@
.> Introduction to Information Systems and Programming - LAB n°6

Relational Databases and RESTful APIs

Goals: The goal of this lab assignment is twofold. In the first part, you’ll learn how to code a Python application
that talks to a relational database. In the second part, you'll discover how open data is shared over the Web through
RESTful APIs.

1

The following Python packages will be used in this lab assignment:

e SQLAlchemy
e requests

e CSV

e time

e json

SQL and Python: Object Relational Mapper

We want to create LinkCS, a new social network that allows students in CentraleSupélec to connect and commu-
nicate. The implementation of LinkCS requires a relational database, which stores the actual social network, and
a software application, which lets the students access the social network. The application will be the interface
between the students, which are the end users of the social network, and the underlying relational database.

To know : What is an Object Relational Mapper?

The communication between an application and a database is hindered by the fact that the two don’t speak
the same language. More specifically, an application written in an object-oriented language understands the
notions of classes and objects, while a relational database only uses, as its name implies, relations, or tables.
This gap between the application and the database is often referred to as impedance mismatch.

One way to address the impedance mismatch is to leave the programmer with the tedious task of writing
the code necessary to convert classes and objects into tables, and the other way round. Another option is to
use a Object Relational Mapper (ORM), a software library that bridges the gap between an object-oriented
application and a relational database with minimal intervention from the programmer. By using an ORM,
the programmer can write an application that communicates with a relational database without using SQL.

Most programming languages have at least an ORM; Python has a few: DjangoORM, Storm, PoneyORM,
and SQLAlchemy, just to name a few. We will use SQLAchemy.

1.1 Database design

We intend to create a simple database with two tables:

e A table named Student with the following columns:

— studentNumber: a numeric identifier of a student.
— firstName: the first name of a student.

— lastName: the last name of a student.

— nickname: the nickname of a student.

— country: the country of origin of a student.
e A table named Association with the following columns:

— asso_id: a numeric identifier of an association.
— name: the name of an association.

— description: a textual description of the activities of an association.

CentraleSupélec 2018-2019 1/

(J
.> Introduction to Information Systems and Programming - LAB n°6

Exercice 1 : Logical Model
Draw the logical model for this database.

1.2 Database creation

We'll now walk you through the creation of this database by using SQLAlchemy and a relational database manage-
ment system (DBMS) called SQLite. Unlike other DBMSs, such as MySQL and PostgreSQL, SQLite is a database
engine embedded in the application rather than a client-server engine.

Open a new Python file in Pycharm named orm-introduction.py to write the code of the application. We
first import from SQLAlchemy all the functions that we’ll need in the remainder of the assignment.

from sqlalchemy import create_engine

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String

from sqlalchemy import Table, ForeignKey

from sqlalchemy.orm import relationship

from sqlalchemy.orm import sessionmaker

Next, we create the SQLite database engine with the following code.

engine = create_engine('sqlite:///:memory:', echo=False)

The directive sqlite:///:memory: means that the database will be stored in memory (RAM), rather than in
the hard disk. This is an acceptable choice when the database is expected to contain little data. The directive
echo=False indicates that SQLAlchemy will not print the SQL queries that it generates. create_engine() returns
an instance of the class Engine that represents the interface to the underlying relational database. When using
SQLAlchemy, the programmer doesn’t need to manipulate the object engine directly; it will be used by SQLAlchemy
behind the scenes.

Declare a Mapping. The objective of using an ORM, such as SQLAlchemy, is to manipulate (i.e., query and
update) the tables in the relational database through classes defined in the Python application. Thus, the first
brick in the application must be the definition of the classes with the code necessary to declare the mapping to the
corresponding relational tables. The mapping is stored in a so-called declarative base class that is instantiated
as follows.

Base = declarative_base()

We can now define the classes that describe the tables in our database. The following code declares a class named
Student that corresponds to the homonymous table (directive __tablename__-='Student') and five columns:
studentNumber (integer, the primary key), firstName (String, not null), lastName (String, not null), nickname
(String) and country (String).

class Student(Base):
__tablename__ = 'Student'
studentNumber = Column(Integer, primary_key=True)
firstName = Column(String, nullable=False)
lastName = Column(String, nullable=False)
nickname = Column(String)
country = Column(String)

Exercice 2 : Class Association

CentraleSupélec 2018-2019 2/

(J
.> Introduction to Information Systems and Programming - LAB n°6

Based on the code that declares the class Student, write the code to create a class named Association corre-
sponding to the homonymous table.

A student might belong to some associations. In other words, there is a many-to-many relationship between
any student and any association. According to the rules that dictate the translation of the logical model into the
relational model, this relationship is mapped to a relational table (referred to as an association table), where the
columns are studentNumber and asso_id (the primary keys of the table Student and Association, respectively)

Before the definition of the classes Student and Association, we create the association table that we name
Affiliation, as follows.

affiliation = Table('Affiliation', Base.metadata,
Column('asso_id', Integer,ForeignKey('Association.asso_id'), nullable=False),
Column('student_id',Integer,ForeignKey('Student.studentNumber') ,nullable=False))

The previous code declares a table that is added to the base class with the directive Base.metadata; the column
asso_id (respectively, student_id) is a foreign key referencing the column asso_id (resp., studentNumber) in
table Association (resp., Student).

Unlike the tables Student and Association, the table affiliation is not mapped to any Python class. The rea-
son is that this table is not manipulated directly in the Python code, but is populated automatically by SQLAlchemy
whenever a student is added to an association. In order to activate this behavior, we need to modify the definition
of the class Association to add a new attribute students, and to modify the definition of the class Student to
add a new attribute associations, as follows:

class Student (Base):
__tablename__ = 'Student'
studentNumber = Column(Integer, primary_key=True)
firstName = Column(String, nullable=False)
lastName = Column(String, nullable=False)
nickname = Column(String)
country = Column(String)
associations = relationship('Association', secondary=affiliation,
back_populates='students')

class Association(Base):
__tablename__ = 'Association'
asso_id = Column(Integer, primary_key=True)
name = Column(String, nullable=False)
description = Column(String)
students = relationship('Student', secondary=affiliation,
back_populates='associations')

Both new attributes associations and students are defined by using the SQLAlchemy function relation-
ship. We can think of associations and students as two collections (e.g., lists), where each item is an object
of the class Association and Student respectively. The function relationship in the above code takes in three
arguments. The first (e.g., “Student”) informs the ORM that each item of the collection students in the table
Association is an object of the class Student. The second (introduced with the keyword secondary) informs
the ORM that the relationship is many-to-many and that the association table is affiliation (that we defined
above). The third argument (introduced with the keyword back_populates) is used to make the relationship
bidirectional; in other words, the attribute associations in class Student is symmetric to the attribute students
in class Association. As a result, when we add an association to the collection associations of a student, that
student will be automatically added to the collection students of that association.

In order to actually create the tables in the underlying database, the following instruction must be added:

CentraleSupélec 2018-2019 3/

(J
.> Introduction to Information Systems and Programming - LAB n°6

Base.metadata.create_all(engine)
print ("Tables created!")

1.3 Populating the database

Once the tables are created, we need to populate them (i.e., add some data). To this extent, SQLAlchemy provides
the notion of session. A session is an object that serves as the interface to the database; session objects are created
through a Session class that is defined as follows:

Session = sessionmaker(bind=engine)

In other words, the class Session is the factory for new session objects. Note that Session is binded to the
database engine that we defined previously.

In order to create a session object, the constructor of the class Session is invoked:

session = Session()

If we want to add a student to the database, we simply create a new Student object and then we add it to the
session, as follows:

nox = Student (studentNumber=1, firstName='Thomas', lastName='Adier',
nickname='nox', country='France')

session.add(nox)

print ("nox added!")

Exercice 3 : Create an association

Create a new association called “ViaRezo” with the description “Bringing Internet to the campus”.
We can add more students at once using the function add_all():

enizor = Student(studentNumber=2, firstName='Remi', lastName='Garde',
nickname='enizor', country='France')

gossex = Student(studentNumber=3, firstName='David', lastName='Gosset',
nickname='gossex', country='France')

xix = Student (studentNumber=4, firstName='Julen', lastName='Dixneuf',

nickname='xix', country='France')
session.add_all([enizor, gossex, xix])
print("enizor, gossex, xix added!")

We can add all the students as members of ViaRezo, as follows:

viarezo.students.append (nox)
viarezo.students.append(enizor)
viarezo.students.append(gossex)
viarezo.students.append (xix)

We can verify that the students have been correctly added with the following code:

print ("STUDENTS IN VIAREZO")
for student in viarezo.students:
print (student.nickname)

Given the bi-directionality of the relationship between a student and an association, ViaRezo is automatically
added to the list of the associations of each student.

CentraleSupélec 2018-2019 4/

(J
.> Introduction to Information Systems and Programming - LAB n°6

Exercice 4 :

Write the code to verify that ViaRezo appears in the associations of the student xix.

Note that the data added to the session is not persisted into the database until either it is queried or the
application explicitly calls the function commit() on the session. As a rule of thumb, after you’re done with
adding or modifying data, you should call the function commit () explicitly:

session.commit ()

1.4 Queries

Queries are executed against the database by using the method query() on the session object. The following
query returns all the students in the database

session.query(Student)

In order to loop over the result of this query and, say, print the first and family name of each student, the
following code is used:

print ("GETTING ALL STUDENTS")
for student in session.query(Student):
print(student.firstName, student.lastName)

The call session.query(Student) is tantamount to the SQL query SELECT * FROM Student; the following
code translates the query SELECT firstName, lastName FROM Student:

print ("GETTING ALL STUDENTS")
for firstName, lastName in session.query(Student.firstName, Student.lastName):
print (firstName, lastName)

The function filter() is used to specify a WHERE clause:

print ("GETTING ADIER")
for student in session.query(Student).filter(Student.lastName=='Adier'):
print (student.nickname)

We can add as many WHERE clauses as we wish, by concatenating the calls to the function filter (), as follows:

print ("GETTING THOMAS ADIER")
for student in session.query(Student).\
filter(Student.lastName=="'Adier')\
.filter(Student.firstName=='Thomas"'):
print(student.nickname)

Here you’ll find a list of operators that can be used as an argument of the function filter().

If you're certain that your query only returns one row (e.g., there is only one association with name ViaRezo),
you can use the function one () as follows:

viarezo = session.query(Association).filter(Association.name=='ViaRezo') .one()
print(viarezo.description)

CentraleSupélec 2018-2019 5/

http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#common-filter-operators

(J
.> Introduction to Information Systems and Programming - LAB n°6

However, if you apply one to a query that returns multiple results, SQLAlchemy will raise a MultipleRe-
sultsFound exception.

Finally, you can obtain a row by specifying the value of the primary key with the function get (). The following
code returns the student with studentNumber=1:

first = session.query(Student).get(1)
print (first.lastName)

1.5 Exercises
Exercice 5 : Modifying the database

Modify the logical model in order to:
¢ Add the role of a student in an association.

o Add the email addresses of each student (a student can have several).

Exercice 6 : Create the tables

Open a new Python file named orm-exo.py in Pycharm and write the code to generate the tables of the new

database.
Hint: since we added the role of a student in an association, the affiliation will be implemented with an association

object, whose description can be found |here. Moreover, in order to add the email addresses of the students, you’ll
need to learn how to implement a one-to-many relationship.

Exercice 7 : Populate the tables

Write a Python function named populate() that reads the CSV files students.csv, associations.csv,
affiliation.csvand addresses.csv and populates the database. You can then use the two functions print_students ()
and print_associations() defined below to verify that the database is actually populated.

Hint:

e You’ll need to learn how to add data when a many-to-many relationship is implemented with an association
object.

e The delimiter character in each CSV file is the semicolon; please note that the first row of each file is the
header and therefore must be skipped by using the function next().

def print_students(session):
for stud in session.query(Student):
info = ",".join([str(stud.studentNumber), stud.firstName,
stud.lastName, stud.nickname, stud.country])
affiliations = "["
for affi in stud.associations:
affiliations += affi.asso.name + " --> " + affi.role \
if len(affiliations) == 1 \
else ", " + affi.asso.name + " --> " + affi.role
affiliations += "]"
info += ", associations=" + affiliations
addresses = "["
for addr in stud.addresses:
addresses += addr.email if len(addresses) == 1 else ", " + addr.email
addresses += "]"

CentraleSupélec 2018-2019 6/

http://docs.sqlalchemy.org/en/latest/orm/basic_relationships.html#association-object
http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#building-a-relationship
http://docs.sqlalchemy.org/en/latest/orm/basic_relationships.html#association-object
http://docs.sqlalchemy.org/en/latest/orm/basic_relationships.html#association-object
https://www.tutorialspoint.com/python3/file_next.htm

S

Introduction to Information Systems and Programming - LAB n°6

info += ", addresses=" + addresses
print(info)

def print_associations(session):
for asso in session.query(Association):
info = asso.name + " \"" + asso.description

students = "["
for affi in asso.students:
students += affi.student.firstName + " " + affi.student.lastName \
+ " -=> " + affi.role \
if len(students) == 1 \
else ", " + affi.student.firstName + " " \
+ affi.student.lastName + " --> " + affi.role

students += "]"
info += "students=" + students
print (info)

Write a query in SQLAlchemy to count the number of students from Brazil (Expected result: 3).

Hint: Check out how to count in SQLAlchemy.

Write a query in SQLAlchemy to count the students in the association ViaRezo (Expected result: 8).
Hint: use any() for many-to-many relationships and has() for many-to-one relationships. You can learn more

Write a query in SQLAlchemy to count the students in the association ViaRezo by country (Expected result:
Brazil 3, France 2, Germany 2, Morocco 1).
Hint: Look for an analogous example.

Write a query in SQLAlchemy to print the name of all students that are presidents of at least one association
(Expected result: Thomas Adier, Remi Garde, Julie Rose, Elizabeth Red, Nour Ayoub).

Write the code necessary to remove the association named "BDI". Remember to call commit () to make the
changes persistent in the database.
Hint: When we remove the association BDI (that has asso_id 2), by default SQLAlchemy replaces the value 2 with
NULL in the column asso_id of the table Affiliation. However, this would not be allowed by the underlying
relational database, because the column asso_id is part of the primary key. Therefore, we have to instruct
SQLAlchemy to delete the rows in Affiliation where the value of asso_id is 2. This is achieved by adding the
directive cascade="all, delete, delete-orphan" to the relationship students in the table Association, as

explained

Write the code necessary to add the email address julier@gmail.com to the student Julie Rose (student_id

= 8).

CentraleSupélec 2018-2019 7/

=
=

http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#counting
http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#using-exists
http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#counting
http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#deleting

(J
.> Introduction to Information Systems and Programming - LAB n°6
2 Open Data and APIs

Have you ever heard of the buzzword Open Data? It’s the idea that data should be freely available to anyone. In
the the past few years, the Open Data movement gained traction so much so that even governments started to
disclose some of their data to the public. Of course, data needs to be in a format that allows fast retrieval and
automatic processing.

One common way to share data that software applications can grab and use is through an API, short for Ap-
plication Programming Interface, more specifically a RESTful API, that allows an application to get some data
through a simple HTTP request, the same technology used by a Web browser to request a Web page.

An example of RESTful API is the one provided by OpenWeatherMap, a website that provides weather forecast
across the world.

2.1 Setup

OpenWeatherMap provides different APIs/ depending on the the type of application you intend to develop. The free
API allows your application to get the current weather in any location, as well as 5-days forecasts, with no more
than 60 requests per minute.

In order to use the API, you’ll need to create a free account; go to the home page, click on Sign Up and follow
the instructions. Once the account is created, you’ll be redirected to your home page; if you click on API keys,
you’ll land on a page where you can find the API key that your application needs to use to request weather data.

2.2 First Example

Suppose that we want to get the current weather in Paris through a Python application. We can query OpenWeath-
erMap by using a URL in a specific format:

http://api.openweathermap.org/data/2.5/weather?q=Paris, France&APPID=your-app-id

The prefix http://api.openweathermap.org/data/2.5/weather? is the way the application connects to the
weather service of the OpenWeatherMap website. What comes after the question mark is a list of parameters
separated by the character &. The first parameter q is used to specify the name of the city, possibly followed by
a comma (,) and the name of the country; the value of the parameter APPID is the API key needed to submit the
request to the Web service.

Open a new Python file named weather.py and write the following code (remember to specify your API key in
the URL request).

import requests

request = requests.get("http://api.openweathermap.org/data/2.5/weather?"
"q=Paris,France&APPID=your-app-id")

rawData = request.content.decode('utf-8')

print (rawData)

As you can see, the data returned by OpenWeatherMap is in a special key-value format, where the key (e.g.,
base, coord) is the name of a parameter and the value can be a simple literal (e.g., stations) or a set of key-value
pairs (e.g., {"lon":2.35,"lat":48.86}). This format is called JSON (JavaScript Object Notation) and is com-
monly used as a data representation in RESTFul APIs.

The syntax of JSON is quite simple:

- Curly braces ({ }) hold JSON documents and each key is followed by a colon (:), the key/value pairs are
separated by a comma (,).

- Square brackets ([]) hold arrays and values are separated by a comma (,).

CentraleSupélec 2018-2019 8/

https://openweathermap.org/forecast5
https://openweathermap.org/price
https://openweathermap.org
http://api.openweathermap.org/data/2.5/weather?q=Paris,France&APPID=your-app-id

Gy

Introduction to Information

Systems and Programming - LAB n°6

"coord":{
"lon":2.35,
"lat":48.86
},
"weather": [
{
"id":800,
"main":"Clear",
"description":"clear sky",
"icon":"014d"
}

1,

"base":"stations",

"main":{
"temp":297.
"pressure":
"humidity":
"temp_min":
"temp_max":

},

"visibility":10000,

"wind": {

"speed":3.1,
"deg" :280

},

"clouds":{
"all":0

},

"dt":1536588000,

"sys":{

"type":1,

"id":5610,
"message":0.3603,
"country":"FR",
"sunrise":1536556840,
"sunset":1536603192

},

"id":2988507,

"name":"Paris",

"cod":200

52,
1024,
36,
296.15,
298.15

The variable rawData is a string that contains the text of the JSON document; as a result, it is not suitable to
efficiently extract the weather information that we need, such as, for instance, the temperature. For this reason,
we first load the textual JSON content into a Python dictionary jsonData that is the ideal data structure, given

that it is itself based on key-value pairs.

import json
jsonData = json.loads(rawData)

Finally, if we need to access the value of any key (e.g., coord), we just type:

print (jsonData["coord"])

CentraleSupélec 2018-2019

9/ 1]

(J
.> Introduction to Information Systems and Programming - LAB n°6

If we want to only get the latitude, we would type:

print(jsonDatal["coord"] ["1lat"])

Finally, arrays are handled in the usual way. For instance, the value of the key weather is an array that only
contains one JSON document; to get it, we write as follows:

print (jsonData["weather"] [0])

2.3 Exercises

Exercice 14 : Get current weather
Write the code to print the textual description of the current weather in Paris.

Exercice 15 : Get temperature in Celsius

As you can see from the responses, the temperature is in Kelvin. Looking at the |[documentation), write the code
to obtain the temperature in Celsius.

Exercice 16 : Cities in cycle

Looking at the documentation, write the code to obtain up to 50 locations around Paris and their temperature.
Hint: Print the JSON response of OpenWeatherMap in order to see which keys you’ll need to use to extract the
requested information.

The free version of OpenWeatherMap allows an application to get a 5-day weather forecast for any location or
city. For each day, the data is provided every three hours. The documentation that you need to access the weather
forecast service is available here. In section “Weather parameters in API respond” of the documentation, you'll
find a description of the keys in the response. The key 1list has as its value an array where each element is itself a
JSON document containing the information of the forecast at a specific time and date.

The temporal information can be extracted with the key 1ist.dt, whose value is the Unix time (also known as
Epoch), i.e., the number of seconds elapsed since 00:00:00 Coordinated Universal Time (UTC), Thursday, 1 January
1970. In order to translate the Epoch into a readable date, you can use the following code:

import time

epoch = 1536656400

t = time.strftime('%Y-%m-%d %H:%M:%S"', time.localtime (epoch))
print(t)

Exercice 17 : Weather forecast

Write the Python code to print the 5-day forecast for a location of your choice. Each line of the output should
have the following information: date and time, description of the weather conditions (e.g., “clear sky”) and the
temperature.

Current average temperature in a country. Open a new Python file named temperature.py. We're now
going to code a function avg_temperature() that calculates the current average temperature in a given country.
More specifically, the function takes in the bounding box containing the country that is identified by the following
four parameters:

e lon_left: the longitude of the westmost point on the box.

e lat_bottom: the latitude of the southmost point on the box.

CentraleSupélec 2018-2019 10/

https://openweathermap.org/current
https://openweathermap.org/current
https://openweathermap.org/forecast5

(J
.> Introduction to Information Systems and Programming - LAB n°6

e lon_right: the longitude of the eastmost point on the box.

e lat_top: the latitude of the northmost point on the box.

All the above coordinates are given as decimal values. Additionally, the function takes in a fifth parameter zoom
that is used to control the number of locations in the bounding box.

You can go to [this website| to obtain the bounding box of a country; in the menu at the bottom left corner
(“Copy & Paste”), select CSV in order to get the coordinates of the bounding box as (lon_left, lat_bottom,
lon_right and lat_top).

The OpenWeatherMap |[documentation describes how to pass a bounding box to the Web service. As for the
value of zoom, set it so as to have between 100 and 300 cities (for France, a good value is 9).

Exercice 18 : Function avg_temperature

Code the function avg_temperature and test it on a country of your choice.

You’d probably noticed that a bounding box may contain some locations that are not in the country enclosed
in the box. We need to filter out those locations. Unfortunately, if you look at the raw JSON document returned
by OpenWeatherMap in response to the query, you’ll see that only the identifier (key id) and the name (key
name) of the location is mentioned (not the country). In order to get the country of a location, we need to query
Open WeatherMap by using the identifier of the location.

Exercice 19 : Function get_country()

Define a function get_country() in temperature.py that takes in the identifier of a location and returns the
name of its country. Try the function with the identifier 3107775 that corresponds to a Spanish location called
Torrelavega.

Hint: Look at the documentation/ to find out how to query by location ID.

You can now modify the function avg_temperature that you defined above in order to filter out the locations

that are not in the country of your choice.

IMPORTANT: please consider that you have up to 60 requests per minute; if you exceed this number, your
API key will be disabled. To avoid the problem, you might want to use the function time.sleep() that delays
your application for a selected number of seconds.

import time
time.sleep(5) # delays for 5 seconds.

Exercice 20 : Function avg_temperature

Modify the function avg_temperature so as to calculate the average of the temperature based only on the
locations in the targeted country.

CentraleSupélec 2018-2019 11/

https://boundingbox.klokantech.com
https://openweathermap.org/current
https://openweathermap.org/current

	SQL and Python: Object Relational Mapper
	Database design
	Database creation
	Populating the database
	Queries
	Exercises

	Open Data and APIs
	Setup
	First Example
	Exercises

