Proof of the equivalence of the order-based and the ring-based definitions of the GCD

Frédéric Boulanger

May 16, 2016

Contents

1 Introduction 1
2 Common divisors 1
3 Greatest common divisor, defined on order 3
4 Greatest common divisor, ring definition 5
5 Proof of the equivalence of the two definitions 5

1 Introduction

This Isabelle theory presents a proof of the equivalence of the natural definition of the Greatest Common Divisor for integers (as a common divisor that is greater than all other common divisors), and the definition on rings (as a common divisor that is divided by all other common divisors).
We finally show the equivalence between our definitions of the GCD using predicates, and the functional definition in Isabelle, which relies on Euclid's algorithm.
theory IntGCD
imports Main GCD

begin

2 Common divisors

We define a predicate for characterizing common divisors of two integers, and prove some theorems that will be needed for proving properties of the GCD.

```
definition common_div :: "int \(\Rightarrow\) int \(\Rightarrow\) int \(\Rightarrow\) bool"
where
    "common_div a \(b p \equiv p d v d\) a \(\wedge p d v d b^{\prime}\)
```

lemma common_div_comm:
"common_div a b p = common_div b a p "
using comēon_div_def by blast

Two integers have 0 as common divisor only if one of them is 0 :

```
lemma cdiv_0: "common_div aboua=0^b=0"
using commōn_div_def by simp
```

Common divisors are not changed by absolute values:

```
theorem common div abs:
    "common_div a \(\bar{b} d=\) common_div \(|a||b| d "\)
using common_div_def by simp
```

The common divisors of a and b are the common divisors of $a-b$ and b. This theorem is the basis of the proof of the equivalence of the two definitions of the GCD.

```
lemma common_div_ab_dir:
    assumes "common_div a b p"
    shows "common_div \((a-b) b p^{\prime}\)
proof -
    from assms and dvd_def
```



```
    moreover from assms and \(d v d\) def
        obtain \(k b\) where " \(b=p^{*} k b^{\prime \prime}\) unfolding common_div_def by blast
    ultimately have " \(a-b=(k a-k b)\) * \(p\) " by algebra
    hence "pdvd \((a-b)\) " by simp
    moreover from assms have " \(p d v d b^{\prime}\) using common_div_def by simp
    ultimately show ?thesis using common_div_def by simp
qed
lemma common_div_ab_rev:
    assumes "common_div \((a-b) b p^{\prime \prime}\)
    shows "common_divabp"
proof -
    from assms and dvd_def
        obtain ka where " \((a-b)=p^{*} k a\) " unfolding common_div_def by blast
    moreover from assms and dvd def
        obtain \(k b\) where " \(b=p^{*} k b^{\bar{"}}\) unfolding common_div_def by blast
    ultimately have " \(a=(k a+k b) * p\) " by algebra
    hence "p \(d v d\) a" by simp
    moreover from assms have " \(p\) dvd \(b\) " using common_div_def by simp
    ultimately show ?thesis using common_div_def by simp
qed
```

theorem common_div_ab:"common_div a $b p=\operatorname{common} \quad \operatorname{div}(a-b) b p^{\prime \prime}$
using assms and common_div_ab_dir and common_div_ab_rev by blast
theorem common_div_ba:"common_div a b $p=$ common_div a $(b-a) p "$ using assms and common_div_ab and common_div_comm by simp

3 Greatest common divisor, defined on order

Here we define the greatest common divisor using the order on integers. We define a predicate for identifying upper bounds of all common divisors:

```
definition no_greater_div :: "int \(\Rightarrow\) int \(\Rightarrow\) int \(\Rightarrow\) bool"
where
    "no_greater_div a bg \(\equiv \forall p\). common_div a b \(p \longrightarrow p \leq g\) "
```

Such an upper bound is always strictly positive:

```
lemma greater_div_pos: "no_greater_div a b g \Longrightarrowg>0"
proof -
    assume h:"no_greater_div a b g"
    have "1dvd a" by simp
    moreover have "1dvd b" by simp
    ultimately have "common_div a b 1" using common_div_def by simp
    with }h\mathrm{ have " }g\geq1"\mathrm{ using no_greater_div_def by simp
    thus?thesis by simp
qed
theorem greater_div_abs:
    "no_greater_\overline{div a }\overline{b}g=no_greater_div |a| |b| g"
proof
    assume h:"no_greater_div a b g"
    {
        fix p assume "common_div |a| |b| p"
        with common_div_abs have "common_div a b p" by simp
        with }h\mathrm{ have "的的"
    }
    thus "no_greater_div |a| |b| g" using no_greater_div_def by simp
next
    assume h:"no_greater_div |a| |b| g"
    {
        fix p assume "common_div a b p"
        with common_div_abs have "common_div |a| |b| p" by simp
        with }h\mathrm{ have " }p\leqg\mathrm{ " using no_greater_div_def by simp
    }
    thus "no_greater_div a b g" using no_greater_div_def by simp
qed
```

The GCD is a common divisor which is an upper bound of the common divisors:
definition is_gcd :: "int \Rightarrow int \Rightarrow int \Rightarrow bool"

where

"is_gcd a bg \equiv common_divabg \wedge no_greater_div a bg"
We now derive properties of the GCD from properties of divisors.

```
lemma gcd_comm: "is_gcd a bg=is_gcd b a g"
using is_gcd_def and common_div_ \(\overline{d e f}\) and no_greater_div_def by auto
lemma gcd_pos: "is_gcd a bg \(\quad \Longrightarrow \quad g>0 "\)
using is_gcd_def and greater_div_pos by blast
lemma gcd_neq_zero:
    assumes "is_gcd a \(b\) g"
    shows " \(g \neq 0\) "
using gcd_pos[OF assms] by simp
lemma gcd_a0:
    assumes " \(a \neq 0\) "
    shows "is_gcd a \(0|a|\) "
proof -
    from dvd_imp_le_int[OF assms] have " \(\forall p . p d v d a \wedge p d v d 0 \longrightarrow|p| \leq|a| "\)
        by simp
    hence "no_greater_div a \(0|a|\) " unfolding no_greater_div_def and common_div_def
        by auto
    thus ?thesis using abs_div is_gcd_def common_div_def by simp
qed
lemma gcd_Ob:
    assumes " \(b \neq 0\) "
    shows "is_gcd \(0 \quad b|b|\) "
using assms and \(g c d_{-} a 0\) and \(g c d_{-} c o m m\) by auto
lemma gcd_self:
    assumes " \(a \neq 0\) "
    shows "is_gcd a a \(|a|\) "
proof -
    from dvd_imp_le_int[OF assms] have " \(\forall p . p d v d a \wedge p d v d a \longrightarrow|p| \leq|a| "\)
        by simp
    hence "no_greater_div a a|a|" unfolding no_greater_div_def and common_div_def
        by auto
    moreover from abs_div have "common_div a a \(|a|\) " using common_div_def by
simp
    ultimately show ?thesis using is_gcd_def by simp
qed
lemma gcd_abs:
    "is_gcd a b \(g=i s \_g c d|a||b| g "\)
using is_gcd_def and common_div_abs and greater_div_abs by simp
theorem gcd_ab:"is_gcd a bg=is_gcd (a-b)bg"
```

```
using assms is_gcd_def no_greater_div_def common_div_ab by simp
theorem gcd_ba:"is_gcd a b g=is_gcd a \((b-a) g\) "
using assms and gcd_ab and gcd_comm by simp
With the definition of the GCD based on the order on integers, the GCD is unique.
```

```
lemma gcd_unique:
```

lemma gcd_unique:
assumes "is_gcd a bg"
assumes "is_gcd a bg"
and "is_gcd a b g'"
and "is_gcd a b g'"
shows $" g=g^{\prime \prime}$
shows $" g=g^{\prime \prime}$
proof -
proof -
from assms(1) have $\forall \forall p$. common_div a b $p \longrightarrow p \leq g$ "
from assms(1) have $\forall \forall p$. common_div a b $p \longrightarrow p \leq g$ "
using is_gcd_def and no_greater_div_def by simp
using is_gcd_def and no_greater_div_def by simp
moreover from assms(2) have "common_div a b g'"
moreover from assms(2) have "common_div a b g'"
using is_gcd_def by simp
using is_gcd_def by simp
ultimately have 1 :" $g^{\prime} \leq g^{\prime \prime}$ by simp
ultimately have 1 :" $g^{\prime} \leq g^{\prime \prime}$ by simp
from assms(2) have " $\forall p$. common_div a $b p \longrightarrow p \leq g^{\prime \prime}$
from assms(2) have " $\forall p$. common_div a $b p \longrightarrow p \leq g^{\prime \prime}$
using is_gcd_def and no_greater_div_def by simp
using is_gcd_def and no_greater_div_def by simp
moreover from assms(1) have "common_div a b g" using is_gcd_def by simp
moreover from assms(1) have "common_div a b g" using is_gcd_def by simp
ultimately have 2 : " $g \leq g^{\prime \prime \prime}$ by simp
ultimately have 2 : " $g \leq g^{\prime \prime \prime}$ by simp
from 1 and 2 show?thesis by simp
from 1 and 2 show?thesis by simp
qed

```
qed
```


4 Greatest common divisor, ring definition

We now define the greatest common divisor as one which is divided by all other common divisors. We keep the positive one, so that this definition match the previous one.

```
definition is_gcd_div :: "int \(\Rightarrow\) int \(\Rightarrow\) int \(\Rightarrow\) bool"
where
    "is_gcd_divabg三(g>0) \(\wedge\) common_divabg
                        \(\wedge(\forall p \text {. common_div a } b p \longrightarrow p d v d g)^{\prime \prime}\)
```

With this definition, the GCD cannot be null. Although the GCD of 0 and 0 is 0 using the ring definition of the GCD, this makes no sense with regard to the definition based on the order on integers: any integer is a common divisor of 0 and 0 , so there is no greatest one.
lemma gcd_div_neq_zero:"is_gcd_div a $b g \Longrightarrow g \neq 0$ "
using is_gcd_div_def by simp

5 Proof of the equivalence of the two definitions

We can now show that both definitions of the GCD are equivalent. Showing that being the GCD with the ring definition implies being the GCD with the order definition is straightforward:

```
lemma gcd_div_inf:
    assumes "is \(\overline{g c d} \operatorname{div}\) a \(b g\) "
    shows "is_gcd a b g"
proof -
    from assms have 1:"common_div a b g" using is_gcd_div_def by simp
    from assms have \(2: ~ " \forall p\). common_div a \(b p \longrightarrow \bar{p} d v \bar{d} g "\)
        using is_gcd_div_def by simp
    from assms have 3:" \(g>0\) " using is_gcd_div_def by simp
    have " \(\forall p\). common_div a \(b p \longrightarrow p \leq g "\)
    proof -
        \{
            fix \(p\) assume \(h\) :"common_div a \(b\) "
            with 2 have \(d p: " p d v d g \overline{\prime \prime}\) by \(\operatorname{simp}\)
            from 3 have " \(|g|=g\) " and " \(g \neq 0\) " by simp+
            with \(z d v d\) _imp_le[OF dp] have "p \(\leq g\) " by simp
        \}
        thus ?thesis by auto
    qed
    thus ?thesis using 1 and is_gcd_def and no_greater_div_def by simp
qed
```

The other way is more difficult. We use induction on natural numbers with an upper bound on the sum of the absolute values, and use the fact that is_gcd ($a-b) b g=i s _g c d a b g$
lemma cdiv_div_gcd:

$$
"(|a|+\mid b \overline{\mid}>\overline{0}) \wedge(\text { nat }(|a|+|b|) \leq \text { Suc } n) \wedge \text { is_gcd }|a||b| g
$$

$\Longrightarrow(\forall p$. common_div $|a||b| p \longrightarrow p d v d g) "$
proof (induction n arbitrary: $a b$)
case 0
hence pos:" $|a|+|b|>0 "$
and leq1:" $|a|+|b| \leq 1 "$
and gcd:"is_gcd $|a||b| g$ g by auto
show ?case
proof (cases " $a=0$ ")
case True
with leq1 and pos have " $|b|=1 "$ by simp
moreover with this have " $g=1$ "
using $g c d _O b[o f "|b| "]$ and 'a $=0$ ' and $g c d$ and gcd_unique by simp
ultimately show ?thesis using common_div_def by simp

next

case False
with leq1 and assms have " $|a|=1 "$ and " $b=0$ " by auto
moreover with this have " $g=1$ "
using $g c d_{-} a 0[o f "|a| "]$ and ' $\neg a=0$ ' and $g c d$ and $g c d _u n i q u e$ by simp ultimately show ?thesis using common_div_def by simp
qed
next
case (Suc k)
from Suc.prems have

```
    1:"nat ( }|a|+|b|)\leq\mathrm{ Suc (Suc k)" and
    2:"is_gcd |a| |b| g" and 3:"|a| + |b|>0" by auto
show ?case
proof (cases "nat ( }|a|+|b|)\leq\mathrm{ Suc k")
    case True
    thus ?thesis using Suc.IH and 2 and 3 by simp
next
    case False
        with 1 have ab:"nat ( }|a|+|b|)=\mathrm{ Suc (Suc k)" by simp
        show ?thesis
    proof (cases " }|a|\geq|b\mp@subsup{|}{}{\prime\prime}
        case True
            show ?thesis
            proof (cases" }|b|=0"\mathrm{ )
                case True
                    with ab have " }|a|\not=0" by sim
                    with ' }|b|=0\mathrm{ ' and 2 and gcd_a0[of " }|a|"] ] and gcd_uniqu
                            have "g= |a|" by simp
                    thus ?thesis using common_div_def by simp
                next
                    case False
                        with ab have "nat ( }|a|-|b|+|b|)\leq\mathrm{ Suc k"
                        using ' }a|\geq|b\mp@subsup{|}{}{\prime}\mathrm{ by simp
                    moreover from 2 and gcd_ab have "is_gcd ( }|a|-|b|)|b|g
                        by simp
                    moreover from' ' }b|\not=0\mathrm{ ' and ' }a|\geq|b\mp@subsup{|}{}{\prime}\mathrm{ ' have " }|a|+|b|-|b|>0"
                        by simp
                    ultimately show ?thesis
                    using Suc.IH[of " }|a|-|b|" "|b|"] and ' |a|\geq \b|' and common_div_a
                    by simp
                qed
    next
        case False
                show ?thesis
                proof (cases " }|a|=0"\mathrm{ ")
                    case True
                        with ab have " }|b|\not=0\mathrm{ " by simp
                with True and 2 and gcd_Ob[of " }|b|"]\mathrm{ and gcd_unique
                        have "g= |b|" by simp
                thus ?thesis using common_div_def by simp
            next
                    case False
                        with ab have "nat ( }|a|+|b|-|a|)\leq\mathrm{ Suc k"
                        using ' }\neg|a|\geq|b|' by sim
                        moreover from 2 and ' }\neg|a|\geq|b|' and gcd_b
                        have "is_gcd |a| (|b| - |a|) g" by simp
                        moreover from ' }|a|\not=0\mathrm{ ' and ' }\neg\mathrm{ |a| }\geq||\mp@subsup{|}{}{\prime
                        have " }a|+|b|-|a|>0" by sim
                        ultimately show ?thesis
```

```
                using Suc.IH[of " \(|a|\) " " \(||b|-|a| "]\) and \({ }^{\prime} \neg|a| \geq|b|^{\prime}\)
                        and common_div_ba by simp
                qed
        qed
        qed
qed
```

We can now remove the condition used to make the induction on n :

```
lemma common_div_gcd:
    assumes " \(a \neq \overline{0} \vee \bar{b} \neq 0\) "
    and "is gcd \(|a||b| g\) "
    shows " \(\bar{\forall} p\). common_div \(|a||b| p \longrightarrow p d v d g)\) "
proof -
    from assms(1) have \(1: "|a|+|b|>0 "\) by auto
    have "nat \((|a|+|b|) \leq \operatorname{Suc}(\operatorname{nat}(|a|+|b|))\) " by simp
    with assms and 1 have
        " \((|a|+|b|>0) \wedge(\) nat \((|a|+|b|) \leq \operatorname{Suc}(\operatorname{nat}(|a|+|b|))) \wedge\) is_gcd \(|a||b| g "\)
        by blast
    from cdiv_div_gcd[OF this] show ?thesis .
qed
```

Therefore, we have the equivalence of the two definitions when a and b are not both null:

```
lemma gcd_inf_div:
    assumes "is gcd a bg"
    and \(\quad a \neq 0 \vee b \neq 0\) "
    shows "is_gcd_div a b g"
proof -
    from assms(1) have "is_gcd \(|a||b| g\) " using \(g c d \_a b s\) by simp
    with assms(2) and common_div_gcd
        have "( \(\forall p\). common_div \(|a||b| p \longrightarrow p d v d g)\) " by simp
    hence "( \(\forall p\). common_div a \(b p \longrightarrow p d v d g)\) " using common_div_abs by simp
    moreover from assms(1) have "common_div a \(b g^{\prime \prime}\) using is_gcd_def by simp
    moreover from assms(1) have " \(g>0\) " using \(g c d\) _pos by simp
    ultimately show ?thesis using is_gcd_div_def by simp
qed
```

theorem gcd_inf_div_eq:
assumes " $a \neq \overline{0} \vee \bar{b} \neq 0$ "
shows "is_gcd a b $g=$ is_gcd_div a b g"
using assms and gcd_div_inf and gcd_inf_div by blast

The condition on the simultaneous nullity of a and b comes from the fact that there is no GCD of 0 and 0 with the definiton based on the order on integers:
lemma any_common_div_0:"common_div 00 d"
proof -
have "d dvd 0" by simp

```
    thus ?thesis using common_div_def by simp
qed
theorem "\neg(\existsg. no_greater_div 0 0 g)"
proof
    assume "\existsg. no greater div 0 0 g"
    from this obtain g}\mathrm{ where ngd:"no_greater_div 00 g" by blast
    from any_common_div_O[of "g+\overline{1"] have "common_div 00 (g+1)".}
    with ngd have "g+1}\leq\mp@subsup{\}{}{\prime}"\mathrm{ using no_greater_div_def by blast
    thus False by simp
qed
```

Finally, we prove that our definition of the GCD matches the definition of the $g c d$ function in Isabelle.

```
lemma gcdfunc_imp_gcd_div:
    assumes "a \(\neq 0 \vee \bar{b} \neq \overline{0}\) "
    and \(\quad " g=g c d\) a \(b "\)
    shows "is_gcd_div a b g"
using assms common_div_def is_gcd_div_def by auto
theorem gcd_func_is_gcd_div:
    assumes " \(a \neq 0 \bar{\vee} \bar{b} \neq 0\) "
    shows " \((g=\operatorname{gcd}\) a \(b)=\) is_gcd_div a \(b g^{\prime \prime}\)
proof
    assume "is_gcd_div a b g"
    hence \(h\) :"is_gcd a b g" using gcd_inf_div_eq[OF assms] by simp
    let \(? g^{\prime}=" g c d\) a \(b "\)
    from assms and gcdfunc_imp_gcd_div have "is_gcd_div a \(b\) ? \(g\) '" by simp
    hence "is_gcd a \(b\) ? \(g^{\prime \prime}\) using \(g c d\) _-inf_div_eq[OF assms] by simp
    from \(g c d\) _unique[OF this \(h\) ] show " \(g=? g^{\prime \prime \prime}\)..
qed (simp add: gcdfunc_imp_gcd_div[OF assms])
end
```

