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Abstract

A step in the validation of a system is to check its
behavior by simulation. Simulation is also used to vali-
date the behavior of the model of the system against test
patterns. For complex systems, models are made of parts
which use different modeling formalisms. The main is-
sues in the simulation of such systems are the speci-
fication of the semantics of each modeling formalism,
and of the interactions between heterogeneous parts of a
model. ModHel’X relies on component based modeling
and models of computation to address these problems
and focuses on the computation of one possible behav-
ior of a model. This includes simulation and code gen-
eration. ModHel’X defines a MOF meta-model for de-
scribing the structural elements of a modeling language.
The semantics of modeling languages is expressed in an
imperative style and addresses three aspects: control,
data and time. ModHel’X is supported by a simulator of
multi-formalism models.

1. Introduction

Complex systems are inherently heterogeneous because
of the diverse nature of their numerous parts: hardware,
software, digital, analog, internal or external IPs (In-
tellectual Properties), etc. Modeling such systems re-
quires multiple modeling formalisms, adapted to the na-
ture of each part of the system, the aspect on which
the model focuses (functionality, time, power consump-
tion. . . ) and to the level of abstraction at which the sys-
tem, or one of its parts, is studied. As emphasized by [1],
having a global model of such a system all along the de-
sign process is necessary in order to answer questions
about properties of the whole system, and in particu-
lar about its behavior. Each formalism can be based
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on a specific paradigm — process networks, discrete
events, automata, continuous time, differential equa-
tions, etc. [2] — therefore such a model is said to be
multi-formalism [3].

Multi-formalism modeling (or heterogeneous mod-
eling) is an emerging field and different aspects of it
have been studied: mathematical foundations [2], tools
for validation [4] or simulation [5]. A central problem
is to establish the meaning of the composition of het-
erogeneous parts of a model and to ensure their correct
inter-operation when using the model to answer ques-
tions about the designed system [6].

We believe that the first step to be taken for solving
this problem is to provide means for the precise specifi-
cation of the semantics of the modeling formalisms that
we want to use. Indeed, except for a few mathemati-
cally founded languages, the semantics of a modeling
language is often described using natural language, what
may lead to ambiguities and to diverse interpretations
by different tools along the design chain. When com-
bining different modeling languages in a model, ambi-
guities in the semantics of one of them make it impos-
sible to define the overall semantics of the model. In
this context, semantic variations as found in UML are
acceptable only if the variation used is explicitly stated.
In ModHel’X, we propose a set of tools for allowing the
precise specification of the semantics of a modeling for-
malism without referring to any model instance (i.e. at
the meta-modeling level [3]). In order to facilitate the
combination of multiple modeling languages in models,
our approach relies on concepts of component-oriented
and hierarchical modeling [7]. The encapsulation prin-
ciple in component-oriented modeling is a major advan-
tage for heterogeneous modeling since its very purpose
is to hide the internal mechanisms of the components. In
this context, hierarchy is a structural way of combining
the heterogeneous parts of a model, as well as a simple
abstraction mechanism.

The second step to obtain a meaningful multi-
formalism model of a system is to provide support for
the specification of the semantic adaptation between



model parts that use different modeling formalisms. An
important constraint is that no model part should be
modified to become compatible with the other parts of
the multi-formalism model. This is particularly impor-
tant when the model parts come from different techni-
cal teams or from suppliers for instance. In ModHel’X,
the adaptation mechanism is decoupled from the model
parts which are being integrated. A second issue is that
the semantic adjustment between heterogeneous parts of
a model depends not only on the formalisms at stake but
also on the system which is modeled. Usual adaptation
patterns between modeling formalisms often exist, but
they are not unique and may need parameter adjuste-
ments. Such patterns may represent default adaptations
which may not fit directly a particular context. For ex-
ample, when integrating model parts that have different
notions of time, it may be necessary to customize the
way the different times are synchronized in order to have
a coherent behavior of the system. ModHel’X permits
the description of adaptation patterns and allows the de-
signer to choose the most suitable one in a given model.
These descriptions may be reused in different contexts,
and parameters allow their adaptation to specific appli-
cations.

Finally, we have developed for ModHel’X an exe-
cution engine which is able to interpret multi-formalism
models and to simulate their behavior. This execution
engine is deterministic, so if every modeling formalism
used in a model is deterministic, the whole simulation
is deterministic — the same input sequence will always
produce the same simulation result. This allows Mod-
Hel’X to be used to test heterogeneous models. It is also
possible to rely on the same precise definition of the se-
mantics of the modeling formalisms and of their interac-
tions to generate implementations that behave the same
as the model.

The remainder of the paper is organized as follows.
In Section 2 we review some of the related work and mo-
tivate our approach. Section 3 details and illustrates the
main principles of ModHel’X. We discuss some specific
aspects of our approach in Section 4, before concluding.

2. Other multi-formalism approaches

In meta-modeling approaches such as Kermeta [8], the
abstract syntax of a modeling language is described as
a MOF meta-model. The elements of this meta-model
have methods whose semantics is defined in an impera-
tive language. Each modeling language has a different
meta-model in Kermeta. In the context of heterogeneous
modeling, the definition of the combination of several
modeling languages using such approaches implies ei-
ther the definition of a meta-model which is the union

of all the meta-models of the involved languages, or the
definition of transformations from each meta-model to
a meta-model chosen among them. Defining a union
meta-model seems neither reasonable nor scalable since
it implies modification of the meta-model and the asso-
ciated model transformations when an additional mod-
eling language is taken into consideration. The second
method is much more interesting since it is more flexi-
ble: the target meta-model can be chosen according to
the question to be answered about the system. Such an
approach is implemented in the ATOM3 tool [9]. How-
ever, the way the different heterogeneous parts of the
model are “glued” together does not seem to be ad-
dressed by this approach.

Other approaches [10, 11] are also based on model
transformation. In particular, [11] states that it is possi-
ble to formally define the semantics of a modeling lan-
guage by defining a mapping to an already existing for-
mally defined modeling language.

Another approach for defining the semantics of a
modeling language, is to define the constructs of the lan-
guage in a fixed abstract syntax — or meta-model —
which is component oriented (as in [7]) and to consider
that the semantics of a modeling language is given by
its “Model of Computation (MoC)”. Such an approach
is implemented in Ptolemy [1]. A model of computa-
tion (called “domain” in Ptolemy) is a set of rules for
interpreting the relations between the components of a
model. In this approach, the meta-model is the same
for each language, and what defines the semantics of the
language is the way the elements of this meta-model are
interpreted by the corresponding MoC. Heterogeneous
models are organized into hierarchical layers, each one
involving only one MoC. Thanks to this architecture,
MoCs (i.e. modeling languages) are combined in pairs
at the boundary between two hierarchical levels. The
main drawback of the Ptolemy approach is that the way
MoCs are combined at a boundary between two hierar-
chical levels is fixed and coded into the Ptolemy kernel.
This implies that a modeler has either to rely on the de-
fault adaptation performed by the tool, or to modify the
design of parts of its model (by adding adaptation com-
ponents) in order to obtain the behavior he expects.

Let us consider, for example, the model of a sys-
tem which computes routes for a car according to known
traffic conditions. This system is composed of an algo-
rithm which computes a route from the destination and
the current position of the car, and of a subsystem which
retrieves traffic information from a network. The traf-
fic information, when available, is used by the routing
algorithm to minimize the duration of the trip. The rout-
ing algorithm regularly receives the position of the car
and updates the route. A synchronous data-flow formal-



ism (SDF Ptolemy domain) is particularly adapted for
modeling such signal processing systems. The traffic
information retrieving system is provided by a supplier,
who used a discrete events formalism (DE Ptolemy do-
main) in order to model the response delay of the net-
work. Embedding the DE model directly into the SDF
model is not possible because SDF requires an immedi-
ate response to inputs, while the traffic information re-
trieving system will produce data only when the network
answers its request. In Ptolemy II, the modeler will have
to modify the DE model by adding a sampler component
which will deliver data synchronously by repeating the
previous data sample when no new data is available. The
problems that arise with this approach are the following:

• The altered model of the information retrieving
system does not represent any longer the behavior
of the component which will be delivered by the
supplier. This may lead to implementation inco-
herences at the end of the development cycle.

• Since semantic adaptation is done by the modeler
in the model of the component, it is not protected
from changes made by the supplier to the model.

• If the formalism used in one of the models changes
— e.g. to refine the model in order to take finer
details into account — the adaptation must be ex-
presed again in the new formalism. This is incom-
patible with modularity and reuse.

It is therefore important to allow the designer to
specify the semantic adaptation outside the models of
the parts he assembles.

The approach we propose is based on the concept
of model of computation (MoC) as defined in [1]. Our
MOF meta-model, which is inspired by the abstract syn-
tax of Ptolemy, contains special constructs for making
the interactions between heterogeneous MoCs explicit
and easy to define. In order to interpret a model in Mod-
Hel’X, it is necessary to describe its structure using our
meta-model. Then, we define an interpretation of the
elements of our meta-model which matches the seman-
tics of the original language. Such an interpretation is
what we call a Model of Computation. The interpre-
tation of a model according to a MoC gives the same
behavior as the interpretation of the original model ac-
cording to the semantics of its modeling language. The
same concepts used to define MoCs are used to define
how different MoCs are “glued” together in heteroge-
neous models, at the boundary between two hierarchical
layers. The execution engine of ModHel’X relies on the
precise specification of the models of computation and
of their interactions to determine without ambiguity the
behavior of multi-formalism models.

Other approaches of heterogeneous modeling are
also based on a hierarchical and component oriented ab-
stract syntax. BIP (Behavior, Interaction, Priority) [4]
provides formally defined mechanisms for describing
combinations of components in a model using heteroge-
neous interactions. BIP does not consider components
as black boxes and has access to the description of their
behavior. This allows the formal verification of proper-
ties on the model. It is important to note that, in BIP,
the description of the interactions between components
is made at the M1 level.

The “42” approach [12] seems closer to ours. Based
on the synchronous paradigm, 42 generates the code of
the MoCs (called “controllers”) from the contracts of the
components (described using automata), the relations
between their ports and additional information related
to activation scheduling. The strength of this approach
relies on the description of the behavioral contract of
components. However, such a description may not be
available (in the case of an external IP for instance) or
may not be easy to establish, in the case of continuous
time behaviors for example.

Metropolis [13] also relies on the concept of model
of computation, but it focuses on MoCs related to pro-
cess networks. It originates from trace algebras [14] and
is closely related to the tag semantics approaches [2, 15],
which provide mathematical frameworks for the formal-
ization of MoCs and their interactions but are very far
from model execution.

3. Modeling heterogeneous systems
with ModHel’X

3.1. Black boxes and snapshots

We adopt a component-oriented approach in which we
consider components as black boxes, called blocks, in
order to decouple the internal model of a component
from the model of the system in which it is used. There-
fore, the behavior of a block is observable only at its
interface: nothing is known about what is happening
inside the block, and in particular whether the block is
even computing something.

In addition, instead of “triggering” the behavior of
a block, we only observe its interface. When we need
to observe a block, we ask it to provide us with a co-
herent view of its interface at this moment. A block
can therefore be active even when we do not observe
it. This is a key point in our approach because it al-
lows us to embed asynchronous processes in a model
without synchronizing their activity: we simply observe
them at instants suitable for the embedding model, and
the embedded model provides us with views of its in-



terface at these instants. The behavior of a block or a
model is therefore a sequence of observations, without
consideration for the internal behavior which produces
these observations. An observation of a model is defined
as the combination of the observations of its blocks ac-
cording to a MoC. This definition holds at all the levels
of a hierarchical model. The observation of the top-level
model, i.e. the model of the overall system, is a snap-
shot [16] which defines the exact state of the interface
of each block at a given instant (such a notion is also de-
fined in the context of UML [17]). We detail the way a
snapshot is obtained using the rules expressed by a MoC
in Section 3.4.

3.2. Time

The notions of time used in different models of compu-
tation are varied (real time, logical clocks, partial order
on signal samples, etc.), and ModHel’X must support all
of them. Moreover, in an heterogeneous model, differ-
ent notions of time are combined and each part of the
model may have its own time stamp in a given snapshot.
Therefore, the succession of snapshots is the only notion
of time which is shared by all MoCs and which is prede-
fined in ModHel’X. On this sequence of instants, each
MoC can define its own notion of time.

A snapshot of a model is made whenever its envi-
ronment (i.e. the input data) changes, but also as soon as
any block at any level of the hierarchy needs to be ob-
served because its state has changed. To this end, each
component of an heterogeneous model can give con-
straints on its time stamp at the next snapshot. For in-
stance, in a timed automaton, a time out transition leav-
ing the current state must be fired even if no input is
available. This can be achieved by requiring, when en-
tering this state, that the next snapshot occurs before the
timeout expires. This feature is a major departure from
the Ptolemy approach, where the root model drives the
execution of the other layers of the hierarchy.

Times in two MoCs may be synchronized by the
interaction pattern at the boundary of two hierarchical
levels. Thus, time constraints can propagate through the
hierarchy up to the top level model.

3.3. A generic meta-model for representing
the structure of models

The generic meta-model that we propose, shown on
Figure 1, defines abstract concepts for representing the
structural elements of models. Each of these concepts
can be specialized in order to represent notions that are
specific to a given modeling language, but their seman-
tics is given by the MoCs which interpret them.

In the structure of a model, blocks are the basic units
of behavior. Pins define the interface of models and
blocks. The interactions between blocks are represented
by relations between their pins. Relations are unidirec-
tional and do not have any behavior: they are interpreted
according to the MoC in order to determine how to com-
bine the behaviors of the blocks they connect. For in-
stance, a relation can represent a causal order between
two blocks as well as a communication channel.

In Modhel’X, data is represented by tokens. The
concept of token can be specialized for each model of
computation. For instance, in a discrete event model,
tokens may have a value and a time stamp, while in a
data-flow model, they carry a value only. The type of
the value which is carried by a token is not taken into
account by the MoC, which is only in charge of deliver-
ing the tokens by interpreting the relations between the
blocks.

The behavior of a block can be described either
using a formalism which is external to our framework
(for instance in C or Java), yielding an atomic block, or
by a ModHel’X model. To handle the latter case, we
have introduced a special type of block called an inter-
face block, which implements hierarchical heterogene-
ity: the internal model of an interface block may obey
a MoC which is different from the MoC of the external
model in which the block is used. Interface blocks are a
key notion in our framework since they are in charge of
adapting the semantics of their inner and outer models
of computation. They allow the explicit specification of
the interactions between different MoCs.

3.4. An imperative semantics for MoCs
and their interactions

Computing a snapshot of an heterogeneous model re-
quires to compute the observation of all its parts, which
may use different MoCs i.e. different notions of time,
control or data. The issue of the consistency of such an
observation is similar to the definition of the state of a
distributed system [16]. In ModHel’X, we have chosen
to define a model of computation as an algorithm for
computing observations of the model to which it is as-
sociated. For each observation, the algorithm asks the
blocks of the model to update the state of their interface.
The results of the update (output data) are propagated to
other blocks by propagation operations. We want our
execution engine to be deterministic, therefore we ob-
serve the blocks sequentially. To ensure the consistency
of the computed behavior with the control and concur-
rency notions of the original model, the MoC must in-
clude scheduling operations which determine the order
in which to update the blocks.



Figure 1. Generic meta-model for representing the structure of models

Figure 2. Generic execution algorithm

Figure 3. Update on an interface
block and its internal model

Figure 2 represents the generic structure of our al-
gorithm. This structure is a fixed frame which “stan-
dardizes” the way MoCs can be expressed in ModHel’X,
but the contents of each element is left free. Therefore,
for each MoC, the semantics of the operations of this
algorithm has to be described, using an imperative syn-
tax, in order to define the scheduling and propagation
“policies” specific to the MoC (non necessary operations
can be left empty). The left part of the figure shows the
loop which computes the succession of snapshots of the
execution of the model. In the computation of a snap-
shot, the observation of one block brings into play the
scheduling and propagation operations mentioned above
and is called a step (represented on the right part of Fig-
ure 2 under the name computeOneStep). The algo-
rithm loops on successive steps until the snapshot is en-
tirely determined (i.e., for most MoCs, when the state of
all the outputs of the executed model is known). A given
block may be updated several times in this loop, what
allows the use of non-strict [18] blocks for the computa-
tion of fixed point behaviors. Therefore, ModHel’X sup-
ports MoCs in which cyclic dependencies are allowed.

The basic sequence for performing a computa-
tion step is to choose a component according to the
state of the model and the available inputs (init-
Schedule), propagate input data to this component

(prePropagate), then choose a component to ob-
serve (preSchedule), ask it to update its interface
(update), choose a component according to the state
of the model and the data produced during the update
(interSchedule), propagate the data according to
the chosen component (postPropagate), and finally,
chose a component according to the data which has just
been propagated (postSchedule). This sequence is
built so that a component may be scheduled as soon as
something new happens in the model (new inputs, new
outputs, propagation of data), and the propagation of
data may depend on which component is scheduled.

The scheduling operations of a model of compu-
tation are responsible for ensuring the causality of the
observations. They are used both for choosing the com-
ponent to which data will be routed and for choosing
the component which will be observed next. The order
in which the components of a model are observed may
influence the result of the observation. For instance, if
the outputs of component B depend on the outputs of
component A, but B is observed before A, B won’t be
able to take the outputs of A into account and won’t
produce the same outputs as if it were observed after
A. Scheduling operations are therefore among the most
important operations in the description of a model of
computation. When implementing models of computa-



tion where components run concurrently, the schedul-
ing operations model the nature of the concurrency and
the synchronization mechanisms of the model of com-
putation. Since the execution engine invokes the opera-
tions sequentially, the computation of a snapshot is de-
terministic. However, it is always possible to call non-
deterministic functions like random in the scheduling
operations in order to model non-deterministic models
of computation. Such MoCs may be useful for simulat-
ing a system, but their use diminishes the value of tests
since the same test pattern may succeed or fail depend-
ing on non deterministic choices during the simulation.

The execution of a model traverses the hierarchy
thanks to the delegation of the operations of interface
blocks to their internal model. Snapshots are realized
only at the top level, which represents the whole sys-
tem. An internal model is only asked to provide a co-
herent view of its behavior when its interface block is
updated. The update operations of interface blocks
and models are shown on Figure 3. The adaptIn and
adaptOut operations of an interface block allow the
modeler to specify explicitly how the semantics of the
internal and the external MoCs are adapted before and
after the update of its internal model, i.e. to specify the
meaning he gives to the joint use of two models of com-
putation. In adaptIn, data from the embedding model
is interpreted and translated into the formalism of the
embedded model. This may include more than chang-
ing the representation of data. For instance, if the in-
ternal model expects that two of its inputs are always
available simultaneously, adaptIn may store the first
occurrence of one of these inputs and wait for the second
before delivering the two inputs to the embedded model.
On the contrary, if two inputs are exclusive, adaptIn
may be used to deliver them to the embedded model in
two separate snapshots if they happen simultaneously in
the embedding model. adaptIn can therefore change
the data that is passed to the embedded model, but can
also change control, i.e. when the embedded model will
be able to react to new data. The last point which is con-
trolled by adaptIn is time. Since each model of com-
putation may have its own notion of time, adaptIn
can be used to compute the time stamp of the current
snapshot for the embedded model of computation from
the time stamp of the embedding model of computation,
from the time stamps of the input data, or from any other
suitable parameter.

After the input data has been adapted, the inter-
nal model of the interface block must be updated. The
beginUpdate operation is used to take new adapted
inputs from the interface block into account, and the
endUpdate operation is used to provide outputs de-
termined during the update of the model to the interface

block. The observation of a model may be partial (if it
models a non-strict component). The loop which com-
putes the observation must stop when the further op-
eration indicates that no more outputs can be determined
according to the current state of the model and the cur-
rently available inputs.

Then, the adaptOut operation interprets the data
produced by the embedded model and translates it so
that it is meaningful to the embedding model. The same
kinds of transformations as used in adaptIn may be
performed here: change of representation, computation
of time stamps, holding data until a later snapshot, de-
livering default or previously produced data and so on.

3.5. Implementation and validation

We have experimented our approach in a prototype of
ModHel’X based on the Eclipse EMF framework [19].
We use the ImperativeOCL [20] language, an impera-
tive extension of OCL, for describing the semantics of
the operations of our algorithm. No interpreter being
available for the moment, we translate it into Java. We
have successfully implemented several MoCs, such as
Finite State Machines (FSM), Discrete Events (DE) and
*charts [21]. We are developing a library of MoCs in
order to further the validation of our approach. In partic-
ular, we are currently working on the UML Statecharts
and the Synchronous Dataflow (SDF) MoCs.

3.6. Example multi-formalism model

To illustrate our approach, and in particular the semantic
adaptation between a timed and an untimed MoC, we
consider a simple hierarchical and heterogeneous model
of a coffee machine which works as follows: first the
user inserts a coin, then he presses the “coffee” button
to get his coffee after some preparation time.

In this model, we take into account the date of the
interactions between the user and the machine: insert a
coin, push a button, deliver coffee. Therefore, we use
the Discrete Events (DE) MoC, which is implemented
by SimEvents (The MathWorks), VHDL or Verilog for
instance. We represent our user by an atomic block,
whose behavior is written in Java. We model the cof-
fee machine as an automaton (with UML Statecharts for
instance), because at this stage of the design process,
we focus on the logic of its behavior. We consider here
a simple version of this MoC called FSM (Finite State
Machines), which is similar to the one presented in [8].
Figure 4 shows the global model resulting from the com-
bination of the DE and FSM models. Such a combina-
tion is a classical example, which is well addressed by
tools like Ptolemy. However, we will see that it is pos-



Figure 4. Global model of the coffee machine and coffee machine automaton

// Search for blocks with a constraint at the current time
OrderedSet(Block) blocklist := self . constraints
→select(c:Constraint|c.constraintTime=self.currentTime)
→collect(c:Constraint|c.author);

// If blocks have constraints at the current time...
if ( blocklist→notEmpty()) {

// Topological sort on these blocks
self . topologicalSort ( blocklist , m.structure);
// Choose the first one to update
self .currentBlock := blocklist→first ();
// Then remove the corresponding constraint
self . constraints := self . constraints→reject(b:Block|b=self.currentBlock);

} else {
// else, search for blocks that have to receive events
blocklist := self .activeEventList→collect(e:Event|e.destinationPin.isInputForBlock)
// If there are blocks to update
if ( blocklist→notEmpty()) {

// Topological sort on these blocks
self . topologicalSort ( blocklist , m.structure);
// And choose the first one to update
self .currentBlock := blocklist→first ();

}
}

Figure 5. initSchedule operation in DE

// Check all the output pins of the internal model
self .model.structure.pinsOut
→select(pInt:Pin|pInt.storedTokens→notEmpty())
→forEach(pInt:Pin) {

// If FSM events have been produced by the internal model...
self .pinsOut→forEach(pExt:Pin) {

pExt.storedTokens→append(
// they become DE events on the outputs of the block...
new DEEvent(

// with time stamps = the last stored time stamp...
self . tLastDEevt
// plus the serving delay

+ self .parameters
→select(param:Parameter|param.name=”servingDelay”)

)
);

}
// FSM events are cleared
pInt .storedTokens→clear();

}

Figure 6. Coffee machine adaptOut

sible to handle the interactions between DE and FSM
differently with ModHel’X.

The representation of the structure of the DE model
in ModHel’X is straightforward. The representation of
the FSM model is more involved because a transition
may have two associated behaviors: the evaluation of its
guard and its action. Since blocks are the basic units of
behavior in ModHel’X, a transition is represented using
a block for its guard, linked by an action relation to a
block that performs its action, and by next relations to
the transitions that become enabled when this transition
is taken (these are the transitions that leave the target
state of the transition). Therefore, next relations between
guards represent the states of the automaton.

In DE, when a snapshot is taken, the current time
is determined according to the time stamps of the input
events and on the time constraints that have already been
produced by the blocks. At each computation step, we

consider the blocks which have posted a time constraint
for the current time and the blocks which are the target
of events at this time. The semantics of DE assumes
that a given block is observed only once in a snapshot,
so any block in DE is guaranteed to have all its input
events available when it is updated at a given time stamp.
However, a block is allowed to react instantaneously to
its inputs, and to produce an event with a time stamp
equal to the current time. We must therefore update the
blocks of a DE model in such a way that if block B de-
pends on some outputs from A, A must be updated be-
fore B in case it produces an event for B at the current
time. In our implementation of DE, we always chose to
update a block which is minimal according to a topo-
logical sort of the blocks of a model. Figure 5 shows
the code of the initSchedule operation for DE,
which is the only scheduling operation for this MoC,
the others (preSchedule, interSchedule and



postSchedule) being left empty. initSchedule
uses findARoot to find a minimal block according to
the partial order induced by the dependency relations be-
tween the blocks of the model.

DE and FSM share the notion of event. However,
FSM has no notion of time attached to events, and there-
fore no notion of duration between events. So, when
a DE event enters FSM, the interface block has to re-
move its time stamp to make it look like an FSM event.
This is the role of the adaptIn operation of the inter-
face block. When an FSM event leaves the embedded
model to enter DE, the interface block has to give it the
“right” time stamp during the adaptOut operation. An
acceptable way to proceed is to give it the same time
stamp as the most recent incoming event (in particular,
this is what is done by Ptolemy). We provide an inter-
action pattern which realizes this adaptation. However,
for our coffee machine, this behavior does not model
the serving delay, which is an important characteristic
of the model which represents the time taken by the in-
ternal process of heating water, mixing it with the cof-
fee powder, and pouring it into the cup. This process
could be modeled with more details, but here, we just
keep an abstract view of it as a serving delay. Therefore,
we add a ServingDelay parameter to the coffee ma-
chine and we modify the pattern so that the time stamp
of the served event is the time stamp of the coffee
event plus the ServingDelay. This behavior is im-
plemented in the adaptOut operation, as shown on
figure 6. What is important in ModHel’X is that the in-
teraction pattern between two models of computation is
part of the model, not of the platform. It is therefore
possible to define or reuse the most suitable interaction
pattern for each model.

4. Discussion

4.1. Required effort for using ModHel’X

There are two prerequisites to the use of the ModHel’X
framework. First, an expert of a modeling language has
to describe the structural and semantic elements of this
language using our meta-model and our imperative syn-
tax. Since our goal is not to replace existing model-
ing tools, this expert also defines transformations from
the original meta-model of the language to our generic
meta-model. This is the difficult part of the work be-
cause the semantics of modeling tools is often known
intuitively, through the experience we have of the tools.
Second, for each pair of MoCs that may interact in het-
erogeneous models, experts should define interaction
patterns, which code standard ways of combining mod-
els that obey these MoCs. These steps represent the

main effort needed to benefit from the ModHel’X ap-
proach. However, they are done once and for all for
each modeling language. Then, system designers can
assemble heterogeneous models of the parts of the sys-
tem, and use the interaction patterns to specify how the
models are glued together. Parameters of the patterns al-
low the designers to fine tune the semantic adaptation at
the boundary of two models of computation. If no suit-
able interaction pattern exist yet for a given model, the
designer can define his own, or ask an expert to do so.
For now, interaction patterns can only be defined as tem-
plates for the adaptIn and adaptOut operations of
interface blocks. We would like to allow the definition of
interaction patterns as ModHel’X models (using blocks
and relations), but this requires either the use of blocks
with ports that obey different MoCs, or the use of rela-
tions between ports that obey different MoCs. Thanks to
previous work on flat heterogeneous modeling [22], this
seems to be possible, and we plan it as future work when
we have used ModHel’X on a larger library of MoCs and
interaction patterns.

4.2. Supported models of computation

Considering that a given structure of model can be inter-
preted as an automaton or as a discrete event model de-
pending on the MoC which is associated to it can seem
somewhat extreme. However, this choice has proven to
be powerful since a tool like Ptolemy supports, on this
basis, paradigms as different as finite state machines, or-
dinary differential equations or process networks.

In the same way, ModHel’X can support a wide
range of models of computation. This includes MoCs
for continuous behaviors, which are approximated by
the computation of a series of discrete observations since
we only address the digital execution of models.

Modal models are also supported. In such models,
the behavior of a component may be computed by dif-
ferent models according to the state of the component.
The state changes are modeled by a state machine whose
transitions are fired by conditions on the inputs or out-
puts of the model. The problem with modal models is
that the triggering conditions are interpreted in the “state
machine” model of computation, but the signals they de-
pend on are computed by the underlying model of com-
putation in the currently active model. Using interface
blocks, this problem is easily solved in ModHel’X, with-
out coding any explicit support for modal models in its
kernel.

ModHel’X also supports models of computation
that allow cyclic dependencies in models. Such depen-
dencies are solved by iterating toward a fixed point, as
in the Synchronous Reactive domain of Ptolemy. The



fixed point is reached only if all blocks are monotonous
according to a partial order defined by the model of com-
putation.

4.3. Comparing ModHel’X and Ptolemy

Ptolemy was our main source of inspiration, but we
have extended it on several aspects. One of our main
contributions is the explicit specification of the inter-
actions between MoCs in the models (see Section 3.4).
Moreover, our approach is based on the observation of
blocks and not on the triggering of actors. Thanks to this
change of paradigm and to the introduction of time con-
straints, the execution of a ModHel’X model is not nec-
essarily driven by its root level. Indeed, a block at any
level of the hierarchy of the model can produce a con-
straint on the time stamp of its next observation, what
will force the execution machine to compute a snapshot
at this time, even if no new input is available for the
model. Finally, the definition of our abstract syntax as
a MOF meta-model allows us to rely on model trans-
formation tools from the MDE community to exchange
models with other tools in the design chain.

5. Conclusion

We have presented an approach to multi-formalism
modeling which provides support for the specification of
the semantics of a modeling formalism through the con-
cept of model of computation, and which allows the defi-
nition of the interactions between heterogeneous parts of
a model through a special modeling construct and using
an imperative syntax. This approach relies on the black-
box and the snapshot paradigms to compute the observ-
able behavior of a model by combining the behaviors
observed at the interface of its components. A generic
MOF meta-model for representing the structure of hier-
archical heterogeneous models has been proposed. On
this basis, models of computation are described by giv-
ing a specific semantics to the primitive operations of a
generic algorithm which computes snapshots of models
conforming to the proposed meta-model. The result is
a simulator which can compute the behavior of hetero-
geneous models in response to stimulation scripts in a
deterministic way.

We are currently developing the MoC library of our
prototype in order to further the validation of our ap-
proach. The rigid structure of the execution algorithm of
ModHel’X is a first step toward the definition of MoCs
in a fixed frame with formal semantics. However, for
the moment, our imperative syntax is still too close to
Java to have a formal semantics. For now, ModHel’X
can therefore be used only for testing, not for model-

checking or demonstrating properties. Future work will
also address the verbosity of the description of the mod-
els of computation by defining higher level constructs
over our current imperative syntax.
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