

proof -
from assms and dvd_def
obtain ka where "a = p * ka" unfolding common_div_def by blast

moreover from assms and dvd_def
obtain kb where "b = p * kb" unfolding common_div_def by blast

ultimately have "a - b = (ka - kb) * p" by algebra
hence "p dvd (a - b)" by simp
moreover from assms have "p dvd b" using common_div_def by simp
ultimately show ?thesis using common_div_def by simp

qed

lemma common_div_ab_rev:
assumes "common_div (a - b) b p"
shows "common_div a b p"

proof -
from assms and dvd_def
obtain ka where "(a - b) = p * ka" unfolding common_div_def by blast

moreover from assms and dvd_def
obtain kb where "b = p * kb" unfolding common_div_def by blast

ultimately have "a = (ka + kb) * p" by algebra
hence "p dvd a" by simp
moreover from assms have "p dvd b" using common_div_def by simp
ultimately show ?thesis using common_div_def by simp

qed

2

theorem common_div_ab:"common_div a b p = common_div (a - b) b p"
using assms and common_div_ab_dir and common_div_ab_rev by blast

theorem common_div_ba:"common_div a b p = common_div a (b - a) p"
using assms and common_div_ab and common_div_comm by simp

3 Greatest common divisor, defined on order

Here we define the greatest common divisor using the order on integers. We
define a predicate for identifying upper bounds of all common divisors:
definition no_greater_div :: "int ⇒ int ⇒ int ⇒ bool"
where

"no_greater_div a b g ≡ ∀ p. common_div a b p −→ p ≤ g"

Such an upper bound is always strictly positive:
lemma greater_div_pos: "no_greater_div a b g =⇒ g > 0"
proof -
assume h:"no_greater_div a b g"
have "1 dvd a" by simp
moreover have "1 dvd b" by simp
ultimately have "common_div a b 1" using common_div_def by simp
with h have "g ≥ 1" using no_greater_div_def by simp
thus ?thesis by simp

qed

theorem greater_div_abs:
"no_greater_div a b g = no_greater_div |a| |b| g"

proof
assume h:"no_greater_div a b g"
{
fix p assume "common_div |a| |b| p"
with common_div_abs have "common_div a b p" by simp
with h have "p ≤ g" using no_greater_div_def by simp

}
thus "no_greater_div |a| |b| g" using no_greater_div_def by simp

next
assume h:"no_greater_div |a| |b| g"
{
fix p assume "common_div a b p"
with common_div_abs have "common_div |a| |b| p" by simp
with h have "p ≤ g" using no_greater_div_def by simp

}
thus "no_greater_div a b g" using no_greater_div_def by simp

qed

The GCD is a common divisor which is an upper bound of the common
divisors:
definition is_gcd :: "int ⇒ int ⇒ int ⇒ bool"

3

where
"is_gcd a b g ≡ common_div a b g ∧ no_greater_div a b g"

We now derive properties of the GCD from properties of divisors.

lemma gcd_comm: "is_gcd a b g = is_gcd b a g"
using is_gcd_def and common_div_def and no_greater_div_def by auto

lemma gcd_pos: "is_gcd a b g =⇒ g > 0"
using is_gcd_def and greater_div_pos by blast

lemma gcd_neq_zero:
assumes "is_gcd a b g"
shows "g 6= 0"

using gcd_pos[OF assms] by simp

lemma gcd_a0:
assumes "a 6= 0"
shows "is_gcd a 0 |a|"

proof -
from dvd_imp_le_int[OF assms] have "∀ p. p dvd a ∧ p dvd 0 −→ |p| ≤ |a|"
by simp

hence "no_greater_div a 0 |a|" unfolding no_greater_div_def and common_div_def
by auto

thus ?thesis using abs_div is_gcd_def common_div_def by simp
qed

lemma gcd_0b:
assumes "b 6= 0"
shows "is_gcd 0 b |b|"

using assms and gcd_a0 and gcd_comm by auto

lemma gcd_self:
assumes "a 6= 0"
shows "is_gcd a a |a|"

proof -
from dvd_imp_le_int[OF assms] have "∀ p. p dvd a ∧ p dvd a −→ |p| ≤ |a|"
by simp

hence "no_greater_div a a |a|" unfolding no_greater_div_def and common_div_def
by auto

moreover from abs_div have "common_div a a |a|" using common_div_def by
simp
ultimately show ?thesis using is_gcd_def by simp

qed

lemma gcd_abs:
"is_gcd a b g = is_gcd |a| |b| g"

using is_gcd_def and common_div_abs and greater_div_abs by simp

theorem gcd_ab:"is_gcd a b g = is_gcd (a - b) b g"

4

using assms is_gcd_def no_greater_div_def common_div_ab by simp

theorem gcd_ba:"is_gcd a b g = is_gcd a (b - a) g"
using assms and gcd_ab and gcd_comm by simp

With the definition of the GCD based on the order on integers, the GCD is
unique.
lemma gcd_unique:
assumes "is_gcd a b g"
and "is_gcd a b g’"
shows "g = g’"

proof -
from assms(1) have "∀ p. common_div a b p −→ p ≤ g"
using is_gcd_def and no_greater_div_def by simp

moreover from assms(2) have "common_div a b g’"
using is_gcd_def by simp

ultimately have 1:"g’ ≤ g" by simp
from assms(2) have "∀ p. common_div a b p −→ p ≤ g’"
using is_gcd_def and no_greater_div_def by simp

moreover from assms(1) have "common_div a b g" using is_gcd_def by simp
ultimately have 2:"g ≤ g’" by simp
from 1 and 2 show ?thesis by simp

qed

4 Greatest common divisor, ring definition

We now define the greatest common divisor as one which is divided by all
other common divisors. We keep the positive one, so that this definition
match the previous one.
definition is_gcd_div :: "int ⇒ int ⇒ int ⇒ bool"
where

"is_gcd_div a b g ≡ (g > 0) ∧ common_div a b g
∧ (∀ p. common_div a b p −→ p dvd g)"

With this definition, the GCD cannot be null. Although the GCD of 0 and
0 is 0 using the ring definition of the GCD, this makes no sense with regard
to the definition based on the order on integers: any integer is a common
divisor of 0 and 0, so there is no greatest one.
lemma gcd_div_neq_zero:"is_gcd_div a b g =⇒ g 6= 0"
using is_gcd_div_def by simp

5 Proof of the equivalence of the two definitions

We can now show that both definitions of the GCD are equivalent. Showing
that being the GCD with the ring definition implies being the GCD with the
order definition is straightforward:

5

lemma gcd_div_inf:
assumes "is_gcd_div a b g"
shows "is_gcd a b g"

proof -
from assms have 1:"common_div a b g" using is_gcd_div_def by simp
from assms have 2:"∀ p. common_div a b p −→ p dvd g"
using is_gcd_div_def by simp

from assms have 3:"g > 0" using is_gcd_div_def by simp
have "∀ p. common_div a b p −→ p ≤ g"
proof -
{
fix p assume h:"common_div a b p"
with 2 have dp:"p dvd g" by simp
from 3 have "|g | = g" and "g 6= 0" by simp+
with zdvd_imp_le[OF dp] have "p ≤ g" by simp

}
thus ?thesis by auto

qed
thus ?thesis using 1 and is_gcd_def and no_greater_div_def by simp

qed

The other way is more difficult. We use induction on natural numbers with
an upper bound on the sum of the absolute values, and use the fact that
is_gcd (a - b) b g = is_gcd a b g

lemma cdiv_div_gcd:
"(|a| + |b| > 0) ∧ (nat (|a| + |b|) ≤ Suc n) ∧ is_gcd |a| |b| g
=⇒ (∀ p. common_div |a| |b| p −→ p dvd g)"

proof (induction n arbitrary: a b)
case 0
hence pos:"|a| + |b| > 0"
and leq1:"|a| + |b| ≤ 1"
and gcd:"is_gcd |a| |b| g" by auto

show ?case
proof (cases "a = 0")
case True
with leq1 and pos have "|b| = 1" by simp
moreover with this have "g = 1"
using gcd_0b[of "|b|"] and ‘a = 0‘ and gcd and gcd_unique by simp

ultimately show ?thesis using common_div_def by simp
next
case False
with leq1 and assms have "|a| = 1" and "b = 0" by auto
moreover with this have "g = 1"
using gcd_a0[of "|a|"] and ‘¬a = 0‘ and gcd and gcd_unique by simp

ultimately show ?thesis using common_div_def by simp
qed

next
case (Suc k)
from Suc.prems have

6

1:"nat (|a| + |b|) ≤ Suc (Suc k)" and
2:"is_gcd |a| |b| g" and 3:"|a| + |b| > 0" by auto

show ?case
proof (cases "nat (|a| + |b|) ≤ Suc k")
case True
thus ?thesis using Suc.IH and 2 and 3 by simp

next
case False
with 1 have ab:"nat (|a| + |b|) = Suc (Suc k)" by simp
show ?thesis
proof (cases "|a| ≥ |b|")
case True
show ?thesis
proof (cases "|b| = 0")
case True
with ab have "|a| 6= 0" by simp
with ‘ |b| = 0‘ and 2 and gcd_a0[of "|a|"] and gcd_unique
have "g = |a|" by simp

thus ?thesis using common_div_def by simp
next
case False
with ab have "nat (|a| - |b| + |b|) ≤ Suc k"
using ‘ |a| ≥ |b|‘ by simp

moreover from 2 and gcd_ab have "is_gcd (|a| - |b|) |b| g"
by simp

moreover from ‘ |b| 6= 0‘ and ‘ |a| ≥ |b|‘ have "|a| + |b| - |b| > 0"
by simp

ultimately show ?thesis
using Suc.IH[of "|a| - |b|" "|b|"] and ‘ |a| ≥ |b|‘ and common_div_ab
by simp

qed
next
case False
show ?thesis
proof (cases "|a| = 0")
case True
with ab have "|b| 6= 0" by simp
with True and 2 and gcd_0b[of "|b|"] and gcd_unique
have "g = |b|" by simp

thus ?thesis using common_div_def by simp
next
case False
with ab have "nat (|a| + |b| - |a|) ≤ Suc k"
using ‘¬ |a| ≥ |b|‘ by simp

moreover from 2 and ‘¬ |a| ≥ |b|‘ and gcd_ba
have "is_gcd |a| (|b| - |a|) g" by simp

moreover from ‘ |a| 6= 0‘ and ‘¬ |a| ≥ |b|‘
have "|a| + |b| - |a| > 0" by simp

ultimately show ?thesis

7

using Suc.IH[of "|a|" "|b| - |a|"] and ‘¬ |a| ≥ |b|‘
and common_div_ba by simp

qed
qed

qed
qed

We can now remove the condition used to make the induction on n:

lemma common_div_gcd:
assumes "a 6= 0 ∨ b 6= 0"
and "is_gcd |a| |b| g"
shows "(∀ p. common_div |a| |b| p −→ p dvd g)"

proof -
from assms(1) have 1:"|a| + |b| > 0" by auto
have "nat (|a| + |b|) ≤ Suc (nat (|a| + |b|))" by simp
with assms and 1 have

"(|a| + |b| > 0) ∧ (nat (|a| + |b|) ≤ Suc (nat (|a| + |b|))) ∧ is_gcd |a| |b| g"
by blast

from cdiv_div_gcd[OF this] show ?thesis .
qed

Therefore, we have the equivalence of the two definitions when a and b are
not both null:

lemma gcd_inf_div:
assumes "is_gcd a b g"
and "a 6= 0 ∨ b 6= 0"
shows "is_gcd_div a b g"

proof -
from assms(1) have "is_gcd |a| |b| g" using gcd_abs by simp
with assms(2) and common_div_gcd
have "(∀ p. common_div |a| |b| p −→ p dvd g)" by simp

hence "(∀ p. common_div a b p −→ p dvd g)" using common_div_abs by simp
moreover from assms(1) have "common_div a b g" using is_gcd_def by simp
moreover from assms(1) have "g > 0" using gcd_pos by simp
ultimately show ?thesis using is_gcd_div_def by simp

qed

theorem gcd_inf_div_eq:
assumes "a 6= 0 ∨ b 6= 0"
shows "is_gcd a b g = is_gcd_div a b g"

using assms and gcd_div_inf and gcd_inf_div by blast

The condition on the simultaneous nullity of a and b comes from the fact
that there is no GCD of 0 and 0 with the definiton based on the order on
integers:

lemma any_common_div_0:"common_div 0 0 d"
proof -
have "d dvd 0" by simp

8

thus ?thesis using common_div_def by simp
qed

theorem "¬(∃ g. no_greater_div 0 0 g)"
proof
assume "∃ g. no_greater_div 0 0 g"
from this obtain g where ngd:"no_greater_div 0 0 g" by blast
from any_common_div_0[of "g+1"] have "common_div 0 0 (g+1)" .
with ngd have "g+1 ≤ g" using no_greater_div_def by blast
thus False by simp

qed

Finally, we prove that our definition of the GCD matches the definition of
the gcd function in Isabelle.

lemma gcdfunc_imp_gcd_div:
assumes "a 6= 0 ∨ b 6= 0"
and "g = gcd a b"
shows "is_gcd_div a b g"

using assms common_div_def is_gcd_div_def by auto

theorem gcd_func_is_gcd_div:
assumes "a 6= 0 ∨ b 6= 0"
shows "(g = gcd a b) = is_gcd_div a b g"

proof
assume "is_gcd_div a b g"
hence h:"is_gcd a b g" using gcd_inf_div_eq[OF assms] by simp
let ?g’ = "gcd a b"
from assms and gcdfunc_imp_gcd_div have "is_gcd_div a b ?g’" by simp
hence "is_gcd a b ?g’" using gcd_inf_div_eq[OF assms] by simp
from gcd_unique[OF this h] show "g = ?g’" ..

qed (simp add: gcdfunc_imp_gcd_div[OF assms])

end

9

	Introduction
	Common divisors
	Greatest common divisor, defined on order
	Greatest common divisor, ring definition
	Proof of the equivalence of the two definitions

