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1 - INTRODUCTION

Complex systems [1] are defined by a large number of components, vari-
ables, and interactions defining their behavior. Themore interactions, param-
eters, variables, and feedback relations these systems have, themore difficult
it is to model them and the more complex these models will be to produce
and use. As even the best models of the simplest systems do not allow a per-
fect representation of reality [2], the situation is even less satisfactory when
facing greater complexity.

Complex systems are present in many disciplines, such as mechanics, so-
ciology, biology, chemistry, electronics, and computer engineering. Such sys-
tems are the norm in modern societies, which face critical challenges that
require increasingly elaborate solutions.

Among the long list of complex systems that could bemodeled withmath-
ematical and computational tools, the cyber-physical systems (CPS) category
is of great importance, considering modern stakes. CPSs [3] have the sin-
gularity of being composed of a classical physical part, controlled and man-
aged by a computational and software entity. Such a control structure im-
plies the existence of various control modes managed by the software com-
ponent of the system. When in finite number, thesemodes can be symbolized
with a discrete variable whose value will influence the whole system’s behav-
ior. Therefore, the system exhibits discrete and continuous variables, further
complicating its analysis and modeling. Such systems are called hybrid and
are increasingly present in computational engineering [4] as software compo-
nents control more systems. While systems are increasingly connected and
CPSs are omnipresent in modern industries and societies, the stakes related
to these systems becomemore urgent and essential. Particularly, ensuring an
acceptable level of reliability and conformance of any commonly used system
is paramount, as anomalies andmisconceptions could have disastrous conse-
quences. To face these challenges, the CEA LIST uses and develops modeling
platforms such as Papyrus and seeks more behavioral modeling paradigms
like qualitative modeling.

To represent hybrid systems, the formalismof hybrid automaton [5, 6, 7] is
frequently chosen. This structure is widely used to represent various hybrid
systems of different natures, uses, or complexity and allows an interesting
range of reasoning, computations, and operations on the represented sys-
tems. It is generally accepted to be a reliable tool for highlighting the critical
properties of the models.

However, a major problem with this representation is that it only gives a
theoretical expression of the system’s behavior and does not allow any for-
mal study or in-depth analysis of the possible traces of the system, as the state
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space is not profoundly considered in the model. Therefore, the behavioral
analysis of many complex systems requires numerical simulations to test and
observe the theoretical trajectories of a system, its potential errors and fail-
ures, and its anticipated behaviors. As the computation of such simulation
can be very costly for the most complex systems, avoiding complexity in the
representation and study of systems when possible is a significant stake. Less
complexity would allow us to focus on the behavioral essence of a system and
on its defining characteristics to deduce as much information and knowledge
as possible without implying unnecessary computations and data.

1.1 . Contribution

This thesis’s contribution consists of improving and formalizing the qual-
itative modeling process that can be applied to CPSs represented by rational
ordinary differential equations. Our method will allow us to abstract the sys-
tem’s state space in a discrete set of qualitative states, which is more suit-
able than classic numerical models for making symbolic computing, proof,
and testing. From this abstraction, we will present a method to compute the
qualitative behavior of systems using a new structure of qualitative automa-
ton strongly inspired by hybrid automata. The major improvement we bring
to the qualitative abstraction process is introducing the concept of qualitative
zones that expands the possibilities of qualitative reasoning by increasing the
quantity and quality of knowledge contained in the models. We developed a
prototype tool aiming to automatize the abstraction process and create the
qualitative automaton using various tools such as symbolic computing or SMT
solvers. This method should further allow for diverse analyses and upgrades
in the study of CPSs at different points in their development and life cycle. We
also provide reflections on possible use cases and preliminary results from
applying our models in such situations.

1.2 . Thesis Outline

The upcoming document is structured as follows:
• chapter 1 introduces the subject of this thesis and the stakes associated
with it,

• chapter 2 presents the scientific context surrounding the thesis subject.
It develops the central notions and literature related to CPSs, system
modeling, hybrid automata, numerical simulation, symbolic computing,
common sense reasoning, and qualitative abstractions,

• chapter 3 presents a framework for CPS modeling, design space explo-
ration, and qualitative reasoning and simulation techniques,
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• chapter 4 develops a system abstraction method using qualitative rea-
soning and the creation of a newqualitative automaton structure based
on the analysis of systems equations.

• chapter 5 introduces our main contribution to improving qualitative
reasoning with the concept of qualitative zones,

• chapter 6 develops our implementation choices to create a prototype
tool that can execute the described abstraction process,

• chapter 7 presents different potential use cases where the developed
qualitative reasoning methods could be applied to improve the perfor-
mance or capabilities of existing tools,

• chapter 8 questions the generalizability of the presented process and
suggests avenues and results that could lead to wider use of qualitative
reasoning on more complex or less convenient CPSs,

• chapter 9 positions our contributions among the different works pro-
posed in related fields,

• chapter 10 concludes this thesis, reviews our contributions, andpresents
perspectives to widen the possibilities and fields for future research.

1.3 . Résumé en Français

Les systèmes complexes [1] sont des systèmes caractérisés par un grand
nombre de composants, de variables et d’interactions régissant leur compor-
tement. Plus ces systèmes impliquent d’interactions, de paramètres, de va-
riables et de relations de rétroaction, plus il est difficile de les modéliser et
plus cesmodèles seront complexes à produire et à utiliser. Puisquemême les
modèles les plus complets des systèmes les plus simples ne permettent pas
une représentation parfaite de la réalité [2], la situation est encore plus dé-
licate lorsque l’on est confronté à une plus grande complexité. Les systèmes
complexes sont présents dans de nombreuses disciplines, telles que la méca-
nique, la sociologie, la biologie, la chimie, l’électronique et l’informatique. Ces
systèmes sont devenus primordiaux dans une société moderne confrontée
à des défis de plus en plus critiques et dont les problèmes nécessitent des
solutions d’autant plus complexes. Parmi la longue liste des systèmes com-
plexes susceptibles d’être modélisés à l’aide d’outils mathématiques et infor-
matiques, la catégorie des systèmes cyber-physiques (CPS) revêt une grande
importance au regard des enjeux actuels. Les CPSs [3] ont la particularité
d’être composés d’une partie physique, contrôlée et gérée par une entité lo-
gicielle. La présence d’une telle structure de contrôle implique l’existence de
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divers modes de fonctionnement dans le comportement du système, dont
la commutation est gérée par sa composante logicielle. Lorsqu’ils sont en
nombre fini, ces modes peuvent être représentés par une variable discrète
dont la valeur influencera le comportement de l’ensemble du système. Ces
systèmes présentent donc des variables discrètes et continues, ce qui com-
plexifie davantage leur analyse et leur modélisation. De tels systèmes sont
appelés hybrides et sont de plus en plus présents dans l’ingénierie informa-
tique [4] car le contrôle de systèmes physiques par des logiciels est devenu
très commun. Alors que les systèmes sont de plus en plus connectés et que
les CPS tendent à devenir omniprésents dans les industries et les sociétés
modernes, les enjeux entourant ces systèmes deviennent de plus en plus
critiques et importants. En particulier, il est crucial d’assurer un certain ni-
veau de fiabilité et de conformité de tout système couramment utilisé, dont
les anomalies et les erreurs peuvent avoir des conséquences désastreuses.
Pour faire face à ces défis, le CEA LIST utilise et développe des plateformes
de modélisation telles que Papyrus et étudie des paradigmes de modélisa-
tion permettant de meilleures analyses comportementales tels que la mo-
délisation qualitative. Pour représenter les systèmes hybrides, le formalisme
des automates hybrides [5, 6, 7] est fréquemment employé. Cette structure
est largement utilisée pour représenter divers systèmes hybrides de nature,
d’utilisation ou de complexité différentes et permet un large éventail de rai-
sonnements, de calculs et d’opérations sur les systèmes représentés. Celle-ci
est généralement considérée comme suffisamment fiable pourmettre en évi-
dence les propriétés critiques des modèles. Cependant, un problème majeur
de ce formalisme est qu’il ne donne qu’une expression théorique du compor-
tement du système et ne permet pas une étude formelle et une analyse en
profondeur de ses possibles traces puisque l’espace d’états n’est pas pris en
compte de manière approfondie dans le modèle.

Par conséquent, l’analyse comportementale de nombreux systèmes com-
plexes nécessite des simulations numériques pour tester et observer leurs
trajectoires, les erreurs potentielles et les défaillances dans les données d’en-
trée, ainsi que pour analyser les comportements anticipés. Comme le calcul
de ces simulations peut être très coûteux pour les systèmes les plus com-
plexes, minimiser la complexité dans la représentation et l’étude des sys-
tèmes est un enjeu majeur. Une complexité moindre nous permettrait de
nous concentrer sur l’essence d’un système et sur ses caractéristiques princi-
pales afin de déduire autant d’informations et de connaissances que possible
sans impliquer de calculs et de données superflus.
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1.3.1 . Contributions
Les contributions de cette thèse consistent à améliorer et à formaliser le

processus de modélisation qualitative qui peut être appliqué aux systèmes
cyber-physiques représentés par des équations différentielles ordinaires ra-
tionnelles. Notre méthode nous permettra d’abstraire l’espace d’états du sys-
tème en un ensemble discret d’états qualitatifs, qui seront plus appropriés
pour faire du calcul symbolique, de la preuve, et des tests que les modèles
numériques classiques. À partir de cette abstraction, nous présenterons une
méthode pour calculer le comportement qualitatif des systèmes en utilisant
une nouvelle structure d’automates qualitatifs fortement inspirée des auto-
mates hybrides. La principale amélioration que nous avons apportée au pro-
cessus d’abstraction qualitative est l’introduction du concept de zones quali-
tatives qui élargit les possibilités de raisonnement qualitatif en augmentant
la quantité et la qualité des connaissances contenues dans les modèles. Nous
avons développé un prototype d’outil visant à automatiser l’exécution du pro-
cessus d’abstraction et à créer l’automate qualitatif d’un système à l’aide de
divers outils tels que le calcul symbolique ou les solveurs SMT. Cetteméthode
devrait permettre diverses analyses et mises à jour dans l’étude des systèmes
cyber-physiques à différents stades de leur développement et de leur cycle de
vie. Nous partageons également des réflexions sur des cas d’usage possibles
et des résultats préliminaires de l’application de nos modèles dans de telles
situations.

1.3.2 . Structure de la thèse
Ce document est organisé selon la structure suivante :
• Le chapitre 1 introduit le sujet de la thèse et les enjeux associés.
• Le chapitre 2 présente le contexte scientifique entourant le sujet de
cette thèse. Il développe les notions centrales et la bibliographie rela-
tives aux systèmes cyber-physiques, à la modélisation des systèmes,
aux automates hybrides, à la simulation numérique, au calcul symbo-
lique, au raisonnement de sens commun et aux abstractions qualita-
tives.

• Le chapitre 3 présente un cadre pour la représentation des systèmes
cyber-physiques, l’exploration de l’espace de conception, la modélisa-
tion qualitative et les techniques de simulation.

• Le chapitre 4 développe une méthode d’abstraction de système ba-
sée sur le raisonnement qualitatif et détaille la création d’une nouvelle
structure d’automates qualitatifs reposant sur l’analyse des équations
des systèmes.
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• Le chapitre 5 présente notre principale contribution à l’amélioration du
raisonnement qualitatif avec le concept de zones qualitatives.

• Le chapitre 6 développe nos choix d’implémentation pour créer le pro-
totype d’un outil permettant d’exécuter le processus d’abstraction dé-
crit.

• Le chapitre 7 présente différents cas d’usage possibles auxquels les
techniques de raisonnement qualitatif développées pourraient être ap-
pliquées pour améliorer les performances ou les possibilités des mé-
thodes existantes.

• Le chapitre 8 pose la question de la généralisation du processus détaillé
et donne quelques indications et résultats qui pourraient conduire à
des utilisations plus larges du raisonnement qualitatif sur des systèmes
cyber-physiques plus complexes ou moins triviaux.

• Le chapitre 9 positionne nos contributions parmi les différents travaux
proposés dans des domaines connexes.

• Enfin, le chapitre 10 conclut cette thèse, passe en revue nos contribu-
tions et présente des perspectives pour élargir les possibilités et les do-
maines des travaux futurs.
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2 - SCIENTIFIC CONTEXT

This chapter introduces the scientific context related to the PhDwork. Sec-
tion 2.1 introduces the cyber-physical systems and the notion of hybrid sys-
tems. Section 2.2 summarizes current paradigms and tools used and applied
to study and design cyber-physical systems. Section 2.3 details numerical sim-
ulation methods mainly used in many domains, notably in system simulation
and verification. In addition, section 2.4 develops the notion of computer al-
gebra, which is necessary to deal with partially designed systems. We present
in section 2.5 some notions of constraint solving that are helpful in problem-
solving. Finally, section 2.6 presents some concepts of common sense rea-
soning that will be used later in this thesis to abstract systems.

2.1 . Cyber-Physical Systems

Cyber-physical Systems (CPS) [3, 8] constitute a category of systems in
which a computer-based monitor controls physical mechanisms. The con-
cept of CPS implies interactions between computation, control, and commu-
nication in a physical environment. CPSs require input data and return out-
put results and are supposed to be flexible and adaptable for many different
use configurations. CPSs are vastly used in many scientific areas to repre-
sent physical, electrical, mechanical, or chemical systems controlled by a dis-
crete process. They involve various fields and approaches such as control
and process theories or optimization and design methods [9]. Among mod-
ern innovations, autonomous vehicles, military drones, surveillance systems,
thermostats, and space vehicles are significant examples of classic CPS. CPSs
enable interactions between the computational element of the physical part,
the first sending instructions to the second as it receives feedback and data
from it. Therefore, CPSs are transforming our interactions with the physical
world and our approach tomany technical challenges [10]. The computational
power and the current interest in CPS come from the increasing precision and
reliability of sensors, allowing the delivery of very precise information to the
computer pilot in a very short delay. This improved communication between
the components allows the use of CPS in real-time applications or more com-
plex or critical systems. Applying these technologies at the scale of a nuclear
power plant or even at the scale of a city using the concept of smart cities
seems possible today. United with the rise of generative artificial intelligence
algorithms, CPS activities will continue to increase.

However, the complexity in such targeted systems is a supplementary
stake that must not be underestimated [1]. The notion of complex systems
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Figure 2.1: Hybrid model of a thermostat

occurs in systems whose physical part is composed of many components in-
teracting with each other. Mitchell compares the challenge posed by high
complexities to the difficulty of controlling or predicting the movements of
each ant in an anthill.

The presence of many components implies a large number of variables
and relations between them. Such complex systems pose major problems
at different stages of their lifetime, from the design to the diagnosis or the
monitoring. The choice of the parameters, the computational tests, and the
monitoring are significant stakes worth improving and simplifying.

By definition, a computer monitor’s intervention in a CPS’s behavior im-
plies that these systems are hybrid.

In this document, we callHybrid System a system that includes discrete and
continuous behaviors and variables.

The hybrid nature of a system depends on the behavior of its variables
[11]. Therefore, it is necessary to specify the notion of a variable in a system.

A system includes variables, which are measurable quantities with a phys-
ical unit, a value, and a variation set (domain).

By definition, the value of a variable can evolve during the considered time
period. However, its physical unit and domain are fixed. The physical unit
of a variable defines its nature (is it a mass, a distance, energy, . . . ), and its
value is expressed using units from the international system (meter, second,
kilogram, . . . ).
Example 1 (Thermostat) A simple example of a hybrid system is a Thermo-
stat, which produces heat when the environment temperature Tenv is under acertain threshold and is off when Tenv is above this threshold. Here, the con-tinuous variable of the system is Tenv evolving inR+ and expressed in Kelvins,
and the discrete one is status , taking either the value on or off and having no
corresponding unit.

The heterogeneous nature of these systems implies that the usual model-
ing, simulation, and reasoning tasks will becomemore challenging to achieve
due to the mutual impacts of the different variables and trajectories of the
systems. This supplementary complexity can be suppressed by converting
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them to fully discrete or continuous systems [12]. However, the loss of knowl-
edge and precision induced by this simplificationmay be too important in the
case of systems exhibiting very different behaviors depending on the value of
the discrete variable.

We call operating mode (or just mode) of a hybrid system a valuation of
its discrete variables. Each mode corresponds to a different behavior for the
continuous variables and, therefore, a specific operating procedure for the
continuous part of the system.

In some references such as [13], hybrid systems are represented using ac-
tion systems to put more emphasis on the discrete behavior and to highlight
the requirements and consequences of the discrete transitions, while the con-
tinuous part of the system is associated with the environment of the system.
In this approach, the system consists in a "parallel composition between a
controller and the environment", noted controller||environment.

2.2 . Modeling and Representations

Systemmodeling is an approach aiming to represent, manipulate, and un-
derstand complex systems. Themodel of a system is amathematical abstrac-
tion representing the system. In our context, system modeling is the process
of formulatingmathematical equations that describe the dynamic behavior of
a system. It serves the purpose of understanding, analyzing, and predicting
the system’s behavior over time [14].

Creating a model requires the definition of the system S to be modeled
and of a modeling language. The modeling action on S using the chosen lan-
guage generates a modelM .

M is supposed to contain specific information about S, and the choice
of the modeling language will strongly depend on the knowledge to be pre-
served. System modeling requires making strategic choices about the ele-
ments to highlight, as no model can include all the information of S [2].

Systems to model can have different natures. CPSs are, by definition, hy-
brid as their cyber parts generate mode changes depending on the evolu-
tion of their continuous variables. However, the difficulties implied by model-
ing these systems require first defining modeling concepts and structures for
continuous systems and generalizing them to hybrid ones.

2.2.1 . Continuous systems
This section introduces the specific categories of continuous systems [15].

First, it gives some definitions of continuity in a mathematical sense.
Definition 1 (Continuous Function) Let (A, d) and (B, d′) twometric spaces
and f : A → B a function. f is continuous at point a ∈ A if ∀ ϵ > 0,∃ δ > 0

9



such that ∀x ∈ A, d(x, a) < δ =⇒ d′(f(x), f(a)) < ϵ. f is continuous on A if
∀ a ∈ A, f is continuous at a.

A function f continuous on its definition space belongs to C0. If derivable
and its derivative is continuous on its definition space, then f is C1.
Definition 2 (Continuous System) Let S be a cyber-physical system with n

continuous variables and k discrete operating modes. If k = 1, S is said to be
a continuous system as no change of mode can occur in the behavior of the
system.

Continuous systems contain components characterized by variables tak-
ing values in a specific uncountable set (often R) and varying with time. The
variation of such variables is expressed using mathematical tools such as dif-
ferential equations. These systems are characterized at each instant by the
value of their variables at this instant, which can either be observed precisely
or with uncertainties.
Example 1 The Brusselator system, presented in [16], is a chemical system de-
scribed by two variables x and y representing the respective concentrations of
two chemical products and whose dynamics is given by the ordinary differential
system 2.1: {

ẋ = 1− (b+ 1)x+ ax2y
ẏ = bx− ax2y

(2.1)
with a and b two positive constants. As this system only has one operating

mode and, therefore, does not exhibit any guard condition or discrete transition,
it is a continuous system.

2.2.2 . Discrete systems
Discrete systems, or discrete event systems [17, 18], correspond to systems

with a state space that is naturally discrete and finite. In this situation, one
cannot represent the continuous evolution of the systemwith the value of the
system variables at each time step but by representing the discrete instant
at which discrete transitions between the different operating modes occur.
These discrete transitions are called events as they correspond to discrete
instants on a continuous time scale.
Definition 3 (Discrete Event System) Let S be a cyber-physical system with
n continuous variables and k operating modes. If n = 0, S is said to be a
discrete event system (DES).

In discrete event systems, the mode does not have a meaning as there
are no continuous dynamics to influence. Rather than continuous evolution,
DESs only exhibit the temporal relations between the differentmodes and the
beginning and end of all system positions.
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Example 2 Let us consider a system made of a house lamp which turns off or
on depending on the detected luminosity. Considering coarsely that the lamp has
only two possible light power values x = 0 and x = Lmax , and that the switch
between the twomodes is instantaneous (which is a rough but classic abstraction),
the system can be modeled using two operating modes, each one imposing a fixed
light power x either at 0 or Lmax , and switching from one to another depending
on the relative environment light to a threshold value s1.

2.2.3 . Hybrid systems
As already explained, CPS is a specific type of hybrid system. Therefore,

we give here the definition of hybrid systems that include the CPS in its range.
Definition 4 (Hybrid System) A hybrid system is a tuple S = ⟨Q,X, I, F, T,

P ⟩ where:
Q is the current mode of the system (discrete variable), with value q,
X is a set of n continuous variablesXi with values xi,
I is a function mapping each mode to its invariant conditions,
F is a function mapping each mode to its flow conditions,
T is a set of discrete transitions, each described by:• their starting mode and guard condition,• their target mode, and reset function
P is a set ofm parameters
Q takes its values on Q a finite set of modes. The Xi take their values

on K a continuous field where the usual operators (+,−, ∗, /) and (<,=) are
defined. In general, K = R. The parameters Pi of P are valuated on P.

The invariant conditions of a model represent the structural constraints
of the system [19] using semi-algebraic predicates that encapsulate the limits
of its authorized behavior.

In some references such as [20], hybrid systems are also composed of
algorithms encapsulating the evolution of the environment (both local and
global).
Definition 5 (semi-algebraic set) A subsetE of the fieldK is semi-algebraic
if it can be expressed as a finite union of subspaces defined by polynomial
equalities and inequalities of the form P (x1, ..., xn) op 0 for (x1, ..xn) ∈ Kn

and op ∈ {<,=, >}.
The flow, invariant, and guard transitions define semi-algebraic sets in the

system state space, allowing further analysis and discretization of the model.
The study of systemsof different natures implies different stakes and chal-

lenges depending on the aim of the study. The logic analysis of a system will
not require the same tools as a temporal study. In the first case, we are in-
terested in the order of appearance of the events of the behavior, while the
second also gives importance to the timing of these events.
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Set-based or Relational-based notation

In the presented definition of hybrid systems, guard, invariant, and jump con-
ditions can have different representations. These conditions can be repre-
sented as sets or as predicates.

Set-based notation implies representing the conditions as the inclusion
of a variable in a mathematical set: in the example of the thermostat pre-
sented above, the different condition would be expressed as x ∈ [60, 70] or
x ∈ [70, 80].

On the contrary, relational-based notation expresses these conditions as
predicates on the variables: the system presented in Example 1 uses this no-
tation.

Depending on the situation, the chosennotationmight differ: the set nota-
tion is more adapted when the condition is on a set that cannot be expressed
with comparison operators or on a purely symbolic set. On the other hand,
when the condition can be more easily expressed using binary operators, re-
lational notation will be preferred.
Hypothesis 1 We assume that the guard conditions are both necessary and suf-
ficient to provoke the associated transition. Considering the guard conditions as
necessary but insufficient would add a stochastic component in the system that
would complexify its study. For the same reason, we assume the transition occurs
precisely as soon as the guard condition is verified. This hypothesis is not realistic
but is an important theoretical simplification.
Hypothesis 2 We assume that guard conditions of different transitions from the
same initial mode are disjointed: ∀m0 ∈ Q,∀ (τ1, τ2) ∈ T [m0]

2, τ1 ̸= τ2 =⇒
guard(τ1) ∩ guard(τ2) = ∅.
Definition 6 (State of a system) Let S be a hybrid system according to def-
inition 4. Let x = (xi)i∈J1, nK be a valuation of X and m ∈ Q the mode of the
system at a time t. (m,x) is the state of the system at time t. m is the discrete
component of the state and x is its continuous component.

In the case of continuous (resp. discrete) systems, the state of a system
will be represented only with x (resp. m, meaning that the state replaces the
useless notion of mode).
Definition 7 (State Space of a System) Let S be a hybrid system according
to definition 4. The Cartesian productQ×K defines the state space of S.

In the case of a continuous (resp. discrete) system S, the state space of S
will be K (resp. Q).
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2.2.4 . Hybrid automata
This section presents the formal representation of hybrid automata as de-

veloped in [21]. First, we present a general definition of the concept of hybrid
automaton before defining some particular cases.

The hybrid automaton structure is widely used in system modeling [22].
Definition 8 (Hybrid Automaton) A hybrid automaton is a tuple

H = ⟨Q,X, V, E, Init, I, F, J, L⟩

with:
• Q, X , I , and F corresponding respectively to the discrete variable, the
set of continuous variables, the invariant constraints, and the flowequa-
tions as defined in definition 4 for the associated cyber-physical system.
V are the vertices of H representing all its control modes and E its
edges between the vertices corresponding to modal transitions.

• Init the set of initial conditions, with predicates constraining the initial
values q0, x0 of Q andX .

• J a jump condition function that associates to each transition e ∈ E a
predicate. It corresponds to the guard condition of T in definition 4.

• L a pair composed of a set of labels and a mapping from E to these
labels. The label associated with a transition can be the nature of the
transition, its cause, its specificity, or its reset condition.

Automata are associated with a graphical representation. Therefore, rep-
resenting hybrid systems as hybrid automata allows us to visually represent
their behavior using their vertices as nodes and their edges as arcs linking
them. This representation highlights the different trajectories between the
system modes by representing the expected transitions between the various
operating modes.

Each node can exhibit the flow equations of the system variables in the
correspondingmode to show the expected evolution of these variables in this
mode and improve the clarity of the visual representation.
Example 3 For example, we can represent here a thermostat system as a hybrid
automaton with:

• Q = {on, off}
• X representing the temperature of the system andX = R+

• V = {v1 = on, v2 = off}
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• E = {T1 = on→ off, T2 = off→ on}
• Init = (mode = off, T ∈ [70, 80])

• I = {T > 50, T < 100}

• F = {on : Ṫ = 100− T ; off : Ṫ = −T}

• J = {T1 : T < 70;T2 : T > 80}

• L = {(switch on, switch off, f : T1 7→ switch off, T2 7→ switch on)
As hybrid automata are here used to represent hybrid systems visually,

the same hypothesis about determinism holds. In the general case, we sup-
pose that both jump conditions, dynamics, and reset functions are determin-
istic to allow abstraction and manipulations that would not fit with stochastic
elements. Non-deterministic systems will be treated separately with specific
representations and methods.

A hybrid automaton is a classic representation formalism for many sys-
tems (for physical, chemical, social, or cyber-physical), and many applications
and tools were developed to work specifically on it, such as HyTech [23].

As hybrid automata are a very versatile structure, there aremany variants
and particular versions of this object. The following paragraph will present
some specific versions of automata developed in [5].

2.2.5 . Rectangular automata
The first specific category of hybrid automata to be introduced here is the

family of rectangular automata [24]. A hybrid automaton is said to be rectan-
gular if the flow conditions and variables are independent of the modes and
if the continuous variables are pairwise independent [21]. The flow condition
defines an authorized set for the derivative of each continuous value Xi ofthe system, and that set does not change between the different modes.
Definition 9 (Rectangular Automaton) Given that a n-dimensional rectan-
gle is the cartesian product of n closed intervals [a, b] with a < b, a hybrid
automaton is rectangular if:

• ∀Xi ∈ X, init(Xi) is a singleton
• I has the form of a n-dimensional rectangle
• ∀Xi ∈ X, F (Xi) is a rectangle and does not depend on anyXj , j ̸= i.
• for each modal transition of E, the associated jump condition j of J
has the formX ∈ I with I a n-dimensional rectangle. ∀Xi ∈ X , ifXi isreinitialized by j, then its reset condition has the form Xi ∈ Ii with Ii asingleton.
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If the flow rectangle is a singleton, the rectangular automatonH is said to
be singular.

A rectangular automaton expresses a certain level of uncertainty on the
flow condition (a rectangular condition is less precise than an equality but
can still express a tendency) and highlights the independence between the
continuous variables.

An example an a rectangular automaton is given in [25], with the automa-
ton of a robot described by Q = {m} withQ = {m0,m1}, X = (x, y, z) with
X = R3

+, V = {v1 = m0, v1 = m1}, E = {T1 = m0 → m1, T2 = m1 →
m0}, Init = {x = y = z = 0}, I = {X ∈ R2

+ ∗ [0, 2]}, J = {m0 : X ∈ [1, 2] ∗
[1, 2]∗{1},m1 : X ∈ [1, 2]∗[−2,−1]∗{1}}, L = {T1 7→ (z := 0), T2 7→ (Z := 0)}.

2.2.6 . Variations of rectangular automata
Rectangular automata represent a particular situation thatmay rarely cor-

respond to concrete systems. The restrictive hypotheses limit the concrete
use of such automata in concrete case studies. This paragraph introduces
definitions of other types of hybrid automata that are variations from the
definition of rectangular automata. This allows for more generalization and a
complete view of the existing families of hybrid automata.
Definition 10 (Multi-rectangular Automata) An automatonmeeting all the
requirements of definition 9 except the equality of the flow conditions be-
tween the different modes ismulti-rectangular.

A multi-rectangular automaton can be considered a piece-wise rectangle
automaton, as it locally exhibits rectangular automaton properties of every
mode but not on its global structure.
Definition 11 (Triangular Automaton) Given that a triangle is an intersec-
tion between a n-dimensional rectangle with a non-zero number m of half-
spaces of Rn defined by an inequality xi < xj with i, j ∈ J1, nK, a hybrid au-
tomaton is a triangular automaton if itmeets all the requirements of definition
9, with triangular conditions instead of rectangles.

Compared to rectangular automata, the triangular variation represents
specific cases where the system variables are not decoupled anymore. In tri-
angular automata, some conditions depend on the value of various state vari-
ables. This allows the representation ofmore complex systems and automata
where the value of a variable may influence the others.

Henzinger gives in [5] an example of a triangular automaton with a con-
troller system with three modes and two state variables z and u, whose in-
variants and guard conditions are expressed using the triangular condition
z ≤ u.
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It is to be noted that the reachability problem is decidable in the case of
rectangular automata but note for triangular ones as the consideration of tri-
angles instead of rectangles reduces the reliability of knowledge about nu-
merical values [26].

Finally, linear automata [27] also are a special type of automaton general-
izing both rectangular, multi-rectangular, and triangular automata. In linear
automaton, the constraint sets are defined by any linear equality of inequal-
ity (such as Ẋ = AX with A a matrix in K). This implies that the sets of the
defined system can be in the form of any convex polyhedron.
Definition 12 (Linear Hybrid Automaton) A hybrid automatonH is a linear
automaton if

• ∀m ∈ Q, the predicates included in F (m) are convex linear predicates
involving only elements from Ẋ .

• ∀m ∈ Q, the predicates of I(m) and Inv(m) are convex linear predi-
cates over Kn.

From the definition of linear automata, it is also possible to immediately
define multi-affine automata [28] by replacing the linear flow predicates with
multi-affine functions.

In this thesis, we mainly worked with polynomial automata [29]. Polyno-
mial automata correspond to a family of automata where the different sets
are represented using polynomial constraints.
Definition 13 (Polynomial Automaton) Given the fieldK on which the vari-
ables ofX are defined andK[X] the ring of polynomials on the variablesX , a
hybrid automatonH is polynomial if each of its sets and conditions is defined
using equations and inequalities on K[X].

Polynomial automata were chosen for their generality as polynomial func-
tions can have various forms of behavior and locally approximate many dif-
ferent types of functions. They are more general and permissive than linear
automata.
Remark 1 Linear automata are specific instances of polynomial automata, only
allowing first-order polynomials.

Rectangular automata and their variations aremainly used as tools to rea-
son about the system’s safety and to prove the non-reachability of critical
states. As the knowledge about the concrete systembehavior is very fuzzy and
imprecise, techniques such as formal proof and bisimulation must consider
the worst-case scenario among the authorized flow, which demonstrates the
reliability of a system under its normal operating conditions.
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2.2.7 . Timed automata
We assume, in general, that the behaviors of CPSs are an evolution of

their situation according to time. In general, timemeasurement is considered
exogenous to the system as time goes on independently from the system
execution. In this situation, time is only a parameter of the system used to
evaluate or derive the system’s state variables.

However, a category of automaton named timed automata exists.
Definition 14 A timed automaton is a hybrid automaton verifying the defini-
tion 8 and such that:

• X = Rn with n = |X| and the elements ofX are called clocks,
• ∀m ∈ Q, ∀x ∈ X,F (m,x) = dx

dt = 1,
• S0 = (Q0, {0}n), meaning that each clock variable is initialized at zero.
It is to be noted that the flow conditions of timed automata are also in-

dependent of the mode of the system. Moreover, invariant and guard condi-
tions take the form of n-dimensional rectangles of Rn. However, this defini-
tion barely justifies the presence ofmany clock variables, as their variation are
synchronous and can not be separated. The only clear separation between
the clocks comes from the reset function that may turn one or more clocks
to zero without impacting the others. A theory of timed automata has been
proposed in [30].

Timed automata give more tools to represent the behavior of systems by
providing a representation of temporal evolution, which facilitates the repre-
sentation and approximation of various types of systems [31].

There exist variations of timedautomata, such as the stop-watchmachines:
this sub-category authorizes activating or turning off thedifferent clocks of the
system to synchronize them. In these automata, the condition F (m,x) = 1

no longer holds. It is rather replaced with another condition F (m,x) = c with
c ∈ {0, 1}.

From purely timed automata emerged a theory aiming at incorporating
time as a variable in more complex automata with more non-clock variables
[24].

It is, therefore, possible to express X as a concatenation of two subsets
Xv and C with C a set of clocks following the corresponding constraints and
Xv other continuous variables that do not respect the clock constraints. Thisallows the study of more complex systems and the combination of time con-
straints with more general variables of CPS.

In a timed automaton, the time elapsed between two discrete transitions
is computed using the different clocks, which can be reinitialized to zero after
their associated transition. Each transition is given a duration represented as
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its label d, and the upcoming of this transition generates a bound in the value
of the duration clocks of d. If each transition is labeled with its duration time
di and if the time elapsed between each transition is noted τi, then the traceof a timed automaton can be written τ0d1τ1d1....Timed automata can be simplified by merging successive transitions and
by adding their respective time lengths.

Different tools were developed to analyze and deal with timed automata
[32, 33], proposing different approaches to manage the time parameters and
evolution. One of the challenges in temporal automata is the bounding of the
sojourn time, as explained in [34].

2.2.8 . Semantics
In computer sciences theory, semantics is the mathematical analysis of

the meaning of programming languages and instructions. In the case of hy-
brid automata, the semantics represent the universe of its possible behav-
iors. According to [5], it is expressed using labels on the different transitions
expressing its nature or its duration.
Definition 15 (Labeled Transition System) A labeled transition system S is
composed of the elements

• A set of modesQ and two subsetsQ0 andQend ⊆ Q corresponding to
the initial and terminal states of S.

• Σ a finite set of labels
• →⊆ Q ∗ Σ ∗ Q a transition relation written q0

a−→ q1 or (q0, a, q1) for
(q0, a, q1) ∈→

From the definition of a system and the knowledge of its state space, it is
possible to use its dynamics to compute or write an execution of the system.
The definition of the execution presented here has been proposed by [5].
Definition 16 (Execution of a discrete automaton) Let A be a discrete au-
tomaton (i.e., a hybrid automaton where |X| = 0). An execution of A is a
sequence (q0, ⟨qi, ai⟩i∈J1,kK) with k ∈ N and ∀ i ∈ J1, kK, qi ∈ Q and ai labelscharacterizing the transitions.

If A is a temporized automaton, the labels ai highlights the time elapsed
during the transition qi−1 → qi.

The execution of a discrete automaton is a sequence of discrete states of
the automaton state space separated by events (discrete transitions), which
are labeled using elements from a chosen alphabet Σ.

This definition is adapted to different types of automata and can expose
the discrete behavior of a hybrid automaton. The sequence of discrete states
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would then be replaced by a sequence of operating modes exposing the ex-
ecution trajectory in the discrete space Q. An execution corresponds to a
specific trace of the system and highlights one of the potential trajectories
authorized by the system dynamics.

In the case of hybrid systems, when |X| ≠ 0, the knowledge of the contin-
uous evolution of the variables of |X| is lacking in the representation of the
execution of the automaton.

Therefore, the management ofX must be split into different modes, and
studying global dynamics becomes more complicated.

The execution of a hybrid automaton has been presented in [35]. It re-
quires the definition of an abstraction function α : Q ∗ Kn → S with S a
countable set such that each value (m,x) of Q ∗X can be associated with an
element of S.
Definition 17 (Partition of a set) Let E be a set of elements. A partition of
E is a set {Ei}i∈J1,nK such that :

• ∀(Ej , Ek) ∈ {Ei}2, j ̸= k =⇒ Ej ∩ Ek = ∅.
• ⋃n

i=1Ei = E

Definition 18 (Discretization/Abstraction function) Let S be an uncount-
able set. An abstraction function (also called discretization function) α : S →
{Si}i∈J1,kK is a function mapping the set S to a finite set of subsets Si ⊂ S

such that {Si}i∈J1,kK forms a partition of S.
The abstraction function is a method to visualize an uncountable set as a

finite set of elements.
This notion of discretization will be essential in our works and constitute

the basis of qualitative abstraction.
Definition 19 (Discrete transition system) Let there be a hybrid automa-
tonH and a discretization functionα defined as above onQ∗Kn. The discrete
transition system corresponding toH is the system defined by ⟨Q⋃

X, Init,

Tα⟩ sharing the same state spaces and initial states than H and with Tα =

⟨(mi, sj)→ (mk, sl)⟩ such that ∀ (m, s)→ (m′, s′) ∈ Tα :
• eitherm ̸= m′ ifm→ m′ ∈ T , which implies a discrete transition of the
system

• or m = m′, which implies an intra-modal transition of the system. In
that case, s ̸= s′, and there exists a time step τ > 0 and xi, xj ∈ Kn

such that α(m,xi) = s, xj = xi + F [m](xi) ∗ τ and α(m,xj) = s′.
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With this definition, we can now represent a hybrid automaton with a dis-
crete system with a finite or countable quantity of transitions. Therefore, just
as we defined an execution of a discrete system, it is now possible to define
an execution for hybrid systems.
Definition 20 (Execution of a hybrid automaton) Let there be a timed hy-
brid automatonH , α a discretization function, andHα the corresponding dis-crete transition system. An execution (or run) of H is a succession of transi-
tions of discrete states of Hα : (m0, s0) → (m1, s1) → ... → (mk, sk) where
(mi, si) ∈ Q∗S ∀ i ∈ J0, kK. For j ∈ J0, k−1K, eithermj ̸= mj+1, ormj = mj+1and sj ̸= sj+1

Remark 2 As was the case for discrete automata, it is possible to complete the
execution with the labels characterizing each transition by noting them (mi, si)

li→
(mi+1, si+1). These labels can either characterize the nature of the transition andthe time elapsed or provide any other knowledge about the event. It is, however,
considered that, for a transition (m, s) → (m′, s′), if m ̸= m′, then the time
elapsed will always be 0. We consider the discrete transition instantaneous by
analogy to step functions where the result instantaneously jumps between two
values.

The sequence of the labels of an execution h ofH is called the trace of h.
Considering that the labels of the transitions are taken in a set of labels L, the
trace of any execution h ofH is a word from L⋆.
Definition 21 (Accepting execution) Let ((mi, si)i∈J0,kK) be a run of the hy-
brid automaton H and St a set of states of H called the terminal states. If
(mk, sk) ∈ St, ((mi, si)i∈J0,kK) is said to be an accepting execution/run ofH .

From thenotion of execution of a hybrid automaton, it is possible to define
its semantics.
Definition 22 (Hybrid automaton semantics) Let there be H a hybrid au-
tomaton. The semantics ofH , noted [[H]], is the set of all the executions h of
H .

As in [26], we limit the context of the presented works to cases that do not
include so-called zeno behaviors (i.e., infinite behaviors happening in a finite
time interval). In cases like the bouncing ball that is theoretically zeno, we
make the simplification that a converging behavior reaches its convergence
value once a chosen neighborhood is reached.
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2.3 . Numerical Simulation

Numerical simulation was conceived as a computational technique to ap-
proximate the numeric solutions of mathematical models by discretizing the
time scale involved in continuous equations, which are then solved with spe-
cific algorithms. Numerical simulation allows researchers to model and pre-
dict the behavior of complex systems that are difficult or impossible to analyze
using traditional analytical methods. It involves approximating the solutions
of mathematical models through the discretization of continuous equations,
which are then solved using numerical algorithms.

The equations modeling a system (be it ODE or partial differential equa-
tions) and corresponding initially to continuous behaviors are discretized on
the scale of time in order to represent the evolution of the variables between
successive time steps.

From the simplest resolutions, such as Euler or Runge-Kutta resolution
methods, to techniques, such as finite element or finite volumemethods, they
have in common the discretization process of the equations to process them
computationally [36]. Thesemethods require a careful balance between com-
putational efficiency and accuracy, with considerations for numerical stability
and error propagation [37].

Given a system whose dynamics is expressed by a flow condition F a con-
tinuous (Lipschitz) function and an initial conditionX0 such thatX(0) = X0 ∈
X, numerical simulation consists in computing a trajectoryΦ : R+ → X repre-
senting the anticipated evolution of the system variables from the initial state
X0. The result is a set of points abstracting the exact trajectory at specific time
instants. These instants are set depending on the chosen integration step∆t,
whose value will strongly influence the precision of the final result.

As numerical simulation is largely used for many fields and objectives,
tools have been developed to adapt it to hybrid systems, such as in [38].

To observe the complete behavior tree of a system using numerical simu-
lation, one must execute an important number of simulations, as a behavior
may include an infinite number of disjointed trajectories. Moreover, if numer-
ical simulation can prove the existence of some behavior, it cannot be used to
demonstrate the safety of a system, as any quantity of numerical simulation
could fail to exhibit a possible trajectory. However, numerical simulation is
nonetheless vastly used in many industries for verification and certification
purposes. There is, therefore, a major need for methods with a better formal
basis, allowing formal tools to give more reliable certifications.

Moreover, numerical simulation poorly handles uncertainties. As real val-
ues are naturally replaced by float numbers to execute the simulation, uncer-
tainties and approximation are an inherent part of the process, andmanaging
them can create problems. To this extent, more general methods have been
developed to handle this difficulty.
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2.3.1 . Interval propagation
To handle the presence of initial uncertainty and to take into account the

intrinsic uncertainty linked to the use of float computation, some contribu-
tions developed the use of constraint propagation. It consists of contracting
interval domains associated with variables of R and applying the dynamics
equations of a system not on numerical values but on numerical intervals or
rectangles. It can be used to propagate uncertainties in the situation where
errors are represented by intervals. Interval propagation considers the prob-
lem of estimating the value of a variable as a constraint satisfiability problem.

Apart frommeasurement errors, interval propagation allows the inclusion
of many uncertainties from different sources and the representation of the
level of knowledge available at any time instant about the value of a variable
of the system.

2.3.2 . Flow-pipe methods
Like interval propagation techniques, flow-pipe methods were designed

to propagate uncertainties with a more adapted representation than inter-
vals/rectangles. As developed in [39], a significant drawback of interval prop-
agation is the increasing size of the uncertainty rectangle while a simulation
is running. More precisely, as explained in [40], the uncertainty rectangle will
expand on sub-spaces of X on which the dynamics flow F is expansive (see
def 23), meaning that amodel can arise where the knowledge about the value
ofX has no interest at the end of an interval propagation.
Definition 23 (Contractive/expansive functions) Let there be a function f :

E1 → E2 with (E1, d1) and (E1, d2) two metric spaces. f is said to be a con-
traction if f is k-Lipschitz with k < 1. Otherwise, f is expansive.

Flow-pipe has been designed as an over-approximation set of reachable
states of a continuous dynamical or hybrid system given an initial set of states
[39, 41, 42] to avoid the risk of having useless approximations at the end of
the simulation in the case of extensive functions. It differs from the classic
interval representation in the form of the uncertainty space. Rather than us-
ing a rectangle shape, flow-pipe, as presented in [39], uses a cylinder (a pipe)
centered on the supposed value of the system and including an uncertainty
neighborhood.

More specifically, in a situation where the knowledge on a variable x is
x ∈ [a, b] with a, b ∈ R and a < b, and if we have to solve the equation x − x,
interval propagation would compute [a, b] − [a, b] = [a − b, b − a] instead of
returning 0. Therefore, as x − x should leave no place for any uncertainty,
interval propagation would createmore uncertainty on x−x than on x, which
is a problem.

As interval propagation is a toonaive approach to solve some simple equa-
tions, flowpipe uses affinearithmetic [43], consisting of expressing a bounded
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variable x not with a set of inequality nor with an interval, but using the affine
form x = x0+

∑m
i=1 ϵixiwith ∀ i ∈ J1,mK, ϵi ∈ [−1, 1]noise symbols associated

with the standard deviation xi.The use of affine arithmetic allows for safe approximations of functions
that over-approximate the set of reachable states of a system given initial
conditions and uncertainties.

From this initial knowledge, the flowpipe algorithm constructs a lower and
an upper trajectory to confine the value in the obtained uncertainty borders,
which grows and reduces depending on the local contractive or expansive
property of the function.

As the computed derivatives of the trajectories are bounded into a certain
flow-pipe, the trajectory itself can be bounded and evaluated with a certain
degree of confidence.

In [40], the authors developed a simulation of CPS using a similar method.
First, it splits the state space into areas where the flow functions are contrac-
tive or expansive. Then, the conceived tool propagates the system’s state us-
ing topological balls.

The similarities between the approaches are noticeable as they all seek to
propagate an exhaustive trajectory of the system from an initial state, taking
into account the maximum deviation allowed by anticipated uncertainties.

As flow-pipe computation delivers two extremely pessimistic trajectories
that correspond to the most abnormal behaviors, it can be used for property
and safety verification. If the flow pipe does not intersect with the dangerous
subsets of the state space, the system can be considered safe in standard use
conditions.

Moreover, a topological study from [40] creates an abstraction of the state
space based on a qualitatively expressible property (are the flow functions k-
Lipschitz with k < 1?), showing the thematic and reasoning proximity with
qualitative modeling. However, even a high degree of confidence cannot re-
place formal proof.

2.4 . Computer Algebra/Symbolic Computing

If numerical simulation is a well-developed and almost universal choice
to provide approximate solutions to the numerical, it does not allow formal
proof or symbolic resolution. Symbolic computing (or computer algebra) is a
field of computer sciences aiming at manipulating formal mathematical ex-
pressions. Compared to classic computation and numerical reasoning, it al-
lows more formal proofs by computing equations and formulas without nu-
merical considerations and respecting symbolic mathematics rules.

If some contributions separate computer algebra from symbolic comput-
ing [44], the two terms are often associated to describe the representation of
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mathematical objects using symbolic representation, such as in [45].
Computer algebra does not allow any approximate representation of a

value or a variable, as eachmathematical object is represented in an exact and
finite form. Therefore, rational numbers are represented in their fractional
form, with real values represented symbolically.

Symbolic computing comes from analytic mathematics, and the develop-
ment of the discipline in the last few decades allowed us to solve several prob-
lems, such as polynomial system resolution or cylindrical algebraic decompo-
sition [46]. Symbolic computing could also be helpful in the improvement of
SMT solving [47] as it offers powerful tools to solve complex constraints. How-
ever, it appears that the two procedures are, for now, still mainly separated.
This can be illustrated in our works with two tools we happened to use, which
are Sympy [48] and Z3 [49]. The first focuses on symbolic computing, while the
second focuses on SMT solving.

Symbolic computing can also be related to symbolic execution. Symbolic
execution is defined in [50, 51] as a programanalysismethod to test and prove
specific properties of a program by traveling through its execution tree using
symbolic logic to cover every possible outcome of the program. If symbolic
computing and execution are not to be confused, they share a core of concep-
tual analysis and are often bridged just as in [46]. Both can be used to prove
properties using symbolic analysis of operations instead of relying on chance
and examples.

2.5 . Satifiability Solvers

A solver is a tool that takes as input a mathematical formula modeling
a problem and returns either a boolean characterizing if the given problem
admits a solution or not or a solution to the problem if it exists. The solver
generally takes as input a set of constraints written as mathematical pred-
icates that limit the solutions to a subset of the variables’ definition space.
Given these constraints, the solver maximizes or minimizes a utility function
representing the considered problem.

Some solving problems can be considered as satisfiability problems, while
others focus on optimization. SAT problems are a category of problem that
is interested only in the existence of a solution satisfying the different con-
straints passed as inputs in the solver but which do not care about optimizing
this solution. A SAT problem is a decision problem aiming at determining if it
exists a variable valuation such that a logic proposition is satisfied.

SAT solvers are boolean problem solvers who must deal with logic predi-
cates and determine whether they can admit a solution or not.

For x, y two propositional values, a SAT solver with the logic predicate ϕ =

(x∧ y)∨¬y as input will answer True. On the opposite, the same solver with
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as input the predicate (x ⊻ y) ∧ (x ∧ y) will answer False.
2.5.1 . Satisfiability modulo theory

Satisfiability modulo Theories (SMT) solvers generalize the SAT solvers to
more complex structures (or theories), authorizing the involvement of numer-
ical variables, real numbers, or data structures. SMT solving couples a SAT
solver with a solver of a given theory T to check the satisfiability of the formula
involving such elements and interpreted in T . There exist various categories
of SMT solvers with different associated reasoning theories. Some can reason
with variables on R or Z, while others are more suited to solve differential or
polynomial equations.

Given a predicate ϕ with specified variables xi, the goal of SMT solvers is
to determine if there exists a valuation for all variables for which ϕ is satisfied.

For example, to the problem : find x ∈ R such that ϕ = {x3 + y > 0}
associated with the constraints C = {x > 0, y > 0}, a SAT solver will return
False.

In our works, we mainly used the SMT solver Z3, but many others exist,
such as CVC [52], MathSAT [53] or OpenSMT [54].

2.5.2 . Dynamic system proof tools
As reasoning on a dynamic system requires managing its evolution and

dynamics, First-order logic is not expressive enough to allow an efficient rep-
resentation of the system and to make formal verification of its properties.

However, higher-order logic paradigms such as Dynamic temporal logic
can be used for such objectives. In [55], for example, the authors use dynamic
temporal logic (which they define as a logic paradigm for deductive reasoning
about hybrid systems, where the continuous dynamics are specified using
a system of ODEs) to reason on differential invariants (the constraints on the
results ofODE that will always be satisfied) to prove properties about a system
and its dynamics.

This method is based on the concept of differential ghosts and Darboux
polynomials to prove the invariants of theODE. Theymade this choice to solve
the problem of the difficulty of writing explicit solutions to equations that do
not necessarily have one.

Some tools such as KeyMaera [56, 57] use this differential dynamic logic to
model hybrid systems as hybrid programs and to prove complex properties
about their behavior.

Hybrid programs, formally defined in [58, 59], use a syntax allowing oper-
ations including

• assignments (either resets or updates) noted x := f(x, y)

• control tests expressed as ?x > 0
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• differential equations relating the time derivative of a value to other
variables x′ = −b

• Control structures expressed using combinations of the previous ele-
ments related with the order operators ∪, ; , ∗

Using computer algebra, Keymaera intends to find explicit polynomial so-
lutions to the dynamics differential equations expressed by hybrid programs
whose properties are verified using symbolic decomposition. It can prove the
correctness, safety, controllability, reactivity, and liveness properties of hybrid
systems.

However, it appears that these proof capabilities mainly focus on proofs
about the invariants of the dynamics of the system.

It is perfectly sufficient to demonstrate properties of safety and stability,
but it may not be sufficient to visualize the different behaviors of the system.

On the contrary, qualitative reasoning should highlight every possible qual-
itative behavior and, therefore, provemore complex behavioral properties as
well as safety, correctness, and stability.

2.6 . Common Sense Reasoning

Common sense reasoning [60] is a general reasoning paradigm aiming at
reproducing the human ability to understand, deduce, and induce structural
concepts without requiring formal or complex computation. It is inspired by
the reasoning on common sense knowledge presented in psychology as the
ability to execute reasoning operations without even considering it and with
very limited use of our brain capacity [61, 62]. Common sense reasoning ex-
presses the simple deduction and induction processes that occur daily in the
human brain with minimal information and effort. On numerous aspects,
common sense reasoning can be related to naive physics [63], which is the
study of natural phenomena and laws of physics without consideration for
equations or quantitative information.

2.6.1 . Origins of common sense reasoning
Today, "common sense reasoning" seems to have become a generic term

for two distinct disciplines. Like many other computer terms, it has been bor-
rowed from other fields, such as philosophy and psychology. In philosophy,
allusions can be traced back to the Platonic vision of the world, illustrated by
the allegory of the cave, showing the limits of simple human perception and
simplified thinking based on excessive abstraction and partial knowledge of
the world. Different definitions associated with various fields, such as psy-
chology, metaphysics, and theology, developed throughout antiquity and the
Middle Ages. In the 17th century, Descartes brokewith these predecessors and
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equated common sense with the concept of Bon sens (literally good sense),
i.e., the human capacity to understand and reason about everyday elements
from a base of knowledge acquired either through experience, but above all
through deduction from other logical predicates. This definition forms the ba-
sis of the rationalist thesis that places the human mind and its reason at the
heart of reflection and understanding.

However, this idea includes the existence of fundamental logical axioms
that cannot be demonstrated and must be humanly innate to serve as a ba-
sis for all further reason. It is these axioms, considered as the first notion of
things, that Voltaire will, for his part, consider as common sense. This same
idea, however, was to inform the philosophical trend opposed to that of the
rationalists, empiricism, which placed experience above reason in human cog-
nition. Humes and Locke, among others, supported these criticisms.

The presence of common sense in psychology goes back to Confucius and
Aristotle, with reflections on the idea ofmetacognition enabling recursive, un-
conscious control of conscious cognitive processes. Much remains unclear
about this recursive reasoning capacity and its implications.

Today, common sense is also a subject of study in neuroscience, as it
is considered the foundation of human intelligence, and understanding its
mechanismwould enablemajor advances in research into consciousness and
the biological nature of the human mind.

In computer sciences, common sense reasoning goes back to the earliest
roots of Artificial Intelligence and the extensive work on symbolic AI [64] that
led to the development of many expert systems. The main criticism of this
early work was that these expert systems lacked generality and could not per-
form the supposedly simple tasks commonly attributed to human common
sense. This difficulty is still attributed today to the difficulty of formulating ele-
ments of knowledge that seem evident to us in the form of logical and explicit
axioms. This problem and inability to incorporate this common-sense reason-
ing were at the root of the first winter of AI, but also of the ideas behind the
implementation of deep learning techniques based on neural network struc-
tures. Being unable to explain or express, it was vital to be able to reproduce.
However, while these methods have increased the performance of systems
capable of integrating large numbers of rules that cannot be explained by log-
ical predicates, they still lack the capacity for abstraction, generalization, and
adaptation that is inherent to common sense.

For the purposes of our study, the term "common sense" can be taken to
mean human skills that one would want to implement in a computer system
to make up for the shortcomings of today’s machines.
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2.6.2 . Common sense in computer sciences: motivations, explo-
rations, and successes

In computer science, common-sense reasoning is primarily intended to
address the currentweaknesses of artificial intelligence programs [64]. In fact,
although these programs are highly advanced, they are not always able to
answer problems that seem simple or intuitive to humans. To paraphrase
[64], in AI, "what is easy is hard". This means that the easier tasks seem to us,
the more difficult they are likely to be to integrate into a program.

The difficulty today’s AI programs have in grasping elements such as con-
text, irony, emotions, or inconsistency makes it necessary to find alterna-
tives capable of reasoningmore humanely, applying simpler butmore general
rules, and compensating for these shortcomings.

Today, common-sense reasoning in computing has taken several different
paths, which we will present in the next section, before attempting to give
some applications and make the link with human logic.

2.6.3 . Logic reasoning and symbolic artificial intelligence
The basis of common sense in computer science goes back to before the

first winter of AI when it was used to work on symbolic artificial intelligence.
The basis of this idea is to represent the knowledge available at a time t in
the form of logical predicates. These predicates are supposed to represent,
as far as possible, what is known about a situation, a problem, or a context.
This method has enabled the creation of expert systems specialized in re-
solving particular problems and has the advantage of being easily explicable,
comprehensible, and deterministic. Using different forms of logic, such as
combinatorial and modal logic, has made it possible to diversify and increase
the complexity of the problems addressed. In addition, introducing fuzzy and
multivariate logic allowed the resolution of more ambiguous situations that
cannot be reduced to binary choices and knowledge. However, this technique
soon came up against two significant difficulties. The first is a major lack of
flexibility, observed in the total inability of expert systems to move beyond
their very restricted resolution domain. This poses a problem, as a system of
this kind can technically only be used for one application and is neither repro-
ducible nor generalizable, thus rapidly losing interest in this type of solution.

The secondwas themassive amount of knowledge required to solve a sin-
gle problem when it became complex: the need to enter all the logical predi-
cates by hand made it unthinkable to use this type of system on a large scale.
Combined with its lack of reproducibility and flexibility, this method of solv-
ing seemed to have little appeal. As a result, it is considered to be primarily
responsible for AI’s first winter. The main examples of work based on this
method are the Jeopardy tool and the Cyc database [60, 64]. The former pro-
duced surprising results in its ambition to answer general knowledge ques-
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tions but soon showed its limitations when answering more complex ques-
tions or solving uncertain problems. When it was first launched, Cyc was
expected to be a general knowledge base capable of containing all human
knowledge. However, the excessive number of predicates to be integrated
into the system, the need to enter them manually, the difficulty of correcting
false predicates, and the impossibility of achieving complete exhaustiveness
made the project impossible. Even today, after millions of predicates have
been added, the work is still far from complete. These difficulties inherent in
the project have contributed to the advent of an AI winter and to convincing
a majority of researchers of the merits of techniques such as the perceptron
and neural networks in general. Although these past successes are no longer
relevant, they are still worth mentioning as the symbolic representation of
knowledge is still at the heart ofmany current and developing common-sense
reasoning methods.

Today, progress has beenmade in various branches of the discipline, such
as taxonomic, qualitative, and probabilistic reasoning.

2.6.4 . Taxonomic and ontological reasoning

The first successes of qu reasoning were achieved on the evolution of
taxonomic reasoning and its extensions. A taxonomy is defined by a set of
taxa (classes) and individuals and by their relationships. Taxonomic reason-
ing uses classification and relationships. The most common example of tax-
onomy is that of living organisms. This is divided into five taxa, themselves
divided into phyla, and so on, down to the species level. Each taxon im-
plies intrinsic properties that all associated individuals share unless other-
wise stated. Taxons are thus organized in a tree structure, like inheritance
in object-oriented programming. An individual is an instance of a class and
inherits its internal attributes. A single individual can also be an instance of
several classes at once, in some taxonomies more complex than the animal
kingdom. Taxonomic reasoning, therefore, enables one to reason about the
nature of the entities to manipulate and the concepts involved. This corre-
sponds to the human tendency to think in terms of categories and to reason
as much about the categories as the concepts themselves. As mentioned ear-
lier, taxonomies have been extended, notably through ontologies, which are
a more complete representation of the structures and contexts of systems,
imposing constraints on relationships and categories.

Ontological reasoning, which is more comprehensive and elaborate, en-
ables in-depth analysis and deduction of structures, the intrinsic properties
of the objects processed, and the relationships between objects and their en-
vironment. Creating an ontology allows one to store a significant amount of
knowledge about a situation and establish a framework within which struc-
tural reasoning can be validated. In other words, it provides a meta-model
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that can be used to reason about more concrete or applied models. An on-
tology is a model template containing a certain number of constraints that
all models inheriting from it must verify and which allows partial and rapid
deduction of general properties. In this way, one can not only define explicit
constraints on a model but also manage its implicit constraints by deducing
its taxonomic/ontological structure. By using this knowledge representation
to good effect, an algorithmwill then be able to answer basic questions about
the nature of objects, such as "Between an ice cube and a lighter, whichwill be
the coldest?". Work on ontologies is currently underway at CEA LIST, including
contributions that integrate elements from other common sense reasoning
paradigms.

2.6.5 . Common sense knowledge

Another way of reasoning about predefined knowledge is the one Google
chose to create its Google Translate algorithm. This search algorithm scans a
gigantic multidimensional graph of words to be translated andmatches them
with existing links in the graph: the closer words are in the graph, the more
likely they are to be seen together. The result represents all available knowl-
edge in the form of a graph that can be browsed to read it. The exponential
increase in the size of such a graph with the complexity of the knowledge will
make conventional graph exploration impossible for high-dimensional prob-
lems. Such a representation, if generalized to fields other than word process-
ing, could be capable of representing an impressive number of concepts and
the links between them, whether conceptual, semantic, or functional. The
strength of this methodology can also be seen by comparing the results be-
tween the translation capabilities of Google Translate and those of algorithms
using WordNet. WordNet is a similar network but built according to an onto-
logical logic. This tool also enables algorithms to reason by analogy: given two
similar contexts and behaviors, it will be possible to simplify the resolution of
the second by starting from the results obtained on the first.

The main difficulty with this technique is the difficulty of setting it up. In-
deed, to create a functional version of Google Translate, the company first had
to set up a deep learning programand run it onmillions of sentences foundon
the search engine in all the languages listed before creating this network. The
resources required to develop a network of this kind are enormous. What’s
more, if one wants to create a knowledge network that is general enough to
store all the knowledge a human could need, the resources required (both
financial and temporal) would be prohibitive. The final difficulty is that the al-
gorithm leading to the creation of this invaluable knowledge base is currently
not explainable. This raises questions about its use and reliability.

However, by focusing the creation of such a network on a more restricted
environment to answer a specific problem, it would be possible to target the
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learning of the deep neural network on a precise context or element. The so-
lution would then lose in generality, but as the knowledge would be learned
automatically, it would at least retain the modularity and reusability of the
method. The problem remains, however, how to obtain the resources needed
to carry out the initial learning process: as this involves web-mining to obtain
the necessary quantity of data, one needs to be able to access all this data
quickly enough and select the relevant ones, which in itself represents a non-
negligible challenge. To create this concept of sub-networks specialized for a
part of the problem and to avoid unnecessarily complex representations, one
needs to determine what Hayes called the Conceptual Closure [65]. This in-
volves determining the smallest possible general framework that can contain
all the concepts required to model and solve a problem, which is difficult to
achieve because exceptions can always arise. This requires much preliminary
work to delimit the model design space.

2.6.6 . Temporal and causal reasoning

If one reflects on the limitations of the previous paragraphs, one of them
is that they are primarily suited to static models and systems. They offer the
possibility of analyzing a situation at a given point in time and deducing the
relevant information, constraints, and properties. Still, they are insufficient
for the analysis of a dynamic situation. Such systems can change their envi-
ronment very quickly (which implies a change in exogenous constraints and
relationships), as well as their operating mode (for example, in the case of a
chemical relationship in which one of the reactants is consumed, the reaction
cannot continue as before, and dynamics of the quantities of the different
compounds will not remain the same). A theory of processes and dynamics
was needed to reason dynamically. In Forbus’s works [66], ideas and con-
cepts for creating such a theory are presented using already mentioned ele-
ments (notably the creation of a network of acquired knowledge). However,
Forbus did mention another aspect of processes, that of dynamic dependen-
cies between the components of a system: given that the aim is to represent
evolution, one needs to be able to know how a change in one of a system’s
components will impact the others. For example, to model a car correctly, it
is essential to understand how pressing the accelerator pedal will modify the
state of the wheels according to the speed actuated.

This aspect of common-sense reasoning is intertwined with simulation,
whichmust be carried out onmodels that allow for dynamic evolution. Among
the methods for representing functional dependencies, causal reasoning is
significant. It is a way of graphically representing the implications of varia-
tion/movement between the components of a system, highlighting the causal-
ity between them. Causality [67] is an important element in human thinking
since it enables us to anticipate the consequences of what we do and see.
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Managing causality raises the question of managing time: while it can be
simple to manage time in a numerical simulation, it is more complex to know
what to do when moving away from it to focus on common sense. How do
we integrate the time variable and the approximate computation of varia-
tions in causality reasoning? One of the options adopted so far has been to
work only with key dates (also known as landmarks) but not with the intervals
between them. This logic allows one to schedule events and reason about
ranking/scheduling but is not effective when the ambition is to model evo-
lution over time. This question, among others, was addressed by Slim Med-
imegh during his thesis at the CEA [68]. Although his aim was to get closer to
qualitative reasoning, his work aligns more with the general common sense
framework. In particular, he discussedmodeling proportionality relationships
in the broadest sense (including strict, causal, and inverse proportionality). It
seems that by adding more precise information and extending proportion-
ality to functional dependencies (quadratic proportionality, for example), we
can outline the evolution between key dates, specifying the trajectory taken
in the intervals. We can thus observe a trend in the intervals and values at
key points. According to the vocabulary introduced by Forbus, a trajectory
defines a history in which events (key points/landmarks) and epochs (inter-
vals/rectangles) are involved. This idea underpins qualitative reasoning.

2.6.7 . Qualitative reasoning

Qualitative modeling aims to simplify real-world concepts and to abstract
the values of variables, as well as their dependencies and dynamics.

The abstraction methods most commonly used in qualitative modeling
are the causal representation of dependency relationships, the simple dis-
cretization of the space of variation according to specific properties (sign of
variables, direction of variation, convexity, etc.), and the numerical analysis
of remarkable properties of the system studied via the calculation of zeros
of remarkable functions. These methods have already been studied by dif-
ferent contributions, Kuipers [69] and Tiwari [35] being the two references in
the field. The second approach is closer to semi-qualitative methods since
it requires numerical analysis. The subjectivity of common-sense reasoning
here lies in the fact that models created from the same initial data but using
two different abstraction methods will produce potentially different or even
contradictory results. It should be noted that while this multiplicity of pos-
sible models allows for relatively permissive adaptation to the situation and
objectives sought, it runs counter to the discipline’s current drive for greater
generality in computer models. It is, consequently, necessary not to choose
abstraction functions without a method but to integrate contextual parame-
ters into a higher-level model, automating the choice of abstraction method
and, therefore, optimizing the choice of the ideal type of qualitative model.
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This capacity for case-by-case adaptation would be an advance that could en-
able a single logical/algorithmic core to adapt to many situations.

This ability to reason in terms of quality offers a wide range of practical
applications in design, proof, verification, diagnosis, and simulation. Study-
ing a model by analyzing its qualities gives a higher-level, more general view
of its behavior and enables us to verify different properties of its behavior.
Moreover, the absence of numerical computation means that one can study
the different behaviors of a system in greater depth and breadth, aiming for
a certain exhaustiveness at the expense of precision. A prime application of
this capability would be to explore a system’s behavior from a set of start-
ing points that could be grouped under one or more labels (qualities) and to
reflect qualitatively on variations in the various variables to observe the full
range of possible future trajectories. Combined with a cycle checker and a
constraint solver, we can obtain an abstract computing method and reason-
ing capability that enables better observation and understanding of systems.

The main limitation of qualitative reasoning is the current difficulty of ob-
taining precise results. By its very nature, qualitative modeling sacrifices the
precision of data and computation to earn generality. So, just as an accu-
rate computation is not possible with a mental abstraction that is too vague,
the observation of precise numerical properties is impossible with a qualita-
tive model and will be all the more difficult to produce the higher the level
of abstraction at which the model is built. The second intrinsic limitation of
qualitative reasoning is the difficulty of performing operations on the qualities
defining the model. Since they are no longer elements of R, the elements of
the space of qualities thus defined no longer necessarily respond to the var-
ious laws and operations usual to continuous spaces of variations. The best
way to proceed is to ensure that the abstraction process defines an order re-
lationship between the different qualities obtained. To do this, an idea would
be to create a bijection between the partition of Rn thus obtained and a sub-
set of Nn: since qualitative partitions of state spaces are always countable, a
bijection of this kind will always exist. Once this bijection has been created,
we can establish relations and operations between subsets as equivalence on
their image by the bijection. Although it does not represent actual behavior,
this projection of the state-space partition onto a discretization of Rn allows
to reproduce the simplification of calculations the human mind engages in to
instinctively solve complex problems. Another limitation currently posed by
qualitative reasoning as practiced is its adaptability not only to specific cases
but also to the researched objectives. Depending onwhat wewant to observe
or prove, the most suitable model and the abstraction choices will not be the
same. What’s more, correctly choosing the number of qualities to use will
result from optimizations based on situational and temporal constraints.

In addition, there are difficulties linked to the management of uncertain-
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ties: wanting to concretize qualities to obtain more information and knowl-
edge, one would come up against the barrier represented by the one-way
direction of knowledge variation. Information and precision can easily be lost
but cannot be recovered without field measurement, external intervention,
or probabilistic measurement of variation, which amounts to keeping numer-
ical computations and removes the interest from the qualitative models. The
solutions proposed to overcome these difficulties are to combine qualitative
reasoning with other techniques, such as supervised semi-qualitative simu-
lation to limit the loss of knowledge, the propagation of probability density
functions to maintain a probabilistic distribution of variable values, or a su-
pervised modeling element to modify the model in real-time to adapt it to
changes in the environment as well as to the model’s objectives. Informa-
tion regain, however, remains an unanswered problem. Although knowledge
loss can be limited at the cost of partial model quantification, losses cannot
be prevented from adding up when operations follow one another. One way
of attempting to regain knowledge is to randomly draw starting points in the
current zone of uncertainty, simulate their behavior, and refine current knowl-
edge. However, the only reliable way to compensate for the natural loss of
knowledge is to carry out concrete measurements regularly or when uncer-
tainty becomes harmful, which will naturally add precision to the state of the
system at the measurement time.

In addition to purely qualitative reasoning, work has been carried out on
so-called semi-qualitative modeling, combining numerical and qualitative el-
ements in the samemodel. Examples include set propagation, which is at the
forefront of interval propagation, and flow-pipe methods.

2.6.8 . Probabilistic reasoning

The various studies of systembehavior using the preceding reasoning sug-
gest a flaw: that of non-deterministic behavior (whether absolute or only at
the level of abstraction we choose). A straightforward example is qualitative
reasoning: suppose one drops a lead ball over a table andwishes to anticipate
its behavior. Will it stop on the table or shatter under the kinetic energy accu-
mulated during its fall? One way to answer this question is to represent the
various possible behaviors in a probabilistic network, considering all possible
options and weighting the different transitions with their probabilities. We
can also apply this type of logic to causal reasoning. Rather than determinis-
tic causality, one could consider stochastic causality, with only the influences
of previous choices/events on future trends and events. This type of logic can
be represented using Bayesian networks, consideringweighted and uncertain
causal possibilities.

In terms of application, the main apparent use of these methods is to
model a system still at an early stage in its development or placed in a par-
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tially observed environment. The initial lack of information imposed by the
situation means that we cannot rely on measurements or any model faithful
to reality.

The weakness of thesemodels will be their significant imprecision and the
difficulty of relying on them alone to carry out a task: intrinsically, it will often
be necessary to combine them with other models to give them a sufficient
database or make up for the lack of knowledge they can provide.

2.6.9 . Analogy reasoning
Among Melanie Michell’s works, one of her most important contributions

deals with the implementation of an analogy-based reasoning module us-
ing subsymbolic AI systems [70, 71]. This was designed to solve problems of
various kinds by comparing the current situation with a similar problem en-
countered in another context. The analogy is currently very limited in that
the prerequisites for such reasoning are not the same in a problem dealing
with language as in the resolution of a physical problem. The proposed so-
lutions, therefore, still lack generality. The proposals currently accepted use
a generalization of common-sense knowledge, matching concepts/situations
by semantic, structural, or functional proximity. For example, to answer the
question "What is for woman what king is for man?" it needs to perform a
semantic proximity analysis to find the correct answer, whereas to perform
an analogy from a physical problem to another problem already solved will
require a structural and functional analysis.

It should be noted that neither the former nor the latter can stand alone:
It will be easy to draw a false analogy between a solar system and an atom
with a purely structural analysis, while a functional analysis will wrongly link
a star to an oven. Reasoning by analogy aims to reproduce an innate human
ability to make connections between very similar situations quickly. However,
the human mind still has the advantage over algorithms in that it can quickly
determine which criteria to base these connections on so as not to choose
a wrong analogy. This is precisely the point on which we still need to make
progress to improve the reasoning capabilities of the machines.
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2.7 . Qualitative Abstraction

Definition 24 (Sign Algebra) Let us suppose that the comparison operators
<, >, = are defined on K. The sign algebra on the field K is defined by the
set of elements S = {−, 0,+} and by the laws (+,×, .) such that (S,+,×) is a
vector space with 0 the neutral element for the law+ and absorbent element
for×, and+ the neutral element for× and such that ∀x ∈ K, x.+ = x, x.− =

−x and x.0 = 0.
Sign algebra is very popular in the abstraction process because of the var-

ious mathematical properties it verifies:
• Addition and product are commutative (i.e., ∀ a, b ∈ S, a+ b = b+a and
a× b = b× a)

• Addition and product are associative (i.e., ∀ a, b, c ∈ S, a + (b + c) =

(a+ b) + c and a× (b× c) = (a× b)× c)
The abstraction process corresponds to simplifying a model by isolating

one or some of its characteristics and considering them independently from
the rest of the model.

A classic example of qualitative abstraction is the variation table used to
describe the behavior of functions evaluated on R.
Example 4 Let us consider the function

f :

{
[−π, π]→ [−1, 1]

x 7→ sin(x)

Its behavior on its definition space can be either represented using a numerical
computation (see Figure 2.2) or a table highlighting the sign of the function or its
derivative on different sub-intervals of its variation space rather than showing the
exact behavior (see Figure 2.3, Figure 2.4, Figure 2.5).

With this representation, we lose the information on the particular numerical
values of the function for each point of its definition space, but we can represent
more simply the information regarding its extrema, its sign, and the sign of its
derivative.

Qualitatively abstracting functions allows the highlighting of specific char-
acteristics of the application by removing unnecessary information from its
representation. This better reveals the most pertinent elements of the func-
tions by losing knowledge on many other aspects of the model. In the given
example, the chosen qualitative abstraction puts forward different aspects of
the functions, but in every given abstraction, we lose the numerical values for
any valuation of x, and we, therefore, cannot make any difference between
two numerical valuations that present the same qualitative properties.
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Figure 2.2: Numerical representation of the sine function

Figure 2.3: Qualitative representation (variations) of the sine function
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Figure 2.4: Qualitative representation (sign algebra) of the sine function

Figure 2.5: Qualitative representation of the sine function
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Moreover, the diversity of abstracted representations shows that there is
no unique method to qualitatively abstract the numerical models. Each nu-
merical model can be abstracted inmany ways in asmany different represen-
tations depending on the desired goal.
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3 - FRAMEWORK AND STATE OF THE ART

3.1 . Cyber-Physical Systems Modeling

3.1.1 . Stakes and challenges
CPSs are vastly used in many diverse domains, with more and more com-

plex systems emerging to deal with the challenges of our time. If CPSs consist,
by definition, of a software element controlling the physical processes of a sys-
tem [72], it is more difficult to develop other common denominators to any
instance of CPS. The number and the nature of the control mode may vary,
the dynamics may be expressed using different forms, from ODEs to causality
relations, and the guard conditions may be sufficient or necessary.

In the case of very complex systems such as nuclear power plants, every
step of their lifetime is amajor challenge and raisesmany technical, temporal,
and financial challenges.

In the most critical cases, CPSs require to take up many challenges such
as:

• accuracy [73] (to which extent does the modeled behavior correspond
to the researched one?)

• Reachability (does the system design allow it to reach a specific state
chosen as an objective?)

• Correctness (Which is a generalization of the previous challenge, with
consideration for intermediate objectives and criteria)

• Reliability [74] (Can the systemperform its task in every condition itmay
encounter?)

• Robustness (can the system perform with invalid inputs?)
• Understanding (implying the repeatability of a conception/action, the
ability to use and modify the system)

• Safety (does the system risk to exhibit a dangerous or unwanted behav-
ior?)

• Security (Is the system resilient to attacks/malicious behaviors?)
• Performance (How much time will the system take to achieve its goal?)
• Supervision (can we monitor the system efficiently to prevent, detect,
and react to unwanted behaviors?)
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3.1.2 . Modeling methods
To meet the stakes raised by CPS modeling in a more connected and in-

dustrializedworld, variousmodeling and simulationmethods, languages, and
paradigms have been developed throughout the years to improve the repre-
sentation relevance of specific aspects of the systems.

In [75], the authors inventory a list of various methods to model the CPS
depending on the nature of the system and the goals of the model. Among
them are UML modeling, formal-based methods, multi-modeling techniques,
and component-oriented modeling.

Moreover, CPS can be specified using different syntaxes based on differ-
ent natures of properties.

Themost commonmethod to represent CPS is to use a hybrid automaton,
as we do to represent the sequence of modes and states allowed by the sys-
tem’s dynamics. They allow the representation ofmode change using discrete
jumps between the nodes of the automaton.

It is also possible to use other structures, such as Petri nets (represent-
ing the information and log flow in a system) or bound graphs (representing
the transfers between the system elements and, therefore, the energy move-
ments and contacts in the CPS).

In the industry, CPSs are often represented using tools such as Modelica
and Simulink, both having their own application field.

Simulink is mainly used to launch numerical simulations, while Modelica
offers more possibilities to reason on the structure and dynamics of the sys-
tems with an object-oriented representation.

3.1.3 . Current limitations
Most of these paradigms are specialized in some specific tasks and are less

reliable for others. For example, Simulink is particularly fitted for simulation
and system design and control but not very adapted for symbolic verification
or formal proofs. It can be used to prove the system’s robustness, but not
their safety or to deeply understand their fundamental behavior.

Ontological reasoning allows structural detection ofmisconceptions in the
system but cannot afford any verification on a more application level. It gives
a high-level overview of the structures and allows us to prove their safety and
reliability, but not their resilience. Testing and observing their behavior and
the effect of borderline case inputs on the system is impossible.

In the case of very complex systems, and in the presence of systems of
systems, having an exhaustive overview of the system’s behavior, testing the
different trajectories, and having a structure that allows an in-depth compre-
hension of its nature and operation is something that cannot be realized with
only one modeling choice.

For example, the nuclear power plant case is striking. The ontological rep-
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resentation of this system gives a good overview of its nature, possible struc-
tural inconsistencies, and errors. However, it does not offer the possibility to
test its behavior in real conditions. On the contrary, using numerical simula-
tions to explore all the possible behaviors of the system takes much time and
shuts the system down for an important period, which creates a visible loss
of resources.

As an interesting compromise between the two levels of abstractions pro-
posed by ontological reasoning and numerical simulation, qualitative reason-
ing offers a path to apprehend the study of CPS by the analysis of families
of behaviors that share qualitative characteristics and allows to demonstrate
the robustness and reliability of a system by symbolic computing rather than
employing an important number of simulations to show a representative set
of executions to show the robustness of the CPS empirically.

3.2 . Design Space Exploration

Design Space Exploration (DSE) refers to the analysis and selection of de-
sign points based on parameters of interest. In the domain of CPS, it cor-
responds more especially to the exploration and analysis of the parameters
definition space (also called design space) in order to determine which of the
possible values can be authorized.

DSE occurs at very early stages of CPS designs, far before numerical sim-
ulation, diagnosis, or monitoring, and is a critical domain of the conception
of complex systems. The stake of DSE is to choose authorized values for the
system parameters to satisfy some constraints on its behavior. It consists in
selecting, testing, and comparing different configurations of values for the pa-
rameters of the system before its construction to verify some properties or
optimize some utility function [76].

High-level DSE can be considered either as a multi-objective optimization
problem [77] (as we may want to optimize a set of conflicting constraints and
utility functions) or as a satisfiability problem ifweonly care about the boolean
value of the constraint predicates.

The solutions of the parameters are often searched in a finite space of au-
thorized values [78], and the arising problem consists both in the explosion of
the number of possible solutions when taking into account all the parameters
and in the critical time needed to test the validity of all of these solutions.

According to [79], an effective DSE requires three elements: a represen-
tation, an analysis, and an exploration method. The representation of the
system must be considered to optimize the research, test, and comparison
of solutions. However, working with CPSs represented by hybrid automata
implies that the flexibility of the representation is limited.

The analysis requires ametric, a utility function, or a set of logic predicates
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to evaluate and compare the different valuations of the system’s parameters.
These elements correspond to the constraints and requirements imposed on
the system that the parameters must satisfy.

Secondly, the exploration method is necessary to choose the valuations
to be tested and will strongly depend on the nature of the design space.

Here, the difficulty will come from the fact that works on DSE improve-
ment mainly work with finite design sets. However, at the first stages of a CPS
design, there is no evidence that the prior knowledge of the system will be
sufficient to reduce the design space P to a finite or even a countable set.

Finally, the choice of adapted values imposes a verification process to
check the validity of the proposed solutions. The developed methods mainly
consist of simulations to verify the constraint satisfaction with the chosen val-
ues. This situation poses two main problems: first, this is once more not
adapted for infinite and even more for uncountable design space as it would
be necessary to test the validity of an infinite number of values. Secondly, the
presence of state variables in the system creates a situation where there are
different sets of variables to deal with, which do not evolve and can not be
treated at the same semantic level. Parameters are variables in the sense of
an optimization problem and are constant in the referential of the state vari-
ables, while these state variables are variables in the sense of system mod-
eling. The choice of the tools and the constraints will then be an important
element in solving this challenging early-stage DSE.

3.3 . Stochastic Hybrid Systems

In [80, 81], the authors define stochastic hybrid systems (SHS) as a partic-
ular family of hybrid systems where the flow expressions are expressed as

∀ (m,Xi) ∈ Q ∗X, Ẋi = f(X,m) + g(X,m)

with f a deterministic function of X andm, and g a stochastic function of the
same parameters. The discrete transitions are mapped and defined using
stochastic conditions. Instead of followingODE, the system dynamics are writ-
ten using stochastic differential equations.

In this contribution, discrete transition conditions and resets are united in
transition maps. SHS are used to model systems and situations that cannot
assure to give a deterministic response to the same situation. The authors
take the example of a transmission control protocol where congestion win-
dows or control systems cannot be represented using deterministic systems
and, therefore, require the use of SHS.

In the literature, SHS are studied using truncated system representations
by abstracting the expression of their dynamics to get more convenient equa-
tions for their analysis or by discretizing the system state space depending on
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the behavior of the dynamic equations and the nature of the probability den-
sity functions encapsulating the stochastic terms. This discretization can be
achieved using Markov Chains or Markov Models [80].

Theories on the robustness and stability of SHS [82] have been developed
to manage the impact of stochastic terms on the already complex structure
of hybrid systems, with theorems such as Lyapunov’s.

SHSs are particularly interesting for modeling hybrid systems evolving in
partially known or completely uncertain environments. This mainly happens
in communications systems, biological environments, or economics and fi-
nancial modeling. All these systems have in common their various and im-
portant uncertainties that do not allow them to be represented as classical
hybrid systems.
Example 5 If we consider a heating system towhichwe add randomdisturbances,
we can write it as a SHS with

• Q = {on, off}
• X = R+

• I = {on : {Tenv < 100}, off : {Tint > 60}}

• F = {on : Ṫenv = h − c(Tint − Text) + σw(t), off : −c(Tint − Text) +

σw(t)} with h the heating rate, c the cooling rate, σ the standard deviation
of the random disturbances and w a white noise term representing these
disturbances.

• T = {(on, Tint > Tup, off, T 7→ T ), (off, Tint < Tlow, on, T 7→ T )} with
Tlow and Tup two thresholds.

This system includes random terms that add the stochastic aspect to themodel
and exclude any use of classical CPSmodeling on this system, as the dynamics and
discrete transitions are not deterministic.

3.4 . Qualitative Reasoning

As presented in subsection 2.6.7, qualitative reasoning is a field of com-
puter sciences (some may say artificial intelligence) aiming at representing,
reasoning, and solving problems with fewer and lighter numerical informa-
tion than classical resolution methods. Depending on the situation, qualita-
tive reasoning can aim at completing, backing, or even replacing numerical
reasoning in different algorithms. Qualitative reasoning includes:

• The definition and selection of qualities to be used in qualitative mod-
eling.
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• The abstraction of numerical values to these different qualities.
• The propagation of these qualities using qualitative simulation.
• The description and explanation of the obtained behavior using the
available description of the system.

This section will present the motivations, the history, and the concepts of
qualitative reasoning. This will allow us to introducemore precisely the stakes
of ourworks as an improvement to the development of reasoning techniques.

3.4.1 . Stakes and motivations
Some physical problems involving many components, variables, and rela-

tions can generate various difficulties during a modeling, simulation, or solv-
ing process. The complexity of the system, as presented in [1], can be a barrier
to its representation; the multiple configurations may cause a loss of gener-
ality for each execution, and the lack of information may prevent any general
solution from being found.

Moreover, the computation time imposed by many physical problems is
significant, which can be annoying in the presence of a time constraint.

The relations between the different components of the systemmay not be
expressed using quantitative differential equations and, therefore, may imply
a less precise link and formula not adapted to quantitative data.

Finally, a numerical model does not adapt well to subtle modifications in
the system’s core. Such changes would impose to completely rebuild the ob-
tained model. Such vulnerability to change is a problem as systems often
interact with their environment and cannot be completely protected from
degradation or fatigue.

Qualitative modeling and reasoning appear as a solution to avoid or limit
these problems by using more general, less costly, and more adaptable rep-
resentations given by the qualitative paradigm.

The next section will introduce the emergence of qualitative reasoning in
computer sciences and its development as a distinct research field.

3.4.2 . History of qualitative reasoning and modeling
Qualitative reasoning refers to the area of computer sciences aiming at

representing and reasoning on models with very little and imprecise knowl-
edge [66]. In a complementary way, qualitative modeling corresponds to the
design of models adapted to support qualitative reasoning [83]. Originally,
qualitativemodeling was introduced by Brown [84] and De Kleer [85], who de-
veloped the concept of qualitative knowledge about systems and processes.
They introduced this idea to represent knowledge that could or should not be
expressed quantitatively. They designed this paradigm mainly for electron-
ics and computer-assisted physics computation. They did not see this repre-
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sentation of knowledge as a substitute for numerical computation but as a
complementary strategy. Indeed, they presented their approach as a tool to
solve general problems by reasoning at a high level of abstraction on the sys-
tem and to refine the more specific sub-problems that could only be solved
with a more classical numerical computation. Therefore, the initial idea was
to add intelligence in problem-solving and optimize the use of computational
resources that should be kept for sub-problems that require them. Since the
beginning, qualitative representation has been seen as a tool for simplifica-
tion tomake the representation of physicalmodelsmore convenient and gen-
eral and to optimize the use of computational resources for the models and
problems that would really require them. This need to reduce computational
costs is evenmore understandable as computers did not allow heavy compu-
tations at the time.

If the notions implied by qualitative reasoning have evolved since then,
the ambition remains unchanged: proposing a new reasoning tool to supple-
ment the exact but too specific numerical approaches available to study the
different kinds of systems. Major elements have been added to the theory of
qualitativemodeling, such as naive physics [86, 63], the theory of dynamic pro-
cesses [66], and the concept of conceptual closure of such a theory [65]. Qual-
itative modeling hasmade significant advances with the works of Kuipers [69]
on the qualitative representation of the state space and the value of system
variables. He introduced a form of reasoning based on sign algebra, using the
values {−, 0,+} as abstractions of the numerical values of the variables. The
authorized operators are {+, ∗}, and they illustrate the advantage of the sign
algebra as they preserve all their properties of transitivity, associativity, and
commutativity [87]. This method allows the qualitative study of the behavior
of a system based on qualitative differential equations, which are abstrac-
tions of numerical differential equations. The development of this analysis
led to the development of the QSIM tool. However, the non-determinism of
such operations and the lack of precision showed the limits of the approach
in the case of systems with feedback or multiple successors for a given state.
Kuipers and Berleant partially solved these problemswith their work on semi-
qualitative reasoning [88]. In this approach, the sign algebra is completedwith
interval propagation to integrate a part of numerical analysis and resolve the
uncertainties that cannot be studied with only sign knowledge. This comple-
mentarity allowed the study of more complex systems and the development
of more advanced versions of his tool, such as SQSIM and Q3. Some work
has been undertaken to combine it with orders of magnitude [89], but the re-
sults did not meet the expectations. However, interval propagation has since
really progressed, allowing advances such as flow-pipe computation [39] or
more precise uncertainty measures and correction. Tiwari completed this ap-
proach [35] and generalized it to ordinary differential equations (ODE) under
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the condition that the terms of the equations must be polynomial according
to the system’s variables. This methodology requires an additional step of
numerical analysis upstream of the system study. However, it can give more
interesting results as it considers the links between the dynamics and the val-
ues of a system, while previous methods had the drawback of separating the
two aspects.

3.4.3 . Applications
As explained in the previous paragraph, qualitative reasoning has been

developed for physical problem modeling and solving. If the initial applica-
tion was to save computation time on complex problems, the current state
of qualitative reasoning allows various different applications in different do-
mains. Among these applications, we can present, for example:

• The prediction of the behavior of a system, using techniques to prop-
agate qualities. Qualitative reasoning allows us to visualize all the pos-
sible trajectories and states of a system according to its known charac-
teristics [66].

• The understanding of observed behavior, using the structure of the sys-
tem and its observed trajectory [90].

• Formal computation and proof of structural or behavioral properties
[91]: predicted sets of future states and wisely chosen discretization of
the state space make it possible to prove properties of the system and
improve confidence in its safety.

• The test of design constraints on qualitatively generated behaviors [92].
• Property verification [93, 6], which is complementary to the previous
point.

• The deduction of the hidden information on a partially observed sys-
tem.

• Approximation [31], allowing to observe a simplified and more conve-
nient representation of a system or of its behavior.

• Fault diagnosis, using reverse propagation in the system to deduce the
component or structure of the system that caused the fault [34, 94].

• SystemDesign: On the contrary, qualitative reasoning applied at an ear-
lier stage should allow us to determine the system configuration that
would cause undesired behaviors or even faults. This, however, re-
quires the expression of a set of constraints on the desired behavior
of the system. This application is strongly related to DSE presented in
section 3.2.
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More generally, qualitative reasoning has or can find applications in many
scientific and industrial fields: as the presented applications can be found in
many disciplines, they bring with them the interest and the use potential of
qualitative reasoning. Among these disciplines, we can find:

• Economy: As many parameters are completely or partially unknown
in discipline, economic and financial computation are often either very
complex or very imprecise (when not entirely false).

• Sociology: Qualitative reasoning could allow themodeling of very large-
scale behaviors without having to consider individual variations and im-
prove modeling and reasoning methods on human factors that are still
hazardous and imprecise.

• CPS Design and test [95, 96].
• Chemistry and biology.
• Predictive Maintenance: With the ability to predict the normal condi-
tions behavior of a system, it is possible to detect very small behavioral
deviations of the execution and deduce likely problems to come and,
therefore, the best corrections and active maintenance to do.

In our works, we mainly focused on application fields surrounding CPS, such
as system design, simulation control, real-time systemmonitoring, and proof
of properties. These different use cases will be detailed further in this docu-
ment.

3.4.4 . Intuitive idea
As implied in its name, qualitative reasoning (resp. modeling, simulation)

can be opposed to quantitative/numerical reasoning (resp. modeling, simula-
tion). The opposition between qualitative and quantitative requires avoiding
asmuch as possible numerical considerations if choosing qualitative versions.
Literally speaking, qualitative reasoning refers to the use of qualities instead
of quantities and, therefore, the loss of numerical and precise information
about the system and its components.
Example 6 To illustrate the difference between the two reasoning paradigms, let
us consider the example of an object of massm falling from a given height to the
ground (reference height of 0). At each time t, the height of the ball is noted h and
its speed ḣ.

To reason on the different parameters and variablesm, h and ḣ, one can con-
sider their numerical value (for example,m = 1.5 kg, h0 = 3mand ḣ0 = 0m.s−1).
On the contrary, dealing with qualities imposes the definition of categories in the
state space of each parameter/variable in order to replace numerical values with
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these categories (the so-called qualities). Instead of using precise values, one can
consider its weight (resp. height, speed) in a pre-chosen scale, which gives less
precise but still useful information about the value. For example, the qualita-
tive value of the mass could be expressed among the finite set of labels Qw =

{light,medium, heavy}, the position with labels from Qh = {very low, low, high,
very high} and the speed with elements from Qs = {slow positive, slow negative,
fast positive, fast negative}.

As presented in this example, the concept of qualitative reasoning implies
suppressing numerical values defined on infinite or even uncountable sets
with labels from a finite set. These labels must be chosen upstream in the
modeling process depending on the desired balance between precision and
simplification.

Transition from quantitative to qualitative: As qualitative reasoning
implies fitting finite labels to possibly uncountable values, choosing the qual-
ities is equivalent to abstracting the quantitative state space in a finite set.
The obtained labels are abstractions of the numerical values. This means
that there exists an abstraction function as defined in definition 18 that maps
each element of the initial continuous state space X of the variable x to the
finite set of labels Qx such that every valuation of x is associated a label to
reason on. On the example presented above, using qualitative reasoning re-
quires to instantiate the sets Qh, Qs and Qw and to define abstraction func-
tions αh : R+ → Qh, αw : R+∗ → Qw and αs : R → Qs mapping the continu-
ous state spaces to the corresponding abstract labels.

The abstraction function should be injective: the set of qualitative labels
should be designed to split the numerical state space by keeping as much
knowledge as possible and by making it more intuitively accessible.

Therefore, the use of qualitative reasoning is often accessible in numerical
systems as long as it is possible to define qualities that include and character-
ize intrinsic information about the variable and its values.

However, abstracting implies a loss of knowledge as the set of qualitative
labels includes far fewer elements than the numerical one. Consequently, tak-
ing the reverse path is often impossible as there is no reliable method to dis-
criminate two different numerical values associated with the same qualitative
label once the discretization has been achieved. This means that some deci-
sionsmay have to be taken without complete access to the information about
the system. Hence, it is crucial to optimally define and select the discrete set
of labels for each variable, as these qualities will have to be sufficiently ex-
plicit to reason without risking dangerous errors. The action of transforming
an abstract quality to a precise value or a set of such numerical valuations is
called concretization [35].
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Definition 25 (Concretization Function) Let S be an uncountable set, Ql aset of qualitative labels, andα : S → Ql an abstraction functionmapping each
element of S. A concretization function β : Ql → P(S) is a function mapping
each element of Ql to a subset of S.

The next paragraphs will present the classical qualitative reasoning meth-
ods with simple case studies and will highlight the limitations of the current
approaches.

3.4.5 . Methods and examples
This section will detail different methods used to operate qualitative rea-

soning in computer sciences. These various techniques have been developed
to solve different conceptual or concrete scientific problems posed at differ-
ent moments of the evolution of computers and computer sciences.

Causal Reasoning and Envisionment

Causal reasoning is a major part of qualitative reasoning and is based on the
causality principle, ordering events between causes and consequences [87,
89]. Causality is an important concept to describe, explain, and understand
physical phenomena. Causality can explain how a system works based on its
structure by connecting every possible modification in the system to a set of
associated consequences.

At the early stages of design and for non-specialists, many relations and
structures are represented using causality dependencies.

Causal reasoning aims to explain and anticipate the behavior of physical
systems using these dependencies.

In the literature, causal reasoning can sometimes be mixed with envision-
ment.

Proposed by De Kleer [85] and constituting the root of modern qualitative
reasoning, envisionment is a qualitative reasoning paradigm aiming at com-
puting all the evolution possibilities of a system from a given initial point in
order to anticipate every possible behavior of the system. The obtained tra-
jectories are then represented as a tree, which is supposed to include every
possible trajectory of the system in its state space.

Envisionment requires discretizing the system’s state space in subspaces
and representing them as symbols to manage the evolution of the system
variables among this set of subsets. The tool Garp3 [97] bases its structure
and exploration on the principle of envisionment by studying the dynamic
equations of the system.

Qualitative reasoning is a more specific field of study that only focuses
on the concepts of causes and consequences. In computer sciences, two
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main types of causal reasoning have been defined: mythical causality [98]
and causal ordering [99, 67].

De Kleer and Brown defined mythical causality as a way to explain and
prove the behavior of a system using qualitative state diagrams. Such a di-
agram exhibits both all the qualitative states of a system and the transitions
between them. Such a diagram is unique. It incorporates the different causal-
ity properties, such as the unicity of causes, the temporal ordering between
causes and consequences (a consequence comes after its cause), and the
structural proximity between cause and consequence. This diagram exhibits
causal relations that explain transitions between qualitative states. However,
such a graph cannot deal with causality and evolution inside the different
qualitative states. Among other problems, classic time representation does
not allow such reasoning to be used inside of qualitative states.

To solve the weakness of the classic impossibility of having a causality rea-
soning inside of a qualitative state, the authors introduce the concept ofmyth-
ical time, which introduces a partial ordering between events and which has
no physical existence (i.e., a positive mythical duration will not last more than
an instant in real physical time). Over mythical time, the different confluences
and equations of the systemmay be violated in order to authorize the propa-
gation of a perturbation variable by variable. A period of mythical time is then
used at each transition of the system to compute the change of state and the
rebalancing of the system.

Moreover, mythical causality allows us to determine and take into account
the presence of a feedback loop in the system.

On the other hand, causal ordering, as practiced by Iwasaki and Simon,
consists of a structural analysis of the system more than a symbolic compu-
tation of the equations in a graph. It links the variables and the equations of
the system to exhibit the dependence between them.

The obtained structure shows the influences of every element of the sys-
temon the others. However, it does not consider themathematical resolution
of themathematical equations to express the temporal ordering of the events
of the system.

For example, an evaporator system presented in [99] shows the causal
ordering among the variables of the system, which looks like Figure 3.1 where
each arrow represents a causal influence from the source variable to its tar-
get.

Qualitative Process Theory

Forbus has introduced the Qualitative Process Theory (QPT) in [66]. He de-
fined it as a language designed to write dynamical theories to represent sys-
tems’ evolution. Qualitative process directly derives from the general concept
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Figure 3.1: Example of a causal ordering representation

of process, defined as any element that introduces a change in the state of the
studied system.

According to Forbus, reasoning on orders of magnitude, as explained in
section 3.6, is insufficient to claim explainability and reliability in studying sys-
tems and processes.

Moreover, if the classic and intuitive representation of system perturba-
tions as logic predicates is efficient in small structures, it is not a relevant so-
lution in more complex systems as the number of resultant predicates may
explode quickly.

As in current literature, he uses states to represent the system’s situa-
tion at a current instant. However, he separates the continuous states cor-
responding to episodes from the punctual and instantaneous states corre-
sponding to events and that separates the tendencies.

To represent the position and evolution of its system in order to introduce
its QPT, Forbus defines the opposite concepts of situation and history. A
situation is restricted in time but not in space: it represents the state of the
system on a limited time period. On the contrary, a history is bounded in
space but not in time: it represents the evolution of a system on a limited
state space during any interval of time.

The introduction of a process theory aimed to answer the question of the
effect of the interactions of the different components of a system and to un-
derstand the dynamics implied by its structure and by the different perturba-
tions of the conditions.

The representation of influences between the components of a system
must allow one to deduce complex processes between many objects and ex-
press the actual dynamics linking them. Moreover, a complete theory repre-
senting both direct and indirect influences gives knowledge about every pos-
sible cause of change for each component and should allow the addition of
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these influences to anticipate or explain the evolution of a component ex-
posed to multiple influences. However, this multiplicity and the loss of in-
formation implied by qualitative reasoning create an important uncertainty
about the relative weights of the different influences applied to a single com-
ponent. The represented system is, therefore, not always deterministic, and
this is one of the major weaknesses of this process theory.

The management of temporal aspects can be achieved either using envi-
sionment as presented in subsubsection 3.4.5 or using numerical simulation,
depending on the precision requirements.

The main limit highlighted in [66] is that to generalize this contribution
to various physical systems, each category of systems should have its own
grammar and syntax, as it is not possible to give the same template of influ-
ences, rules, and predicates for mechanical, chemical or electric systems. The
QPT, as presented by Forbus, was seen as a contribution to developing further
qualitative reasoning capabilities. As he explained after the development of
a qualitative version of a classic physical demonstration, "It will be interesting
to see what other results from the classical theory of differential equations
can be derived from qualitative information alone."
Naive Physics

Initially, naive physics seems to date back to the time of Aristotle and its philo-
sophical school of scholastic [100]. It can be seen as the study of the human
perception and comprehension of simple physical phenomena. A modern
version of naive physics [86, 65] has been introduced by Patrick J. Hayes in
his naive physics manifesto and corresponds to an application to the field
of computer sciences of the original naive physics discipline. In this context,
naive physics aims at formalizing the common knowledge of human beings
to improve the understanding and reasoning capabilities of machines.

For DiSessa [101], naive physics knowledge consists of "a fragmented col-
lection of ideas, loosely connected and reinforcing, having none of the com-
mitment or systematicity that one attributes to theories”. This vision strongly
opposes the first one as it denies the existence of a complete theory of naive
physics and, therefore, implies that no general language can unify every as-
pect of common sense reasoning.

Hayes aimed to formalize elements, from common sense reasoning to
reasoning about situations and systems. In contrast with other scientists who
sought to develop a general program using their formalism to upgrade the
state of the art with better performances, he considered that developing such
an algorithm would be at least pointless and, at worst, dangerous.

A major contribution of the naive physics manifesto is the concept of con-
ceptual closure. It illustrates the smallest set of concepts required to express
the relations, objects, variables, and situations that intervene in the system.
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A model verifying a conceptual closure will only present dynamics and situ-
ations that the chosen concept will be able to represent. The certification of
conceptual closure would be, in theory, very complicated to achieve as ex-
ceptional situations can always happen, but such a validation would be par-
ticularly convenient to ensure the reliability of the theoretic background. The
problem comes from the inherent conflict between closure and breadth. A
valid theory could then be represented as a connected graph linking the dif-
ferent concepts to each other.

His idea is to define each physical system as a system of systems and cre-
ate a set of sub-systems containing their own relations, definitions, and con-
cepts.

The objects would then be linked using causality, dependencies, and com-
position relations.

Since then, naive physics has been an object for more philosophical de-
bates or epistemological studies, such as in [102]. However, the computational
field seems to have been progressively abandoned.
Example 7 Let us take, for example, the physical phenomenon of gravitational
forces. Describing such physical force can be achieved at different precision lev-
els. First, the most correct, reliable, and complex way to represent gravitational
interaction is to use relativity theorems and, more significantly, general relativity
as illustrated in Figure 3.2. However, the complexity of this theory implies that nei-
ther scientists nor ordinary people use this model in general. In most cases, the
first will instead use the Newtonian model, such as represented in Figure 3.3, while
untaught people will likely represent the phenomenon usingmore Aristotelian rep-
resentation only involving the mass of the involved objects Figure 3.4.

These different levels of representation illustrate that the needed level of pre-
cision/complexity trade is not the same depending on the researched goal. Naive
physics and, more generally, qualitative reasoning aim at developing a reasoning
paradigm and a base of work for cases where precision is superfluous and high
degrees of complexity are to be avoided.

Qualitative Modeling and Abstraction

Inmany contributions of the literature [35, 13, 87], themain step for creating a
qualitative model from a system or its numerical representation is to abstract
the state space of the system. This requires the use of an abstraction function
as presented earlier in subsection 3.4.4.

From early in the development of qualitative reasoning [69], qualitative
abstraction has been improved using different concepts.

In [66] and before, the discretization of the state spacewas achieved using
predicates describing properties of the system.
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Figure 3.2: Real Gravity Forces (according to general relativity)

A B

d

F = G
Mm

d2

M m

Figure 3.3: Newtonian Gravity Forces

m≪M

F = mg

M

Figure 3.4: Simple Gravity Forces
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Figure 3.5: Phase diagram of water

A simple illustration of that would be the phase diagram of water: the
state-space (P, T ) of the pressure and temperature variables of a stable quan-
tity of water in a closed space is generally separated into three areas depend-
ing on the physical state of the water at the different (P, T ) valuations. This
division of the state space of the system water is then based on an intrinsic
property of the system and is illustrated in Figure 3.5, which is the classic rep-
resentation of this system.

This figure highlights the classical knowledge that at a pressure of 1atm,
the phase of water (and therefore the qualitative state of the system) will
change at T = 273.15K and T = 373.15K.

More generally, this diagram highlights that any discretization implies the
apparition of frontiers between the designed qualitative states of the model.

In the phase diagram, the frontiers are placed to follow the change of state
of water in the state space containing the variables of temperature and pres-
sure. If we consider that water can only be in one single phase at a time (which
is technically wrong but can be considered an acceptable simplification), this
results in a partition of (T, P ) that is commonly used by many scientists to
represent the behavior of nature and reason on it.
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Qualitative Differential Equations and Qualitative Simulation

A basic choice to represent the evolution of a set of continuous variables X
during a time period is to write them using differential equations or systems.
In its general form, a differential equation relates a variable or a set of vari-
ables to its derivatives of different order. In our works, we focused on the
specific case of (ODE)s, which corresponds to more restrictive systems but
which are far more convenient and widely used in various scientific domains.
Definition 26 (Ordinary Differential Equation) An ODE is a differential
equation relating a variable X to its successive derivatives and which only
depends on one exogenous variable y. If we note X(k) to be the kth deriva-
tive ofX according to the variable y, a nth order ODE is a relation of the form
F (X,X(1), ..., X(n), y) = 0. To represent the evolution of X during time, the
variable y is often chosen to be the time parameter t.
Remark 3 It is important to note that by concatenating X and its derivatives in
one vector of variable, any nth order ODE can be converted in a first order ODE of
the form Ẋ = F (X, t).

The ODEs are here chosen rather than partial differential equations be-
cause they can easily be used to represent the evolution of the system vari-
ables during time, which is often the consideredmodel in CPS.ODEs are vastly
used to represent various models with connected variables evolving contin-
uously with time [103]. Moreover, ODEs are generally more suited to allow
classic SMT solvers to highlight a solution to the given problem and to get a
usable formula for the continuation of the abstraction process. A differen-
tial equation Ẋ = F (X, t) associated with an initial condition X0 is called a
Cauchy problem.

Different hypotheses can be made on the properties of the function F

depending on the requirements of the equations. In our case, wewill suppose
that F is continuous and differentiable on the operational domain ofX noted
X.

In general, such representation of a system allows the execution of nu-
merical simulation that can compute with great precision the different trajec-
tories of the system depending on its initial conditions, the execution time,
and the time step.

From this well-established base of differential equations, different works
have been proposed to adapt the concept of dynamic representation to qual-
itative reasoning.
Definition 27 (Qualitative Differential Equations) Aqualitative differential
equation (QDE) [87, 69] is the abstraction of an ODE where the operators
between the different terms are replaced by qualitative constraints. Such
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an equation consists of constraints on the sign of the term F (X, t) and re-
places the traditional operators and functions with abstract operators such
as ADD ,MULT ,M+,M++ to represent the relations between the terms.

The abstract operators, defined in [89], represent the high-level functional
relation between different variables. They associate the dynamics of a set of
variables to a set of others. For example, x = M+ymeans that x is an increas-
ing function of y and that their dynamics are therefore related (M++ would
imply x to be a strictly increasing function of y). x = ADD(y, z) is equivalent
to say that x = y + z.

In a QDE, the variable terms are related to qualities rather than quantities,
but variables are still described using their relations and previous values as in
an ODE. The abstraction of the operators and operations of the ODE to create
the corresponding QDE implies that one single QDE may correspond to many
different ODE.

Let there be F an ODE and FQ the corresponding QDE. If F admits a so-
lution f , then f is included in the solution fq of FQ in the sense that fq is anabstraction of f [92].

Moreover, the solution of a QDE is given as a succession of qualitative
states anddirections on rectangles rather than a classic numerical expression.
Remark 4 If it is possible to write a Cauchy problem from an ODE and an initial
constraint, we can also write a qualitative Cauchy problem using a QDE associated
with a qualitative initial constraint.
Example 8 Let us consider an ODE of the form ẋ = 3x + y2 − 1. This equation
can be abstracted in a QDE using the expression ẋ = ADD(x,M+(y)).
Remark 5 As for the abstraction of a continuous state space, there does not exist
a unique and universal abstraction for each ODE. Any ODE can be associated with
multiple QDEs depending on the abstraction criteria and the modeling choices.

Using this abstraction of differential equations, Kuipers has proved in [69]
that it is possible to perform a qualitative simulation of a system that can
compute a set of qualitative behaviors from itsmodel and an initial qualitative
state.

Qualitative simulation [104] allows the creation of a qualitative state space
and a qualitative trajectory from theQDE by propagating the initial state. It will
represent the state space of each of the considered variables. The definition
of such a discretization requires the choice of landmarks that split the con-
tinuous state space into subsets associated with labels and representing the
system’s qualities.
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The qualitative simulation computes the system behavior as a tree struc-
ture, given that the same qualitative state may generate more than one suc-
cessor following the same QDE. For each branch of the tree, the simulation
continues until a stable state, an already explored one, or a virtual state only
reachable when t→∞. In the case where more than one successor is techni-
cally possible, the simulation splits the current branch into the same number
of different sub-branches in order to represent all the possibilities. It is to be
noted that this case represents one of the weaknesses of qualitative simula-
tion: the abstraction process reduces the precision of the computation, and
the non-deterministic situations may appear more often than desired.

Once the complete behavioral tree is computed, it is necessary to prune
it as many trajectories among the obtained behavior are actually fictive and
do not correspond to any concrete behavior [87].

As the set of qualitative states is usually finished, the algorithm has, at
most, the complexity of a tree search among a finite set of nodes and is, there-
fore, guaranteed to terminate in this situation.

Qualitative simulation has been implemented inmany tools, and themost
significant is QSIM, developed by Kuipers and described in [69]. The QSIM al-
gorithm can be described as follow:

• Create the initial qualitative states Qi from the numerical constraints
on the variables.

• Create a tree structure and place the initial states at the root and in a
frontier list.

• While the frontier is not empty : take Qs ∈Frontier.
• For each variable of the system, use the continuity and transition con-
straints to determine which are the possible successors of the current
state.

• For each possible successor, compute the satisfiability of the state con-
straints and the global constraints of the system (i.e., the invariant con-
straints). The successors that do not respect the invariant are sup-
pressed.

• For each correct successor, check if the state has already been visited
or if it is a state only reachable when t→∞. If not, add it to the frontier
list and in the tree structure as a successor of the current state.

Qualitative simulation can be used formodel checking [69], for test design
and execution [92], or for exhaustive state space exploration.

The result of this simulation is a tree of qualitative trajectories with the
initial qualitative state at its root and highlighting every possible qualitative
trajectory from this point.

60



Example 9 Let us consider a system of a tank with two holes that we fill with wa-
ter, as represented on Figure 3.6. This example is inspired from the case studies
presented in [69] and in [87]. Water fills the tank from the upper pipe with a con-
stant flow fi. Once in the tank, water gets out by the hole in the bottom with a
maximum flow fo1. If the water level hw gets above the height ho2, the water flowsby the opening on the right with a maximum flow fo2. Finally, if hw reaches the
height of the tank represented by hm, the tank overflows. The considered variableswill be hw, fo1, and fo2. To make it simple, consider that the system begins when
hw = fo1 = fo2 = 0.

The initial state of the system (characterizing the qualitative state and direc-
tion of the level of water) is, therefore, QS0 =< 0, 0 >, meaning that we begin
with an empty tank with an incoming flow equal to zero. Supposing then that
the incoming flow changes and is fixed to a positive value fi>0. Then, at this pre-cise moment, the qualitative state of the system becomes QS1 =< 0,+ >, which
corresponds to a tank still empty but whose water level hw is about to increase.
Then, for the successors of QS1, their value will depend on the maximum outgo-
ing flow fo1 compared to fi. This dependency creates a division in the behaviortree and two different branches. On the first branch, if fo1 ≥ fi, the water levelwill stay at zero, and the initial increasing dynamics will disappear. Therefore,
the system will stay on the stable state QSf1 =< 0, 0 >. Otherwise, the sys-
tem will at first fill faster than it empties. In this case, the successor state of QS1will be QS2 =< (0, ho2),+ >. After having sufficiently increased, hw will reach
the level of the second outgoing pipe. At this instant, the qualitative state will be
QS3 =< ho2,+ >.Then, once again, the qualitative behavior tree will split into
two branches whose possibilities will depend on the order relation between fi andthe maximum outgoing flow fo1 + fo2. If fo1 + fo2 ≥ fi, the system will stay in
a terminal state QSf2 =< ho2, 0 >. Otherwise, the water level will still increase,
and the associated qualitative state is QS4 =< (ho2, hm),+ >. Finally, on this
last branch, the system will reach its maximum filling rate in the qualitative state
QS5 =< hm,+ >and the water tank will overflow, producing the qualitative state
QSf3 =< hm, 0 >.

The obtained behavior tree is represented in Figure 3.7.

Example 10 Let us consider a system involving a temperature θ following the dif-
ferential equation θ̇ = f(θ, t) and varying on R+. It is possible to divide R+ in
different open intervals such as (0, 273.15), (273.15, 373.15), (373.15,+∞) sepa-
rated by landmarks on the points {273.15, 373.15} and labeled with the qualities
{cold,medium, hot. Then, the same abstraction can be done on R the definition
space of θ̇, in the intervals (−∞,−100), (−100,−10), (−10, 0), (0, 10), (10, 100),
(100,+∞) using landmarks on the points{−100,−10, 0, 10, 100} and associated
with the labels {decreasing fast, decreasing, decreasing slowly, constant, increas-
ing slowly, increasing, increasing fast.
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Figure 3.6: Representation of the tank with two openings
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hw = 0
ḣw = 0

hw = 0
ḣw > 0

hw > 0
ḣw > 0

hw = 0
ḣw = 0

hw = ho

ḣw > 0

hw = ho

ḣw = 0
hw > ho

ḣw > 0

hw = hm

ḣw = 0

fi > fo1 fi ≤ fo1

fi ≤ fo1 + fo2 fi > fo1 + fo2

Figure 3.7: Behaviors of the Tank with two Openings
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Naming Qθ the partition of the state space of θ (composed of both the inter-vals and the landmarks) and Qθ̇ the partition associated with θ̇, the qualitative
differential equation corresponding to the ODE of θ is a mapping δQ : Qθ 7→ Qθ̇.
Remark 6 If the intervals associated with their labels are considered qualitative
states in amajor part of the literature, there is no consensus about the landmarks.
In some contributions [34], the considered intervals are semi-open, and the land-
marks are, therefore, integrated into one of the considered intervals. In others [87],
landmarks are considered qualitative states on their own. We favored the second
option for consistency and ease of computation.

Using the chosen discretization of the state space of the system variables
and their derivatives QDE can be modeled using automata.

3.5 . Semi-Qualitative Modeling

Qualitative modeling aims to highlight specific features of a CPS or its be-
havior by sacrificing numerical precision and access to other features. Among
the lost capabilities of themodel is the possibility of expressing an error on the
current value directly related to the availability of numerical values. Actually,
expressing an error on a qualitative value or a reliability value in % is impos-
sible with qualities rather than quantities. In order to limit this drawback or
to combine the advantages of the different reasoning paradigms, some con-
tributions developed the concept of semi-qualitative modeling [88].

3.5.1 . Interval arithmetic based solvers
Definition 28 (Interval) Let us consider (a, b) ∈ R2 such that a ≤ b. The
closed interval [a, b] represent all the values c of R such that a ≤ c ≤ b, while
the open interval (a, b) includes all the values d ∈ R such that a < c < b.

The first technique used to improve qualitative simulation with more nu-
merical knowledge is based on the use of interval arithmetic [105]. Interval
arithmetic extends the classic arithmetic operation on numbers to the com-
putation of intervals, allowing to make operations from {+,−,×, /} between
two intervals defined onR. By applying this algebra, it is possible to use inter-
val propagation and apply operations on intervals rather than on numerical
values. The following paragraphs present some tools integrating this func-
tionality and aiming at improving the results of qualitative simulation with
elements from interval propagation computation.
Q2

One of the first tools developed for this purpose is Q2, presented in [106]. Q2
is an extension of QSIM thought to associate numerical knowledge to qual-
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itative states. Qualitative values and directions can be associated with nu-
merical intervals, while qualitative evolution and constraints can be given nu-
merically computable envelope functions. QSIM algorithm is then combined
with an interval propagation algorithm to discriminate the possible behaviors
among the QSIM-computed traces. Computing the intersection between the
obtained intervals and the constraints implied by QSIM states gives a more
precise constraint on the value using both qualitative and quantitative expres-
sions.

Using Taylor-Lagrange approximation, it is even possible to compute nu-
merical values of the variables at a given time t.

Behaviors selected byQ2 aremore precise than those highlighted byQSIM
but are less likely to givemore qualitatively understandable properties. Some-
times, the intersection between the qualitative constraints and propagated
interval can be empty, meaning that the behavior does not actually exist.
Q3

Q3 is an extension of Q2 presented in [107]. It improves the efficiency of Q2
by adding intermediate qualitative states between the states computed by
QSIM. As in numerical simulations, adding more sampling points to a process
improves the precision of the simulation/computation. To create new states,
Q3must also introduce new constraints to discriminate to sub-states of what
would have been the same qualitative state according toQSIM. [107]mentions
this procedure as a hybrid simulation, implying elements from both quantita-
tive and qualitative paradigms. Q3 is also said to be convergent as the preci-
sion of the result increases with the reduction of the simulation step.
SQSIM

Finally, SQSIM [108] has been developed as a combination of the previously
mentioned solvers and other more numerical tools also using interval prop-
agation methods. Using the results obtained by the different solvers, SQSIM
computes the intersection of the different intervals to give amore precise and
restricted uncertainty envelope. However, it is entirely dependent on the re-
liability of at least three different tools, which must all give coherent results.
If the intersection between the different trajectories is empty, SQSIM will not
make the effort to compute themost likely andwill just consider the trajectory
not to exist.

3.5.2 . Fuzzy-logic based solvers
Other extensions ofQSIM like FuSim [109] instead use fuzzy logic paradigm

[110] in order to better characterize the qualitative states obtained by QSIM.
Fuzzy logic has been conceived to deal with imprecise/unknown values, using

65



multivariate and probabilistic logical systems containing more than the clas-
sic {True, False} boolean values. Actually, fuzzy logic uses a set of values
between True and False, characterizing both the absence of certitude about
the real boolean value and containing tendencies about the one more likely
to correspond to reality.

3.6 . Order of Magnitude Reasoning

Among the various tools used to reason on qualitativemodels, we can find
the orders of magnitude [111]. This method expands the reasoning on sign,
which is the very base of qualitative methods [66, 69]. It is mainly supposed
to avoid the limitations of the sign algebra, especially the difficulty of applying
the + (and less significantly ×) operators to values of unknown magnitude.
Taking the magnitude of a value into account allows for more precise and co-
herent computations but also has drawbacks on the permissiveness of oper-
ators [112]. For example, transitivity, associativity, and distributive properties
are more limited in this qualitative algebra. Order of Magnitude Reasoning
(OMR) can be absolute (comparison to fixed values) or relative (comparison
between variables) [113].

The first option to reason about orders of magnitude implies partition-
ing the state space according to constant landmarks. Variables are individu-
ally compared to these reference values ki and placed in the corresponding
rectangle (multi-dimensional closed interval), determining their magnitude.
It also requires choosing a scale to apply to these reference values that will
set the abstraction’s regularity and granularity. The interest is that by opti-
mizing the choice of landmarks, it is possible to abstract the precise values
completely while preserving helpful information about the value of the state
variables. The scale can, for example, be linear or, if the variable is to stay
positive, logarithmic and rely on powers of ki. The values ki will here dependon the design criteria of the system, such as the initial value or the anticipated
extreme points. When the sign can change, a linear scale may be preferred.
More generally, the choice of the state space partition will strongly depend
on the simulation’s objectives and the system’s design [114]. For example, a
linear scale in one dimension based on a unique value k would be structured
with landmarks on the values 0, k,−k, 2k,−2k, . . .. It could be used in the case
of the model of the thermostat, where the unique system variable varies be-
tween values that are simultaneously closely spaced and sufficiently far from
zero to make any logarithmic scale unusable. In this case, an adapted scale
could be a linear one with a value k = 2.

A second option is to use relative orders of magnitude. This option com-
pares variables with each other rather than with reference values. This re-
quires the physical quantities and units to be comparable. Different compar-
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ison systems exist, such as FOG [113], O(M) [111], or Rom [115]. These systems
do not use the same operators, but some of them are used in most systems:
Ne (negligible, also noted≪), Co (comparable), and Vo (neighbor, or very close
to). These operators can give more precision than the usual ones, such as =,
<, >, or ≈. Orders of magnitude are mainly used in purely qualitative alge-
bra because the intrinsic properties are incompatible with the archimedean
property and, therefore, not supported in R. For example, it is supposed in
Rom that if aNe b, therefore (a+ a)Ne b, which is not correct in archimedean
spaces. Some recent works added the operatorDi , meaning distant [87], and
corresponding to the situation where the ratio between two values is too im-
portant to consider them as comparable (not of the same order of magni-
tude), but too small for one of them to be negligible. Absolute and relative
orders can also be combined, but this requires an adapted space partition
and a precise definition of the relative operators. The difficulty is to make the
different frontiers match each other. Otherwise, we get the superposition of
two independent measure scales, adding too much complexity for few ben-
efits. These techniques were designed to compare values, but we must also
compare functions to compare the behaviors of variables and not only static
values.

3.7 . Order of Growth Reasoning

Many works of the previous century have studied categories of functions,
and some categorized them using their order of growth (OG). This concept
eases the representation of the behavior of a function f : t 7→ f(t) when t→
∞. The notion of OG was first formalized by Borel [116] and pushed further
by other scientists using the works of Hardy [117] on logarithmic-exponential
functions (set of functions obtained by addition, multiplication, or composi-
tion of logarithm or exponential functions, closed under addition, multiplica-
tion, and composition). Let us consider f : R 7→ R a function. We define the
OG of f by

c(f) = lim
t→+∞

ln|f(t)|
ln(t)

and c(f : t 7→ 0) = −∞. In the case of polynomial functions f : t 7→
∑n

i=0 ait
i

with an ̸= 0, we have c(f) = n. When f is the sum of many terms, c(f) only
considers its asymptotic dominant term without consideration of the others.
Moreover, c(f) only has a meaning if f converges or diverges to an infinite: if
f is periodic or has no clear limit when t → ∞, then c(f) does not exist. The
expression of c allows us to highlight some properties of the OG regarding its
reaction to operations. Using the properties of the logarithm, it appears that
for two logarithmic-exponential functions f and g, c(fg) = c(f) + c(g) and
c(f ◦ g) = c(f)c(g). Moreover, if c(f) ̸= c(g), then c(f + g) = max(c(f), c(g)).
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Still, this measure of asymptotic behaviors has some weaknesses. First, with
the given formula, it is impossible to distinguish constant functions from log-
arithmic ones or to make a difference between two exponential functions
with their OG. Actually, c(f 7→ k ̸= 0) = c(f : t 7→ ln(t)) = 0, and also
c(f : t 7→ et) = c(f : t 7→ 102t) = ∞, which is a severe limitation for a behav-
ior classification. Classifying an infinite-diverging and a constant function with
the same value cannot be sufficient as a characterization. Finally, OG compu-
tation only applies when t → ∞, making it useless for analyzing systems at
finite time scales through simulation.

3.8 . Qualitative Models for Unspecified Dynamics Systems

In some partially known systems or in early design phases of CPS, it may
appear that the dynamics cannot be expressed using traditional differential
equations. In order to express the known dynamics relations, some contribu-
tions [68, 97] developed an execution language to qualitatively link the value
of the variable derivative with respect to time with others variables or param-
eters of the system. In [68], the authors specifically develop relations based
on causality reasoning with four operators PROP, CPROP, IPROP, and
CIPROP .

The common PROP string characterizes a qualitative proportionality be-
tween the related elements (i.e., an imposed similarity of their signs).

IPROP designs an inverse qualitative proportionality, meaning that the
related variables have an opposite sign.

Finally, the letter C stands for "causal", in the sense of causal ordering.
More precisely, it implies that the sign dependence only works in one sense.

For example, if a PROP b, any change of sign of any of the two vari-
ables a and b will immediately cause the other to follow it. On the contrary, if
a CPROP b, a change in the sign of a will not influence b, while a change in
the sign of b will cause a to change its sign in the same direction.

This difference converges with the ideas of different orders of dynamics
relations developed by Mosterman in [94] to diagnose hybrid systems.

Symmetric proportionality corresponds to static relations, while causal
links can be compared to dynamic relations (where variables depend on the
derivatives of others), which are asymmetric and longer to observe.

This language can be used to model the qualitative evolution of the dif-
ferent variables of a system with very little knowledge about their dynamics;
the quality of the obtained information at the end of the propagation is not
sufficient to fully explore the state space of the system and to discriminate
between different qualitative behaviors.

Moreover, the absence of any consideration of magnitude or time value
makes it impossible to deal with any duration in any qualitative state. There-
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fore, it cannot be considered as a solution whenever a symbolic expression
of the differential equations of the dynamics is available.

3.9 . Time Management and Qualitative State Duration

In regular hybrid automata, the time elapsed in any operating mode or
qualitative state canbe achievedusing a stopwatch (i.e., a clock variablewhose
flow condition is defined as ẋ = 1 if the system is in the mode m or in the
state q, and ẋ = 0 otherwise). Therefore, a simple subtraction reveals the
time elapsed in the researched area.

One of the drawbacks of qualitative simulation tools like QSIM is that time
is represented symbolically, and it is, therefore, not possible to compute the
time passed in each state/mode. Therefore, the previous method cannot
work anymore in this situation.

One of the methods is to use temporized automata with clock variables.
However, some contributions, such as [118], introduced techniques to make
time information numerically explicit. In this example, the authors used the
Taylor formula to express the variation between two time steps with the initial
and final values and with the elapsed time. The duration dt elapsed between
two landmarks xi and xj can be written

dt ≈ xj − xi
qdir(x)

with ≈ denoting qualitative equality. As qualitative states are characterized
by qualitative position and directions, qdir(x) is the qualitative direction of
the variable x in the qualitative state between xi and xj , i.e., the qualitativeabstraction of ẋ. A problem posed by our situation is that we mainly deal
with qualitative states defined by equations that aremore complex than land-
marks. This time computation formula indeed does not fit qualitative states
whose limits are nullclines defined by equations such as Ẋi = 0with i ∈ J1, nK.

In the case of timeless automaton or timeless abstraction of timed sys-
tems, the computation of a duration d in a qualitative state is much more
complex.

[119] expresses the need to use complex metrics (they introduce a rela-
tive space metric to measure the time elapsed) in order to compute the time
duration of operatingmodes because themeasurement of distance using Eu-
clidean measure may not allow the abstraction of a system to a temporized
model.

Temporizing a timeless system andmeasuring time in amode or in a qual-
itative state is a problem we did not consider, but that should be solved to
overcome the challenges posed by the most complex systems.

69



70



4 - SYSTEM ABSTRACTION

Note: This chapter is a reproduction authorized by Springer of a published
article in ISSE [120].

In this chapter, we expose the abstraction process that we constructed
to create a qualitative model from the input CPS and compute the qualita-
tive trajectories corresponding to its dynamics. Section 4.1 details the state
space abstraction process, which creates a finite partition of the system state
space fitting the constraints of qualitative reasoning. In section 4.2, we ex-
plain the process employed to compute a qualitative abstraction of the sys-
tem behavior on the chosen partition based on its dynamics equations. Fi-
nally, section 4.3 presents the difficulties raised by themost complex systems
that imply a large number of variables and how they can be solved.

4.1 . State Space Discretization

Definition 29 (Discretization) If K is a continuous set, we call discretization
of K a finite partition of K in Ki ⊂ K with i ∈ J1, kK and k ∈ N, meaning that⋃

i∈J1,kK Ki = K and ∀ (i, j) ∈ J1, kK2, i ̸= j =⇒ Ki ∩Kj = ∅.

The first step in computing the qualitative trace of a system is to transform
our representation of the system to a qualitative model to serve as computa-
tion support.

Definition 30 (Qualitative Model) Let S be either a CPS or a numerical rep-
resentation of a CPS. A qualitativemodel associatedwith S is a representation
of S trading precision and knowledge for a convenient highlight of the rela-
tions between the elements of a discretization of the system. These relations
can be a causal inference or a temporal ordering.

Let us consider a system S = ⟨Q,X, I, F, S0, T ⟩with the notations alreadydefined. We consider that the flow of the system is represented by amapping
of each mode to an ODE Ẋ = F (X(t), t) with t the time parameter of the
system.
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Example 11 To illustrate our explanations, we will take as an example the hybrid
Brusselator system, expressed as:

S = ⟨
Q = {mode}, X = {x, y},
Q = {1, 2}, X = R2,
I = {mode = 1 : x, y > 0; mode = 2 : x, y > 0},
F = {mode = 1 :

(ẋ, ẏ) = (1− (b1 + 1)x+ a1x
2y, b1x− a1x

2y),
mode = 2 :
(ẋ, ẏ) = (1− (b2 + 1)x+ a2x

2y, b2x− a2x
2y),

S0 = (1, (5.3, 2.6)),
T = {(1, x < y, 2, Id), (2, x > y, 1, Id)}

⟩

Mode 1

ẋ = 1 + a1x
2y −

(b1 + 1)x
ẏ = b1x − a1x

2y

x, y > 0

Mode 2

ẋ = 1 + a2x
2y −

(b2 + 1)x
ẏ = b2x − a2x

2y

x, y > 0

x < y

x > y

Figure 4.1: Hybrid model of a Brusselator system
With this representation, it is possible to visualize the discrete part of the

model as a hybrid automaton (see Figure 4.1). Different abstraction methods
have been introduced and used for continuous evolution. The choice of the
abstraction method is critical because it will strongly influence state space
exploration. Among the methods developed and studied, the most notice-
able for CPS study are the methods of Kuipers and Tiwari. The use of more
advanced reasoning techniques implies converting the continuous trajectory
into a discrete evolution with the help of an abstraction function α, that as-
sociates each position of the system to a qualitative state, which belongs to a
finite set.
The nature of this function is what differentiates the various modeling ap-
proaches. The first method, brought by Kuipers, only reasons in terms of
landmarks (i.e., hyperplanes defined by Xi = c with c a constant and i ∈
J0, |X| − 1K). The abstraction of the state space is made separately for the
different variables ofX and for their derivatives. The abstraction of the state
space is processed using landmarks on the zeros of the variables and abstrac-
tions of the system’s differential equations that are the QDE. These abstrac-
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tions allow any change of sign of a componentXi to influence the other com-
ponents. For example, if X = (x, y) and if x has a positive influence on y,
then the QDE characterising it will be y = M+x. In the case of our case study
system, ẋ = 1− (b+ 1)x+ ax2y will be replaced by ẋ = M+y +M+x ∗M+y.
As variables and their derivatives are not completely linked anymore because
of the high level of abstraction, using these landmarks on the components of
Ẋ is more complex and gives little information. Actually, ẋ = ay and ẋ = ay2

are not different in this abstraction space applied to R+.
It is also possible to use other landmarks (i.e., with Xi = c ̸= 0) deduced

from prior knowledge about the system. For example, suppose we know that
100 km.h−1 and 1 km.h−1 are important milestones around which the quali-
tative reasoning about an autonomous car should process. In that case, they
will be considered as reference landmarks to compare and abstract the cur-
rent value of the speed. This integrates elements of OMR [87]. However, as
these values are not from the sign algebra, they cannot be propagated in the
equations as their properties do not match all the properties of themost con-
venient algebra. This method allows simple studies of systems based on ex-
plicit values chosen according to the objectives and the context of the CPS. It
means it is required to have a predefined instance and context of the system
and to know where and why it will be used. This constraint contradicts the
main objective of qualitative modeling: we must create models with as little
information as possible, so we should avoid contextual frontiers.

The approach of Tiwari [35] has resolved this drawback: for each mode
m ∈ Q, using the equations defining the system (both the dynamic equa-
tions, the invariant expressions, and the transition conditions), the algorithm
defines new variables derived from X . Tiwari assumes that all these equa-
tions have a polynomial form according to the components of X . Using all
the elements p from Fm, Im, and Tm (with Fm, Im, and Tm being the subset of
F , I andT associatedwith themodem) such that p ∈ K[X], we define a setPminitiated with Pm = {X0, . . . , Xn−1} with n = |X|. ∀ p ∈ K[X]∩(Fm∪Im∪Tm),
we set xp = p and we add each xp to Pm. One can note that previously men-
tioned landmarks can be integrated into these polynomial equations once
represented as Xi − ci for a landmark Xi = ci. Then, ∀ p ∈ Pm, if ṗ ̸=
0 ∧ ṗ /∈ Pm ∧ ∄ (b, d) ∈ K[X] ∗ Pm such that ṗ = b ∗ d, then ṗ is added
to Pm. This condition quickly suppresses the nilpotent and idempotent poly-
nomials. As the considered polynomials include terms only defined by their
differential equation, it is likely that many of them are neither nilpotent nor
idempotent. Therefore, the more they are derived, the more complex their
expression will become. For example, in the case of the Brusselator, the ex-
pression of ẋ = 1+ax2y− (b+1)x ∈ K[x, y]will be added to P . Once derived,
the obtained expression will be ẍ = a(−ax2y + bx)x2 + 2a(ax2y − (b+ 1)x+

1)xy − (b+ 1)(ax2y − (b+ 1)x+ 1). Deriving polynomials from x and y many
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times according to the time parameter creates a refinement of the qualitative
model. However, it may increase computational complexity up to a certain
point without major precision improvement. Therefore, choosing a criterion
to stop the filling of Pm is necessary. The more elements Pm will contain, the
more the qualitative model will be refined, so this choice corresponds to the
search for a trade between precision and complexity. This criterion must be
chosen before the execution, so there is still a problem with non-instantiated
systems. If no information is available about the needed precision of the ab-
straction or the usefulness of new reference values, the criteria will have to
be chosen arbitrarily. In [35], the author did not consider this a problem, as
whenever the discretization is stopped, the result is still an abstraction of the
system. He does not see over-refinement to be disturbing. However, depend-
ing on the use of the model, the searched precision will be completely differ-
ent.

The search for stopping criteria for the abstraction process is a challenge
on its own and would require further investigations. We do not see the ex-
pression of a universal criterion as possible fromwhat emerged from the cur-
rent works. However, something quite general can be proposed. The first
criterion we could add to the modeling process is a constraint on the max-
imal complexity of the resulting qualitative model. This complexity can be
expressed with the number of elements of Pm, giving a maximum estimation
of the possible number of existing qualitative states and, by a simple compu-
tation, the maximum estimation for the number of transitions. This compu-
tation of the complexity of the model is an analogy of state space complex-
ity [121] to the discretization of the system state space. For a discretization
achieved with a set Pm of size lm, we can bound the maximum number of
qualitative states in the mode m to 3lm , and therefore the maximum num-
ber of transitions between these states to 32lm . The maximum complexity of
the qualitative model is, in consequence, directly dependent on |Pm|. An ideawould be to stop the abstraction process when each Pm reaches a limit size.
Still, a new challenge is raised by the hybrid nature of treated systems. Should
the different modes be treated separately with a maximum complexity asso-
ciated with each, or should the model be treated as a whole with a global
maximum complexity? We still have to study this question more profoundly.
Anyway, the intuitive answer is that the consideration of the complexity of
the complete model could provoke a disturbing imbalance between the gran-
ularity of the state spaces of the different modes. Therefore, the choice of
a maximal authorized complexity per mode, equivalent to a maximal num-
ber of qualitative states for each mode, seems to be the most adapted solu-
tion. It would also be possible to evaluate the complexity of the abstraction
and to refine in consequence not only considering the number of polynomi-
als in Pm and their supposed inherited states and transitions but rather on
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the actual qualitative states and the existing transitions between them. This
would require complete execution of the further process before coming back
to possibly refine or reduce the qualitative abstraction of the state space. The
computation of the transitions would then have to be achieved for each exe-
cution, as every refinement of the qualitative state may affect every formerly
computed qualitative transition. Yet, as the creation of the qualitative model
is supposed to be computed offline without severe time constraints, this pos-
sibility is not to be rejected.

In contrast, another option to define a stopping criterion is to evaluate the
quality of the obtained discretization. This is equivalent to an optimization ex-
ercise. It requires the definition of a utility function fu to evaluate the qualityof a given abstraction. Precision cannot be sufficient to constitute a criterion,
as qualitative reasoning implies inherently a loss of precision. Again, defining
a utility function pertinent to every qualitative abstraction seems impossible,
but some specific points could be considered to develop a generic optimiza-
tion process. Themain quality intended for a qualitativemodel is the ability to
correctly reason on qualitative values to get satisfying results without need-
ing numeric computation. The criterion to determine a sufficiently precise ab-
straction could be the ability to discriminate a given set of numerical values
in the same number of different qualitative states. If two of the given values
were to be abstracted in the same qualitative state, the abstraction would be
considered insufficiently refined, and the computation of Pm would restart
to generate more qualitative frontiers and, therefore, more qualitative states
discretizing the state space.

The last challenge regarding themanagement ofPm and the discretization
of X for each mode once the stopping criteria are chosen is the priority or-
der to attribute to each element of Pm. Should the same element be derived
many times in a row due to its important role in the description of the system,
or should there be no priority between the considered polynomials? As the
flow equations and their derivative contain information about the system’s
dynamics, giving them higher priority than the derivatives of the transition
condition would make sense. This decision is crucial to drawing the abstrac-
tion policy andmust bemade according to the desired qualitative information
to integrate into the qualitative model.

For the rest of the thesis, the stopping criterion was chosen as simple as
possible to allow the algorithm to terminate without risking influencing the
results in an undesired way. We fixed for each of the polynomial equations of
the system corresponding to the initial elements ofPm amaximumnumber of
times to be derived during the process before stopping the Pm computation.

Finally, in order not to integrate the same polynomial p more than once
in the same Pm, it is necessary to add a unicity test during this discretizationphase.
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In the hybrid Brusselator system, with a simple criterion of a maximum
of 2 derivations, P1 and P2 are both initialized to {x, y}. Then F [mode1][x]and F [mode1][y] are added to P1. I[mode1] is also added as is the transition
condition from mode1 to mode2. At that time, we have

P1 = {x, y, ẋ, ẏ, x− y}

Then, each element is derived: as ẋ and ẏ are already in P1, they are not
added. However, d(x−y)

dt , ẍ and ÿ are added.
Once Pm is computed, the next step is to take every p ∈ Pm and use a

polynomial solver to solve the equation p = 0. The obtained solutions give
the expression of the nullclines (i.e., a curve supported by an equation v̇ = 0

with v a function of time) of the dynamics and allow a discretization of the
state space of the variables. Each value of X will now be abstracted by com-
parison to these nullclines.

Proposition 1 Using the so-obtained discretization of the state space of each
mode of a CPS, each valuation x of X can be abstracted in exactly one quali-
tative state.

This proposition comes from the nature of discretization, which is a parti-
tioning operation of the state space.

Definition 31 (Qualitative State) We call qualitative state of a system the
pair (m, qs) with m ∈ Q the current mode and qs ∈ {+, 0,−}|Pm| a vector
such that ∀ i ∈ J0, |Pm| − 1 K, qs[i] = − if Pm[i](X) < 0, 0 if Pm[i](X) = 0, and
+ otherwise. A qualitative state corresponds to a set of abstracted values of
X expressed as a vector of elements from {+,−, 0} representing respectively
for every p ∈ Pm the fact that p(X) is negative, zero, or positive.

A qualitative state considers not only the qualitative abstraction of the nu-
merical value of the variable at a given time but also the abstraction of all the
pseudo-variables corresponding to the computed polynomials of Pm. This
includes information about the derivatives until a given order (including its
qualitative direction), the relative position of the variable to given frontiers,
and the sign of specific quantities that have some importance in the model.
This increases the precision and the accuracy of the computation of the qual-
itative behavior [122].
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Definition 32 (Abstraction Function) Given a CPS S defined with the previ-
ous notations, we define the system abstraction function

A :

{
Q→ BX
m 7→ Sm,X

(4.1)
with Sm,X the set of qualitative states defined on X for the mode m and

BX the set of all partitions of the space X inspired from the notation of the
Bell number B|X|.

From this definition and the definition 31 of the qualitative state, we de-
duce the state abstraction function in the modem noted

αm :

{
X→ Sm,X

x 7→ qs ∈ {−, 0,+}|Pm| (4.2)

which abstracts each value x ofX as a vector of length |Pm| representingthe sign of each polynomial p of Pm forX = x.

A qualitative state represents an abstraction of a whole set of numeri-
cal values ofX , therefore implying a loss of knowledge in the representation.
For a qualitative state qs corresponding to the abstraction of two different nu-
merical values x1 and x2, coming back from the qualitative knowledge to nu-
merical representation implies the implementation of a concretization func-
tion [35], which cannot give with complete certainty one value rather than the
other. Instead, it will return a continuous set of values allowed for the vari-
ables. As the qualitative states are computed by partitioning the state space
of S for eachmodem, the mutual exclusion principle automatically applies to
them by definition of a partition.

The advantage of this method is that it is applicable on non-instantiated
systems: it does not require prior knowledge about the context or the sys-
tem’s objective, meaning it is convenient to generalize.

Moreover, to apply this method, it is necessary to know the explicit for-
mula of the ODE, which means that it does not automatically apply to sys-
tems defined bymore abstract structures such as bond graphs [123], causality
graphs, or even proportionality relations. Therefore, the method is limited to
a subset of CPS where the relations and dynamics are perfectly known with
symbolic formulas. We are currently working on generalizing this abstrac-
tion to systems defined by causality or proportionality. In the case of explicit
equations with non-valuated constants, α can be defined but will not be re-
liable before a complete definition of all the symbolic constants as its return
value depends on it.
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4.1.1 . Evolution abstraction
Once the system’s state space is discretized in qualitative states, the quali-

tative model consists of a finite partition of its state space in qualitative states
for each mode. Upgrading it and making it fit for complex applications such
as prediction or diagnosis requires computing the possible evolution for each
qualitative state, given the dynamics of the system.

Definition 33 (Continuous Evolution) Let t be the time parameter of the
system S. A continuous evolution of S is a function σ : t 7→ X that maps
every defined instant with a value ofX .

The stake of qualitatively studying a system relies not only on the ability to
create and manipulate an abstraction of its state space. A major challenge of
qualitative reasoning consists of applying this qualitative state abstraction to
the system’s dynamics to observe a concise view of its evolution. The contin-
uous evolution of a system is often observed to verify specific properties and
to visualize the behavior of a concrete or a well-designed system. However,
when the design process is not over, numerical resolution and computation
do not fit the available knowledge nor the qualitative model previously cre-
ated.

To create a behavior representation fitting qualitative reasoning, the study
of the dynamics must follow the mindset of qualitative modeling and create
an abstraction of the continuous evolution σ. Therefore, we will consider a
decomposition of the system evolution inspired from [66] using events and
tendencies.

Definition 34 (Events and Tendencies) Let us consider a continuous evolu-
tion σ of the system S on the time interval T . We notemt the operating mode
of S at each time t. We consider as events the values of t corresponding
to valuations x of X associated to a change of qualitative state of S, i.e., a
time t such that S(t) = (mt, x), ∃ p ∈ Pmt such that p(x) = 0, and such that
∃ ϵ > 0,∀ θ ∈ (0, ϵ), S(t ± θ) = (m2, x2) ̸= (mt, x). On the opposite, we con-
sider as tendency an interval Ti ∈ T such that ∀ t ∈ Ti, if S(t) = (mt, xt), then
∀ p ∈ Pmt , p(x) ̸= 0.

For example, in a sine function f : x ∈ R 7→ sin(x), where the function
and its first order derivative are studied, the events will be the points {k π

2 }k∈Zbecause the even values of k will imply a change of sign of f while the odd
values of k correspond to the critical points and to a change of sign of df

dx .
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Consequently, the tendencies of f will correspond to the intervals (kπ2 , (k+1)π
2 )

where neither f nor df
dx change their sign.Events and tendencies offer support to the abstraction of continuous tra-

jectories, as any continuous behavior can be represented using a variation
table, whose extrema and thresholds correspond to events while the tenden-
cies represent variation directions between the events.
Definition 35 (Qualitative Evolution) Let tbe the timeparameter of the sys-
tem S. A qualitative evolution of S is a function κ : t 7→ Q ∗ SQ,X that maps
every defined instant with a couple (m, sq) withm the mode and sq the qual-itative state corresponding to the abstraction of the continuous value X of
the state of the system at time t. Said otherwise, a qualitative evolution of a
system corresponds to its continuous evolution abstracted with tendencies
and events.

To abstract all the possible behaviors of a system, we must first fix and
abstract its initial state to figure out which qualitative state to begin with. To
this extent, it is necessary to define which mode m of Q is the initial one.
We then apply the abstraction function αm on the initial value X0 of X . The
result s0 corresponds to the initial qualitative state of the system S. Without
an initial numerical state, the initial qualitative statemay be chosen arbitrarily
in the authorized set of qualitative states.

From s0, the objective is now to apply the dynamics F of S on the state
space abstraction from s0 to propagate the qualitative states and explore allthe possible qualitative behaviors κ of the system.

Then, while we are not in an absorbent state or an already explored state,
we explore all the neighbors of the current state and add them to the list
of qualitative states to be treated. Two structures are used to memorize
the qualitative states: a frontier list and an explored list. frontier contains
the qualitative states from which the analysis should progress, and explored

memorizes the ones already studied.
4.1.2 . Qualitative transitions

Definition 36 (Qualitative Transition) A transition tr = (mi, s1)→ (mj , s2)is called qualitative or intra-modal iff mi = mj and s1 ̸= s2. Moreover, tr
must be allowedby the theoremsof continuity, such as the intermediate value
theorem.

While frontier is not empty, we consider si the next state in frontier.
From this state si, the objective is to compute all the successor states accord-
ing to the dynamics of the current modem of S. The first step is to compute
all the states sharing a border with si. This is possible by using a polynomial
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constraint solver such as Z3 and by translating each digit of the state-vector
vs ∈ {−, 0,+}|Pm| to a constraint corresponding to the associated sign and
imposed to the related polynomial. Changing one digit of the current qualita-
tive state and respecting the intermediate value theorem allows the creation
of all the theoretical neighbors of si. However, many of the found neighbors
do not exist or do not offer a transition from si.Using constraint solving, we then find the possible neighbors sj . Consider-ing the hypothesis that every equation defining the qualitative states is poly-
nomial, this resolution only consists of a conjunction of polynomial inequali-
ties that can be solved using the chosen solver. Then, if sj exists, it is placedin the structure RealNeighbors.

For sk in RealNeighbors, we must verify whether or not a transition from
si to sk is possible in the behavior of the system. This is achievable by using
the Lie derivative formula [35, 124]:

LX(p) =
∑
Xi∈X

∂p

∂Xi

∂Xi

∂t
. (4.3)

with p ∈ Pm the polynomial function supporting the border between the qual-
itative states si and sk, and theXi the components ofX .
Proposition 2 The transition from si to sk is possible iffLX(p)(p(si)−p(sk)) > 0

where p is the polynomial function supporting the border between the qualitative
states si and sk.
Proof see [35].

Using the Lie derivative, it is possible to compute every qualitative tran-
sition in a mode by applying this process to every state si ∈ Sm,X, and to
visualize the behavior tree of any execution in a continuous model or a sin-
gle mode of a hybrid model. The different tests allow the suppression of the
non-existing states and the computation of only the real qualitative transi-
tions. Using the existing structure allows us to avoid the loops and suppress
the quiescent, the already explored, and the terminal states. However, deal-
ing with modal transitions of a hybrid system is more complex and requires
more computation.

4.1.3 . Discrete transitions
Definition 37 (Modal Transition) A transition tr = (mi, s1) → (mj , s2) iscalled discrete or modal ifmi ̸= mj .

Computing the possible discrete transition in a qualitative hybrid model
requires incorporating the guard conditions of each transition from the cur-
rent mode in the abstraction process. To simplify the computation, we con-
sider the guard condition necessary and sufficient to provoke the transition,
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i.e., a discrete transition happens as soon as its associated guard condition is
verified. As the guard conditions are considered polynomials and are incor-
porated in Pm ∀m ∈ Q, the verification of the guard predicates can be inte-
grated into the qualitative transitions detection process. When a polynomial
p associated with a guard condition changes its sign, the guard condition is
verified, and the transition is triggered. For the involved transitions, the jump
is not from a qualitative si to another sj in the same mode, but between the
qualitative states (m1, si) and (m2, sk) with i ̸= j. The intended transition is
not qualitative anymore but becomesmodal. Therefore, the change concerns
not only the continuous variables ofX but also Q. Moreover, a shift in mode
implies activating an associated reset function res that applies onX and may
also cause a discontinuity in its valuations.
Proposition 3 Abstracting the discrete transition tr = (mi, s1) → (mj , s2) re-quires to compute α2(s1), i.e. α2(x) for all x ∈ s1.

The computation of α2(s1) can be achieved by creating another iterationof a polynomial solver: by using branch-and-bound solving on all the con-
straints defining the qualitative states onm2, computing all the possible des-
tination states for a reset function applied on (m1, si) is possible. The list ofobtained authorized states [(m2, sj)]sj∈Sm2,X

will constitute the successors of
(m1, si).Doing this for all the triggering transitions in a modem1 highlights allm1outgoing transitions. Once computed for every modem ∈ Q, all the system’s
outgoing and incoming modal transitions will be represented.

4.1.4 . Abstraction refinement
Definition 38 (Partition refinement) Given K a set and P1, P2 ∈ BK two
partitions of K. P2 is said to be a refining partition of p1 if ∀ s ∈ P2, ∃! s1 ∈ P1such that s ⊆ s1.

As the state space abstraction to create qualitative models is based on
state space partitioning, it is possible, given a first system abstraction, to gen-
erate a refined discretization of its state space to improve the knowledge in-
cluded in the qualitative states. This refinement of an already-defined ab-
straction goes through the addition of new functional constraints in the list of
polynomials or rational functions that define the first abstraction.
Definition 39 (Abstraction refinement) Given a CPS S onwhichwe defined
the abstraction functions A and A′ associated with αm,m∈Q and α′

m,m∈Q. Theabstraction of S defined by A′ and α′
m,m∈Q is a refinement of the first one if

∀m ∈ Q, A′(m) is a refining partition of A(m).
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A refinement of a qualitative model can be applied by adding new con-
straint equations to the list Pm for every operating modem, which will add as
many qualitative frontiers in the system state space and, therefore, increase
the number of qualitative states in the state space partition.

Consequently, the qualitative and discrete transitions of a refined system
will have to be recomputed, as the previous ones are between qualitative
states that may have been divided.

4.2 . Qualitative Behavior Computation

By neighborhood propagation, we can compute all the paths among the
defined qualitative states of the qualitative model considering its dynamics.
Adjacent state propagation (see Definition 40 below) allows us to determine
all possible variation directions from an initial state. The obtained set of qual-
itative traces contains all the theoretically possible behaviors of the system S.
Definition 40 (Adjacent qualitative states) Given a qualitative model de-
scribed by the set of equations E, two different qualitative states s1 and s2are adjacent if one of their frontiers is common. If s1 = [v1, v2, ..., vn] and
s2 = [w1, w2, ..., wn], s1 and s2 are adjacent iff ∃! k ∈ J1, nK such that vn ̸= wn.

Computing complete qualitative behaviors makes it possible to represent
it as a qualitative automaton.

Definition 41 (Qualitative automata) We consider the structure of a quali-
tative automaton Aq = ⟨Q,X, V,E, Init, I, F, J, L,A, TQ⟩, where Q,X, V,E,

Init, I, F, J, L are the elements defined in definition 8 and
• A is the system abstraction function mapping each mode m of Q to a
partition of X where each set corresponds to a qualitative state of the
system.

• TQ is a functionmapping eachmode to the set of qualitative transitions
computed in subsection 4.1.1.

This representation, introduced in [35] as abstract transition systems, pro-
poses an alternative visualization of the behavior of a hybrid system, giving
more information about the different qualitative trajectories in the modes. It
can provide, for example, more knowledge about possible attractive states,
intra-modal cycles, or even two qualitatively different trajectories that could
not be separated using a classic hybrid automaton but which could imply var-
ious constraints for the system. This new layer of information completes our
qualitative model with a more precise mapping of the qualitative states and
gives more possibilities of anticipation, diagnosis, and piloting [34, 125].
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4.3 . Problem of Dimensions

The presented process is simple to execute when |X| = 2 because poly-
nomial solvers easily handle polynomial problems with two variables.

One of the components ofX can trivially be expressed depending on the
other for each polynomial function with at least one reference variable.

However, the presence of more dimensions raises problems that do not
appear in two dimensions. The more |X| increases, the more difficult it will
become for the solver to return a usable solution. Especially symbolic solvers
in high dimensions tend to find a unique solution that satisfies the constraints
and will, therefore, avoid general solutions of the expected form. To ensure
that the returned solution has the desired form, we must specify the antici-
pated solution format and the priority order of the variables for the resolution
to the solver. The presence of solutions of dimension less than |X| − 1 will
create frontiers that may be circumvented without being crossed, which is
a major problem in computing qualitative transitions. Therefore, we added a
filter to the solver that suppressed the solutions of low dimensions. Secondly,
the choice of the component ofX that should be considered as a reference to
express the others is a question. ShouldX0 always be regarded as the refer-ence variable, or should there be a smarter decision criterion? Theoretically,
the best solution would be to avoid the presence of fractions in the expres-
sions of the solutions as much as possible. As fractions may cause singularity
in the presence of a fraction pole in the state space, the best expression of a
solution would be the one that minimizes the number of fractions. However,
we made a concession due to the complexity of submitting such criteria to al-
ready implemented polynomial solvers. We just created a reference priority
order favoring the lower factors ofX to the upper. Finally, an inherent prob-
lem in this situation is that the used solver may not find any solution in high
dimensions associated with high polynomial degrees. Even if polynomials of
very high degrees are not commonly used in CPS, the situation may happen
for specific systems and possibly in critical situations. This shows that there
exists a possibility of generalizing this contribution evenmore, using elements
from other works, such as qualitative tendencies.
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5 - INTRODUCTION OF QUALITATIVE ZONES

The model obtained by the process presented in chapter 4 allows reason-
ing on the qualitative states and on the qualitative behaviors. This representa-
tion constitutes the heart of what is currently qualitative modeling. However,
this representation of systems lacks knowledge about orders of magnitude
and distance/time to an event that could allow the management of critical sit-
uations of the system. The exposed qualitative models represent the equiv-
alent for the system state space of a topographic chart of the summits of a
mountain chain with the altitude gradient between them. Yet, exploring such
an important chain cannot be achievable without information about the gra-
dientmagnitude and the possible presence of cliffs. In a CPS, this is illustrated
by the difficulty of making predictions or applying simulation on a model with
no further information about the intended trajectories than the sign or the
gradient. For an autonomous car, an acceleration of 1m.s−2 and another di-
rected in the same direction of 100m.s−2 cannot be considered the same way
in simulation or, worse, in real-time execution. Moreover, the same car will
not behave the same way on an empty country road or a crowded freeway
with other vehicles at less than three meters. Therefore, the two correspond-
ing challenges are introducing elements from OMR [111, 113] in our qualita-
tive models and adding thresholds surrounding and preventing the impor-
tant events. As qualitative reasoning imposes constraints on the considered
models, these upgrades to the representation must imply a process of re-
finement of the state space partition that matches the described ambitions.
This means adding new borders to create more qualitative states, therefore
adding new elements in the sets Pm. The inclusion of new polynomials in the
Pm must be made with specific consideration to the interest and the signifi-
cance of the added elements: adding more polynomials that correspond to
no physical phenomenon does not have great interest. For example, creating
qualitative states defined by the sign of the 5th order derivatives will rarely
bring useful knowledge to the model. Yet, when all the equations describ-
ing the system and themost significant variable valuations have already been
used to construct the previous model, the newly introduced equations have
a very small chance of being of any significance to describe the system’s be-
havior by themselves. Therefore, an option is to define the new border equa-
tions to link them to the previously defined ones to have a reasoning value
associated with them. Modifying the elements pi of Pm makes it possible to
create two thresholds of borders surrounding the frontier defined by pi = 0.
These thresholds will then determine a neighborhood around the event fron-
tier and describe a form of proximity before the possible occurrence of the
related event.
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The consideration of these neighborhoods, or proximity areas, will intro-
duce information about the distance to the potential future events of the sys-
tem behavior without clearly implying numerical evaluation. They can also
have the role of precaution frontier, defining either a particularly far or criti-
cally close proximity to the event.

Now, let us see how to define such neighborhood limit (that we also call
secondary frontiers, by opposition to the primary/main ones, which are sup-
ported by the elements of Pm). We mainly evoked and studied three main
ideas. The first was to translate the main equations of Pm from a chosen dis-
tance d to obtain the neighborhood limit. The advantage of this idea is its
simplicity of execution: each border from any dimension can be translated
from a specific value in a given direction without requiring heavy computa-
tion. However, the choice of the translation direction is entirely arbitrary, and
such a frontier may not have any physical meaning, especially in the case of
borders definedby nullclines (here, the zeros of the derivatives of the system’s
variables and equations). This is, however, the best solution for the events de-
fined by Xi = k, with Xi a component of X and ki a constant in K defining
a value for Xi: the translation direction is then naturally following the axis
defined by Xi. The obtained hyperplane defined by the equation Xi = k ± d

is parallel to the main border and represents a proximity area around it at
a constant distance d. This solution is not possible in the case of nullclines
supported by Ẋj = 0.

Another idea was to compute surfaces completely parallel to the border:
this would have assured a constant distance for every direction and would
have been visually understandable. However, the computation of such sur-
faces is much trickier than expected: even in two dimensions, computing the
equations defining a curve parallel to another is far from trivial. In two di-
mensions, in the case of a parametric curve defined at any time t by x = f(t)

and y = g(t) with f and g two functions, the parallel curves to the parametric
curve (x, y) are the parametric curves of equations (x′, y′) with

x′ = f(t)± cġ(t)√
ḟ(t)2 + ġ(t)2

y′ = g(t)± cḟ(t)√
ḟ(t)2 + ġ(t)2

c being a constant. This choice would make little sense as simplification and
limited computation are the main objectives of qualitative modeling. More-
over, such a limit would not have any physical meaning. Consequently, this
idea of parallel surfaces does not fit the ambitions of qualitative reasoning
to compute a neighborhood limit for polynomial frontiers. Finally, the best
of the raised propositions was to use isoclines (i.e., surfaces defined with a
function f by ḟ = c ̸= 0). For each element p of Pm, we must define a value
cp ∈ K, then use the already defined solver to solve p = cp and p = −cp. Thesymbolic results will define the surfaces that will delimit the neighborhood of
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eachmain border. Solving these equations does not require specifically heavy
computation, and it corresponds to something concrete: a very low proximity
value will be associated with a critical proximity to the event and a very lit-
tle time interval remaining before its occurrence. On the contrary, a very high
value defining the neighborhood will inform that any state out of this area will
be unstable and maybe untrustworthy as the associated variable or quantity
will vary very fast.

We chose to separate these borders from the previous ones. As we al-
ready have our discretization of the state space in qualitative states, we now
have another discretization in areas defined depending on these latter, and
that we called qualitative zones.

As the qualitative zones correspond to a subset of the state space defined
by the proximity to a frontier, it is also possible to expand this notion to repre-
sent the neighborhood of a point. When representing the proximity of a cho-
sen point xp valuation ofX , the proximity frontier of distance d is represented
by a n-dimensional sphere of radius d of equation∑n

i=1(Xi − xpi )
2 − d2 = 0.

The corresponding qualitative zone is, therefore, the associated ball of the
same dimension and of equation∑n

i=1(Xi − xpi )
2 − d2 < 0.

Definition 42 (Qualitative Zone) Aqualitative zone is a set of abstracted val-
ues in a neighborhood of a qualitative frontier or of a point. A qualitative zone
is defined by a set of 2-tuple pi, di with pi ∈ Pm corresponding to a qualitative
frontier or the coordinates of a point and di ∈ K to the chosen neighborhood
distance.

It is to note that some subsets of X may be included in many qualitative
zones at a time: the creation of a function able to compute the intersection
between qualitative zones is helpful to keep as much knowledge as possible
about the proximity to the different events.

Suppose the qualitative states give abstracted knowledge about the dis-
tance from the current numerical state to each frontier. In that case, the qual-
itative zones offer an abstraction of the distance separating it from the near-
est borders. This allows us to define a notion of distance in the qualitative
models that may be used to evaluate the system’s stability, the likelihood of a
forthcoming event, or even the criticality of a situation. It gives a new tool to
anticipate and reason about a system state, its risks, and possible futures.

Definition 43 (Qualitative Position) We call Qualitative Position of a sys-
tem the 3-tuple (mode, qualitative_state, qualitative_zone).

87



This complementary information creates a complete qualitative map of
the system’s state space designed to locate a numerical state and reason
about its successors.

Finally, considering qualitative zones is a good criterion for separating two
qualitative behaviors that could not have been distinguished by reasoning
only on qualitative states. For example, in the Brusselator system defined
in Equation 2.1 with a and b two positive constants, the analysis of qualitative
states and transitions shows that the system is cyclic around the convergence
point. However, this knowledge is insufficient to deduce whether the trajec-
torywill be convergent: the two qualitatively different behaviors (convergence
and cycling around the convergence point) follow exactly the same trajectory
among the qualitative states described earlier.

The consideration of a qualitative zone around the nullclines ẋ = 0 and
ẏ = 0 and around the stable point allows us to determine, using the direc-
tional differentiation of the Lie derivative, if the system will converge towards
ẋ = ẏ = 0, or stay in a critical cycle around it. With a symbolic expression
of the distance d, the study of the surface defined by ||a − X|| = d or by
|ẋ| < d ∧ |ẏ| < d will show if the convergence is possible or not. If for any
value of d, the inward transition is possible, and if from a threshold ds > 0,
the outward transition is impossible for d < ds, the system will be consid-
ered as convergent. On the contrary, if, for any qualitative state, there exists
a distance d such that the inward transition is impossible, the system cannot
converge and its trajectory will follow a limit cycle.

However, just like qualitative states, qualitative zones require the user to
instantiate the parameters, such as the chosen proximity d, to be computed.
As the automation of the choice of the number and the size of the qualitative
zones has not been achieved, we did not integrate the creation of the quali-
tative zones in the abstraction process: we instead created a functionality to
add qualitative zones on a qualitative model around the desired qualitative
frontiers with a given size. Functions to test the intersection between a quali-
tative state and a qualitative zone and to compute the trajectory direction on
the border of a qualitative zone are also available.
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6 - IMPLEMENTATIONANDEXPERIMENTATION

In this section, we develop a tool’s structure and operation aiming at au-
tomating the algorithms presented in chapter 4 and chapter 5. This tool is
implemented in Python to benefit from the various libraries available with the
programming language. Firstly, we show its structure and its input and output
elements in section 6.1. In section 6.2, we develop the implementation details
of each tool block to present the choices and important elements of our im-
plementation. In section 6.3, we show the results of our experimentation and
develop the current limits and improvement directions currently identified.

6.1 . General Structure

Building a qualitative model requires passing a hybrid system as input to
the program. It takes a structure sys passed as a list of elements that include
the following items:

• Q a list containing all the discrete variables of the system and whose
composition defines the operating mode.

• modes the set of all possible valuations ofQ (i.e. the set of all operating
modes)

• q0 the initial mode of the system
• var the list of all continuous variables of sys
• var0 an initial valuation of var
• inv a dictionary structure associating to each mode q ofmodes a list of
invariant conditions that must always be satisfied. These constraints
are represented using equations that must be compared to zero.

• tr a list of 4− tuples representing the discrete transitions of the system
with for each transition, the initial mode, the guard condition, the target
mode, and a mapping (represented using a dictionary) that associates
to each element of var a reset constraint.

• F a dictionary associating eachmodem to amapping relating each vari-
able of var to its dynamic function in mode m. The dynamic functions
are supposed to be ODEs containing only polynomial or rational terms.

• par the set of symbolic parameters of the system.
• two structures containing the names of the variables and the system.
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• Optional parameters, among which is a set of equations defining land-
marks that correspond to specific use constraints or thresholds of this
system instance and a set of specific objectives.

In order to perform the intended result, the program calls for the libraries
math, numpy, copy, sympy, Z3.

6.2 . Functional Decomposition

6.2.1 . Model creation
From the input elements presented in section 6.1, the tool creates a first

model that translates all the variables, parameters, equations, and constraints
to sympy objects. The program calls the constructor of the system class, which
contains property functions that allow us to access and modify all the pre-
sented characteristics that define a hybrid system.

If the constructor detects the presence of the optional parameter, the sys-
tem is said to be instantiated as specific constraints, objectives, and require-
ments related to the targeted use case are provided. Otherwise, the system
is not characterized.

Depending on the presence of these parameters, the obtained object will
be an instance of one of two different classes whose difference is based on
the quantity of information included in the definition of the system.

The first class, named System, considers a generic object that includes no
information about its use case nor about its exact purpose or domain-specific
constraints. The second one inherits the first and is called Instantiated_System.
By the principle of heritage, all the knowledge accessible from a System object
is also available in an Instantiated_System one, but the contrary is false. We
chose to use object-oriented programming to impose a standard structure
for the treated systems.

Once the first model of the system is created according to the require-
ments of one of these two structures, the analysis and discretization algo-
rithm begins.

6.2.2 . State space abstraction
The obtained object is therefore passed as an argument of the function

qualitative_analysis. This function first checks the nature of the entry class to
determine if the system

• Is instantiated or not
• Has more or less than three continuous variables
The first criterion will decide if the programwill look for landmark limits to

be used in the discretization process, as the instantiated systems offer more
varied knowledge than non-instantiated ones.
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On the other side, testing the number of continuous variables of the sys-
tem is necessary to determine the complexity of the study. As explained in
section 4.3, the presence of three variables or more generates a supplemen-
tary obstacle in the choice of the reference variable to be expressed with re-
spect to the others. Therefore, this condition will allow us to avoid useless
computations in the case of a state space with two dimensions.

Once these elements are known by the algorithm, it will perform a dis-
cretization of the state space of the system for each modem ∈ Q.

This discretization is performed using the elements and properties pre-
sented in chapter 4. All the equations defining the system (including the land-
marks in the case of an instantiated system) are covered in order and de-
rived according to the process defined by Tiwari [35] to express the qualitative
states. For each modem, the discretization of the state space is done by plac-
ing all the polynomial equations that define the system in the setPm and using
the methods of symbolic solving provided by Sympy to resolve the equalities
pi = 0. The results of these equations define the parametric equations of
the nullclines separating the qualitative states of the state space. Sympy also
comes with tools to differentiate the polynomials according to time, to test if
the newly obtained formula is a factor of existing polynomials using its poly-
nomial module, and to create the qualitative state based on the comparison
of a value to every polynomial of the set.

The results of the resolution of the borders are given as n-tuples with
n = |X|, in the form (f0(Xi), ..., Xi, ..., fn−1(Xi)), that express the equationscorresponding to the borders.

We then have a mapping associating each mode to a state space dis-
cretization based on the equations defining the dynamics, invariant, guard
sets, landmarks, and the successive derivatives of all these equations.

In order to ensure the termination of the algorithm, onemust add a strop-
ping criterion in the abstraction function, given that the stopping criteria de-
veloped in [35] are not sufficient to guarantee that the program will termi-
nate. Moreover, an over-discretization may cause the obtained model to be
too complex for no tangible improvement. The naive criterion we added in
this function to guarantee an end to the execution is a maximum number of
derivations for each of the initial system’s equations. Thismaximumcan be ei-
ther global or expressed as a set of values associated with each equation, and
it will stop the Tiwari discretization process when a single function has been
derived toomany times. A further progress would be to consider the system’s
nature and application in order to deduce themost adapted granularity in the
state space abstraction to automatically guide and stop the abstraction pro-
cess when the optimal abstraction level is reached.

We also added a general constraint in the algorithm on the nature of the
solution. If the solution satisfying pi = 0 cannot be expressed as a fully dif-
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ferentiable function from the system variables X and requires discontinuity
or piece-wise expression, we stop the derivation process of this polynomial at
this iteration.

The result of the state space abstraction process is returned under the
form of a mapping that associates each mode to a dictionary where the keys
are strings referring to the nature of the initial equations (flow, guard, invari-
ant, landmark, derivatives) and are associated with lists of 2-tuples containing
both the polynomial/rational functions and the equations of the associated
nullcline.

As sympy is perfectly able to deal with symbolic values and to solve equali-
ties with both symbolic variables and parameters (which are not supposed to
be valued nor solved) and, therefore, to express the solutions of the variables
symbolically depending on the fixed parameters, our program can perfectly
deal with partially designed systems (i.e., with parameters only expressed
symbolically and without fixed numerical value).

If a state space refinement is needed, a new system based on the first
one can be created using the Instantiated_System class. By calling the con-
structor of this class on the previous system and by adding the new equation
constraints in the adapted list, we define a new iteration of the same system
with constraints that will be taken into account in the state space abstraction,
which will be a refinement of the first discretization.

6.2.3 . Numerical state abstraction
Once the state space abstractionmapping is chosen and available for use,

the next component of our tool is the state abstraction function.
The program must be able to translate any numerical knowledge of the

system to a qualitative state. Given a numerical value x of X and a current
modem ∈ Q, for each p ∈ Pm, we compute the sign of p(x) to determine on
which side of each of the previously computed nullclines the current state is.

This is achieved by the function abstraction that takes as arguments the
numerical value x to abstract, a valuation of the symbolic parameters of the
system (necessary to allow comparisons with numerical values as sympy can-
not handles inequalities with several unknown), the abstraction mapping ob-
tained by the function qualitative_analysis detailed in the previous paragraph,
the studied CPS and a negligibility threshold ϵ > 0 under which a polynomial
value will be considered equal to zero. Then, the sign of each p ∈ Pm will be
computed and pushed in a list in the same order as they are presented in the
input mapping to have an easy correspondence between the signs and the
associated equations.

Then, abstraction returns the qualitative state of the system correspond-
ing to the numerical value and to themapping obtained in qualitative_analysis.
This qualitative state is represented by an array of−1, 0, and 1, corresponding
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respectively to −, 0, and + but making operations easier to compute.
In our example of the Brusselator, let us suppose that the current mode

is mode1, that the numerical value of the system is (1.5, 4.3), and that the pa-
rameters have value (a1, b1) = (1.2, 1.4). If P1 = [x, y, x − y, 1 − (b1 + 1)x +

a1x
2y, b1x−a1x2y] as we computed before, the qualitative state of the system

is [+,+,−,+,−].
This function is mainly helpful to abstract the initial state of the system

given in parameter: given an initial numerical value x0 and an initial operat-
ing mode m0, computing the qualitative behavior of the system requires to
convert this numerical position to a qualitative state from which the qualita-
tive simulation will run.

6.2.4 . Qualitative state propagation
Fromhere, the stake is to compute how the considered systemwill behave

given all the known dynamics and constraint equations.
The first step is to compute the set of all qualitative states that share

a common border with the initial state: they will be put in a list of possi-
ble_successors. Considering that the dynamics of the system are continuous
inside a mode, the intermediate value theorem tells us that while no guard
condition is violated, the only possible direct successors of a qualitative state
are the qualitative states that share at least one border with it.

Therefore, we created a function named neighbor_states that takes as ar-
guments the current qualitative state s0 and the current modem0, the set ofnullclines discretizing the state space in the modem0, a valuation of the sys-tem’s parameters and the system itself. As two neighbor states are defined
by the same constraints except the one corresponding to the shared border,
the function furnishes the list of all the virtual neighbors of s0 by taking thedigit list that defines s0 (composed of −1, 0, 1) and by returning the list of
all the states defined by a list whose digits are equal to s0 except one, whichis modified taking into account the intermediate value theorem. This means
that a 1 or a−1 can change to 0 and that a 0 can be converted either to a 1 or a
−1, while a conversion from a−1 to a 1would violate the continuity of the dy-
namics. In the case of a state s0 = [1, 1,−1, 0,−1], its computed possible suc-
cessors will be [0, 1,−1, 0,−1], [1, 0,−1, 0,−1], [1, 1, 0, 0,−1], [1, 1,−1, 1,−1],
[1, 1,−1,−1,−1] and [1, 1,−1, 0, 0].

This list corresponds to a list of virtual successors, computed on the fact
that states defined by these lists would be neighbors of s0. However, nothingguarantees that these potential successors actually exist.

Consequently, we implemented a function testing the existence of these
virtual successors. As the digit list of a virtual state vs expresses its position to
the frontiers associatedwith themodem0, testing the existence of vs requiressolving the constraints conjunction expressed by its digit list.
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We then created a function does_exist_state taking as arguments the ex-
pression of vs, the nullclines equations defining the state space abstraction
of m0, and a valuation of the parameters of the system. As most of the con-
straints to solve are inequalities, we find here the limits of sympy as it does
not allow solving inequalities containing more than one unknown variable.
Consequently, we made the choice of using a SMT solver available in Python
to solve this constraint conjunction. We chose Z3 for its simplicity and permis-
sivity. However, using such tools imposes to translate all the inequalities and
equalities defining the constraints from sympy expressions to Z3 ones, as the
two of them are not compatible.

We achieve this translation with a function sympy_to_z3 taking as argu-
ments the sympy expression to translate aswell as the list of variables involved
in this expression. Once translated, it is possible to use the SMT solving func-
tionality of Z3 to determine whether the conjunction of constraints associated
with the virtual state vs admits a solution. The does_exist_state calls another
function called solve_intersection solving the inequalities defining vs by trans-
forming the −1, 0, 1 digits to <,=, > operators. This function uses Z3 and re-
turns True if there exists x ∈ Kn that satisfies all the constraints defining vs

and False otherwise. If the problem is satisfiable, vs corresponds to a con-
crete set of values of the state space of the system and therefore exists. In
that case, vs is added to a list of possible_successors. Otherwise, vs does not
exist and is therefore not further considered.

As we know for each of the considered neighbors, which digit has been
changed from s0, and that the order of the digits corresponds to the order
of the abstraction equations, the algorithm can know the nature of the com-
mon border that will be crossed. If this frontier happens to correspond to an
invariant violation, we keep the new state in a special category: we will still
study the feasibility of the transition but keep it as an invalid one.

Once all the neighbors of a qualitative state s0 have been isolated, the
program must determine which are successors and which are predecessors.
As explained, it achieves this by computing the Lie derivative of the equa-
tion corresponding to the border. To this extent, it calls a function called
is_allowed_transition taking as arguments the state s0, the target state st, theset of abstraction equations, the parameter valuation and the mode in which
the transition is occurring.

It executes it with a scalar product between [
∂p
∂Xi

]
Xi∈X

and [
∂Xi
∂t

]
Xi∈X

,
with p = 0 defining the border. Ideally, this should be evaluated on a numer-
ical value x of X located in the current state to determine this scalar’s sign.
However, regarding the difficulty of finding a satisfying concretization func-
tion expression (which is still one of the biggest challenges of qualitative rea-
soning), there is not yet a possibility of getting numerical values correspond-
ing to a qualitative state.
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In order to bypass this obstacle, our function creates a virtual state of size
|Pm|+1, with the |Pm| first elements being the elements of the initial state, to
which we associate a digit whose value depends on the sign variation implies
by the considered transition. This new element is linked to the equation ob-
tained with the Lie derivative formula. Then, we use the Z3 SMT solver once
more to determine if this virtual qualitative state exists. If the associated prob-
lem is satisfiable, then the Lie derivative on the border allows the transition,
and the state s1 considered as a possible s0 successor is an actual successorof s0.

Finally, we wrote a function select_allowed_transitions that, given amodem
and a current state s0, automatizes the developed process to compute every
successor of s0 and returns them in a list.

6.2.5 . Discrete transition management

Once all the successor states of a given qualitative state have been found,
the problem of the states violating the guard or the invariant conditions still
exists.

As the nature of each qualitative transition can be easily computed using
the modified digit between the initial and target qualitative states, we wrote a
function transition that detects which qualitative transition from an input list
violates a guard condition and, if needed, which guard condition. With this
knowledge, and using our hypothesis that the modal transitions are deter-
ministic, the program refers to the system definition and exposes the tran-
sition that happens under this condition. Therefore, if the qualitative state
corresponding to the border of the guard set is kept, the states that clearly
violate a guard equation are forgotten and replaced by a state in the target
mode corresponding to the event triggered by the constraint.

If the associated reset function is the identity function Id : X 7→ X , the
transition function calls new instances of a Z3 solver to generate digit by digit
the qualitative states of target modem1 and its associated abstraction equa-tions. As the state space discretizations of m0 and m1 are likely different,
transposing without computation a qualitative state fromm0 tom1 is impos-
sible. Therefore, our function generates using SMT solving all the qualitative
states si form m1 that overlap with m0. Therefore, the qualitative states de-fined by (m1, si)will take the place of the initial guard condition violating stateas successors of s0.

For the transitions that do not have the identity function as their reset
function, we call another method called correspondance_transition then com-
putes the image of the initial qualitative state s0 by the reset function on thestate space abstraction of the target mode m1. Just as in previous functions,it uses the SMT solver functionality of Z3 to compose digit by the digit the
qualitative states ofm1 that overlap with (res(s0)).
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Consequently, our tool is now capable of dealing with discrete transitions
and reset functions and can represent the qualitative evolution of hybrid sys-
tems.

6.2.6 . Qualitative behavior computation
As the previous blocks of our tool are able to compute all the successors

of a given qualitative state in a given mode and to manage the mode switch,
the final step is to compute the complete qualitative behavior of a system.
As we aimed, we created a new class of objects named Qualitative_automaton
containing all the equations defining the initial system, a set of modes, and
a set of qualitative states, both accessible by getters and setters and initial-
ized with the initial qualitative state and mode of the system and a dictionary
structure initialized empty.

This dictionary aims to represent the qualitative trajectories of the system.
After its initialization, all the modes of the system are passed as keys, and the
element mapped to m0 is another dictionary structure where each explored
qualitative state will be mapped to two arrays representing its predecessors
and its successors, respectively. The predecessor array of the initial qualitative
state is initialized with the element start.

The successors of the initial state s0 are then computed and put in a queue
called Frontier. For each of them, it is added in the successors structure of s0, inthe set of qualitative states ofm0 (and therefore as a key of system[m0]) and
s0 is put in their predecessor’s list. A visited list is also initialized containing
the initial state (m0, s0).

While the frontier is not empty, the first element s1 is popped out of the
structure and becomes the current node if it is not already in visited. Just as for
the initial state, all its successors are computed and added to its successor’s
list, while s1 is added as a predecessor for all of them. If s1 happens to vio-
late invariant conditions, it is not added at all in the behavior tree, but a state
named Invariant Violation is added as a successor of s1. In the case of qualita-
tive state implying modal transitions, the function correspondance_transition
defined earlier is called to make the correspondence between the initial and
the target mode. In this situation, the target state is designed as the 2-tuple
(m1, s1) in the successors list of s0 inm0 to highlight the discrete transition, and
s0 is written (m0, s0) in the predecessors list of s1 inm1 for the same reason.

Once the frontier is empty, it means that the complete connex structure
of the behavior of the system leaving from this given initial state has been
reached. The algorithm then gives this graph as output.

Qualitative states may exist that have not been explored, but the explo-
ration structure implies that these states are not reachable from the chosen
initial point.
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6.2.7 . Inclusion of the qualitative zones
Once the complete qualitative automaton containing the path represent-

ing the qualitative behavior of the system from an initial value x0 in an initialmodem0 is computed, we developed a set of functions and a new object class
to add qualitative zones in a common structure allowing a more exhaustive
study of the system behavior.

The first of the new set of functions is called create_zone_quali and takes
as parameters a distance d and either a point or a frontier among the borders
separating the qualitative states of a mode. It melts them into a 2-tuple that
will then represent the qualitative zone centered on either the point or the
frontier and defined by a distance d around this structure.

The second function is generate_equation_zone as it takes as a parameter
the previous tuple and gives as output the equation corresponding to the bor-
ders supporting the qualitative zone. If it is supported by a state-frontier, the
zones equations will be deduced from the initial nullcline equation pe = 0

by computing pe = ±d. Otherwise, if the researched zone is centered on
the point of coordinates X = x, then the frontier is given by a n-dimensional
sphere supported by the equation (X0−x0)2+(X1−x1)2+...+(Xn−xn)2 = d2

if we suppose that the used coordinate system if Cartesian. The obtained set
of equations defines the subspace of the state space that is included in the
created qualitative zone.

The next functions, respectively called is_in_zone, coexist, overlap and fi-
nally can_enter_zones aim at improving the understanding of the behavior of
the system by positioning the qualitative zones relatively to numerical values,
to qualitative states, to other zones and finally to express if a qualitative be-
havior can enter in a qualitative zone using the Lie derivative equations as
developed in subsection 6.2.4.

Finally, the newly created zones are placed with the previously computed
qualitative automaton in a new structure called qualitative_automaton_z that
inherits directly from qualitative_automaton and authorizes to add qualitative
zones, which will be studied to improve the quality of the system representa-
tion. The coexist function computes all the qualitative states that share some
subsets with a qualitative zone, while can_enter_zoneswill compute if entering
the zone is possible from a given state that coexists with it.

Using these functions, it is possible to be even more precise in the quali-
tative behavior and to prove some properties, such as the convergence of the
trajectories of the system.
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6.3 . Experimentation and Limits

In this section, we will present the results of some experiments on differ-
ent categories of systems at different abstraction levels.

6.3.1 . Hybrid systems
Applied to the hybrid Brusselator presented in example 11 on page 71, the

algorithm gives the qualitative automaton shown in Figure 6.1.
Mode 1 Mode 2

+ - + + +

0 - + + +

- - + + +

- 0 + + +

- + + + +

0 + + + +

+ + + + +

+ - + + -

+ 0 + + -

+ + + + -

0 + + + -

- + + + -

Mode 1←Mode 2

Mode 1↔
Mode 2

Mode
1↔Mode

2

Mode 1↔Mode 2

Mode
1↔Mode

2

Mode 1→Mode 2
Mode 1→Mode 2

Figure 6.1: Complete qualitative automaton of the hybrid Brusselator system
In this figure, the blue vertical arrows correspond to intra-modal (or qual-

itative) transitions, while the red (oblique) ones are the modal (or discrete)
transitions. The thin red arrows represent the one-way transitions, and the
thick ones represent transitions that can happen in both directions. Quali-
tative transitions are all unidirectional, so this distinction does not apply to
them. No label was added to qualitative transitions, while discrete transitions
are labeled with their respective direction. The chosen parameters values in
this model were (a1, a2, b1, b2) = (1.2, 3.6, 1.4, 2.5). The labels of the modes
describe the sign of the elements of Pm. With a stopping criterion for the dis-
cretization of the state space of at most one derivation for any polynomial of
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the model, Pm is equal to {1 − (bm + 1)x + amx2y, bmx − amx2y, x, y, x− y}.
The first two items correspond to the flow equations of mode 1 and mode 2,
the next two items to the invariant constraints, and the last item to the guard
condition. In each qualitative state, the tuple of elements from {−, 0,+} char-
acterizes the sign of the corresponding elements fromPm that define the state
as explained in definition 31. For example, the qualitative state represented
by the digits (+,−,+,+,+) is characterized by the inequalities 1−(bm+1)x+

amx2y > 0, bmx− amx2y < 0, x > 0, y > 0, x− y > 0. Many qualitative cycles
coexist, all of them transiting by the two modes. There is no behavior staying
in only one of them. The existence ofmany different cycles shows the interest
of the state space discretization, as it separates trajectories that would have
been considered identical in a classic hybrid automaton. We now have the
complete qualitative automaton of the CPS. Both the discrete transitions and
intra-modal behavior are included, and the trajectories are more visible than
in traditional hybrid automata.

6.3.2 . Qualitative zones
Once the qualitative automaton is obtained, the following step is to com-

pute the qualitative zones around the qualitative frontiers and their different
interactionswith qualitative states. The distances di between every qualitativeborder and its associated secondary frontiermust be entered as an argument:
we still need to automatize the choice of the value characterizing the opti-
mal distance. Once we have the equations of the different hyperplanes and
isoclines, we aim to determine how they fit into the qualitative model. This
involves a new call of the constraint solver: the intersection between qual-
itative states and zones can be computed by testing the satisfiability of the
conjunction of the constraints associated with the intersection of a state with
a zone. If the problem has a solution, then the considered qualitative zone
exists in the qualitative state. Knowing which zone exists in each qualitative
state and computing the transition direction once more creates a qualitative
map that gives more knowledge about the trajectories of the system, with a
good balance between qualitative and numerical information. Here, we gave
an example of the result we can obtain on a Van der Pol oscillator: this system
is a continuous systemdefined by equation Equation 6.1, where b is a constant
parameter.  ẋ = 10(y + x− x3

3
)

ẏ = b− x− 3y

4

(6.1)

This system’s few equations and borders make it an excellent example, as
the qualitative map is still understandable and not overloaded. In Figure 6.2,
we drew the main borders with plain lines and the associated secondary bor-
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Figure 6.2: Qualitative map of a Van der Pol oscillator system
ders with dotted lines. This representation corresponds to an instance of the
system where b is arbitrarily set to 0.465. The color code associates each bor-
der with its secondary limits. For both the straight lines (hyperplanes in two
dimensions), we arbitrarily chose a distance of 0.2 to place their proximity
limits. We computed the isoclines with ẋ = ±d1 and ẏ = ±d2 where d1 = 10

and d2 = 1. Finally, the black arrows show the transition direction allowed
according to the computation of the Lie derivatives. Double arrows highlight
that both transition directions are possible at a point of the border.
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7 - APPLICATIONS

This chapter presents different applications of qualitative modeling and
reasoning about CPSs that would benefit from the simplification and gen-
eralization allowed by the state space and behavior abstraction. Section 7.1
evokes howqualitativemodels canbeused for operations such as reachability
tests or behavioral proof. Section 7.2 details the possibility of creating a qual-
itative pilot to supervise and optimize numerical simulations using qualitative
positions. Section 7.3 generalizes this idea to systemmonitoring. Finally, sec-
tion 7.4 presents some propositions about the possibility of using qualitative
reasoning to solve the DSE problem for a system with undefined parameters.

7.1 . Reachability, Verification, Proof, Diagnosis, Test

7.1.1 . Reachability
As we are now able to generate an exhaustive tree of the qualitative be-

havior of the system, it is possible to use this vision of all theoretically possible
behaviors to study the reachability of a set of states by the modeled system.

Given initial conditions and a set of qualitative states represented by the
same equations the model uses, one just needs to browse through all the
keys of the qualitative automaton structure to know if the given states exist.
As qualitative states are added in the structure once they are reached during
the qualitative simulation, the presence of the state si among the list of keys
of auto[mj ] means that the qualitative state defined by the couple (mj , si) isreachable by the system if initialized at the given initial condition ci. Therefore,a simple algorithm as written in Algorithm 1 is sufficient to prove or contest
the safety of the system according to some specified constraints.

It is to be noted that if the equations supporting the tested constraints are
not equations that intrinsically define the system, one must use an instanti-
ated system and add this equation to the case-specific constraints in order to
use them in the discretization process.

The rstates structure is presented as a dictionary associating to each oper-
ating mode a list of qualitative states whose reachability must be tested using
the form of the digit vector presented in chapter 4.

Using themethod get_states implemented inside the qualitative_automaton
class, we can get for anymode the list of qualitative states visited in thismode.
For eachmodem, the algorithm just needs to search through the list returned
by automaton.get_states(m) and to return a structure similar to the input rstates
replacing each state by a boolean indicating its reachability or not.

As the two unconditional loops are designed to browse through the input
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Data : vinit,minit, rstates, system, parameters, quali_automaton
Result : Boolean values expressing the reachability of each of theinput qualitative states
answer = rstates
form ∈ keys(rstates) do

reachable_states = quali_automaton.get_states(m)
for i ∈ J0, length(rstates[m])K do

if rstates[m][i] ∈ reachable_states then
answer[m][i] = True

else
answer[m][i] = False

end
end

end
return answer

Algorithm 1 : Reachablity search.
structure rstates, and as an inclusion test is performed for each of its elements
to the set of reachable states of the qualitative automaton, this algorithm’s
complexity is O(rh) with r = |rstate| and h = |qualitative_automaton|.

7.1.2 . Verification and conformance checking
The possession of the qualitative automaton also allows us to do verifica-

tion and test the conformance of a system to the predicted behavior. If one
disposes of a measured trajectory of a system, even obtained by simulation
or by measuring the execution of a concrete system, one can compare the
corresponding time series to the qualitative behavior computed by our algo-
rithm and use abstraction functions and transition tests to validate or dismiss
the system from the measured data.

Given a time series of measurements made for each continuous variable
ofX and the knowledge at each moment of the time series of the associated
operating mode (that we suppose known by the software component of the
CPS), we can compare the accuracy of the time trace to the supposed qualita-
tive behavior as presented in Algorithm 2.

If the measured trajectory matches a qualitative trace among the qualita-
tive behavior tree, itmeans that themeasured behavior is compatiblewith the
physical theory and that the system may be valid. Otherwise, it means that
something happened in the system’s execution, preventing it from behaving
as supposed, and therefore, the system is not reliable.

To verify the concordance between a trajectory and the qualitative behav-
ior, the algorithm abstracts each point of the trajectory after the other and
checks if it corresponds to the same qualitative state as the previous one. If
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Data : trajectory, system, parameters, Bt
Result : A boolean value indicating if the input trajectory is possiblegiven the definition of a system
auto = hybrid_automaton(system, trajectory[0][state],
parameters, trajectory[0][mode])
discr = abstractionspace(system)
ab = abstractionval(trajectory[0][mode], trajectory[0][state],
parameters, system,Bt)
last_state = trajectory[0]
for point ∈ trajectory[1 : end] do

if point[mode] = last_state[mode] then
qs = abstractionval(point[mode], point[state],
parameters, system,Bt)
if qs ̸= last_state[state] then

succ = auto.get_successors(point[mode],
last_state[state])
if qs /∈ succ then

return False
end

end
else

qs = abstractionval(point[mode], point[state],
parameters, system,Bt)
succ = auto.get_successors(last_state[mode],
last_state[state])
if (point[mode], qs) /∈ succ then

return False
end

end
end
return True

Algorithm 2 : Conformance testing
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it does, nothing needs to be done, and the program will move to the next
point. Otherwise, it refers to the qualitative automaton to know if there exists
a qualitative transition from the qualitative state corresponding to the pre-
vious point to the one associated with the current value. If the transition is
allowed, the execution continues. If it is not, it means that a transition that is
not allowed by the system’s equations appeared in the time series. Therefore,
the algorithm returns that this trace is not allowed by the automaton and that
it is incorrect.

In the shown algorithm, the variable Bt corresponds to the thickness pa-
rameter of the qualitative borders: as there is very little probability that the
time of all the measures corresponds exactly to the crossing of any qualita-
tive border, it is very likely that considering the borders as regular lines (which
they actually are) would lead to direct transitions from qualitative states of
both sides of the frontier. However, as this violates the intermediate value
theorem, the corresponding trajectories may be considered false, or the al-
gorithm should look forward to two transitions instead of one to verify this
situation, which would increase the time complexity of the program. To deal
with this situation, we consider the borders as thick structures composed of
the real frontiers and of an uncertainty neighborhood that would encompass
any point in this area as being on the border. The thickness of this area is de-
termined by the parameter Bt, the value of which must be chosen according
to the frequency of the measures contained in the trajectory in order to avoid
any possible unmeasured qualitative transition.

As this algorithm is a loop on each numerical position of the input trajec-
tory, which computes the associated qualitative state for each of them, it has
a complexity of O(|trajectory| ∗ complexity(abstractionval)). The complex-
ity of the abstraction function directly depends on the number of qualitative
borders that define the qualitative state space. Although this value cannot be
expressed in the general case, it strongly depends on the number of contin-
uous variables of the system and on its number of discrete transitions (itself
depending on its number of discrete variables). More specifically, the number
of elements in the set of qualitative borders can be approximately expressed
as kn+ q with n = |X|, q = |Q| and k a positive constant. This directly results
from the abstraction algorithm thatmainly uses dynamics equations from |X|
and their derivatives, as well as invariant conditions and guard conditions.
Therefore, if we note l the number of points in the input trajectory, the com-
plexity of the conformance testing is O(l(n+ q)) with n = |X| and q = |Q|.

7.1.3 . Proof of properties and fault diagnosis

As exposed in [26, 34], qualitative reasoning has an important added value
in fault diagnosis. Using qualitative reasoning and simulation to create a qual-
itative model and map of the system’s state space can not only be used to
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explore the set of all the reachable states in the propagation order but also to
use back-propagation of the qualitative states in the behavioral trees in order
to trace back the initial error or deviation that ultimately lead to amalfunction
or a faulty behavior.

Wemention this application of qualitative reasoning, further developed in
a previous thesis in the CEA [26]. Using a qualitative model, the authors ap-
plied a methodology named CEGAR (for CounterExample Guided Abstraction
Refinement), originally developed to check safety properties and based on
the refinement of the state space abstraction using Counter examples defin-
ing faulty behavioral results. They also develop the concept of twin-plant di-
agnosis, using a non-deterministic automaton that represents the available
knowledge about the system based on its observable events.

The interest of qualitative reasoning in diagnosis is the plasticity of the
discretization of the state spaces (represented only by arrays of comparison
operators or digits) that can be refined to add constraints and examples using
polynomial or rational inequalities on the variable values.

Following the same fundamental philosophy, qualitative reasoning can
play an important role in the proof or invalidation of specific properties of
systems, such as convergence or periodicity of a system.

A simple look at the qualitative automaton of a system such as the stan-
dard brusselator highlights the cyclic nature of the system.

If it does not prove the exact periodic nature of the numerical trajectory,
it shows that the behavior is qualitatively periodic in the sense that the same
sequence of qualitative state is to happen in the same order, be the system
convergent or not. Moreover, adding some specific constraints with abstrac-
tion refinement allows us to define qualitative states and qualitative zones
whose reachability can be studied to prove more complex behavioral proper-
ties of the system.

For example, knowing the state space areas where the dynamic functions
are contractive and thosewhere they are expansive would be of great interest
to increase the capabilities of numerical simulation. According to the defini-
tion, a function is a contraction if it is k-Lipschitz with k < 1. A function f is
k-Lipschitz iff ∀ (x, y) ∈ D2

f , |f(x) − f(y)| ≤ k |x − y|. It can be proved that
f will be contractant if |ḟ | < 1. Therefore, by creating the qualitative zone
defined by the distance d = 1 around the nullclines associated with the equa-
tions Ẍi = 0, the qualitative model includes the areas of contractive behavior
of the system’s dynamics. In this area, a simulation can be allowed to be less
precise as the uncertainty area of the simulation will contract to the real be-
havior.

Moreover, qualitative zones can also be used to improve the reasoning
toolbox of the qualitative model and discriminate between different behav-
iors that would have been qualitatively identical otherwise. The cases of the
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Van-der-Pol and the Brusselator systems are particularly interesting from this
perspective. Using only knowledge brought by operating modes, qualitative
states, and transitions, one would not be able to know if an instance of the
system is convergent or if it reaches a limit cycle, as the two possibilities are
represented using a qualitative periodic behavior. As a convergence point
implies the derivatives of the system’s variable to all be equal to zero at the
same time, a system will only converge to the intersections of its nullclines
defined by the equations Ẋi = 0. Consequently, in the case of a system like
the ones cited above, the proof of the convergence or critical stability of the
system can pass by the definition of a set of qualitative zones defined around
the critical points Ẋ = 0 defined by the inequality ∑n

i=1 d(xi, ci)
2 < ϵ with cithe coordinates of the stable point, d(., .) a distance defined onX and ϵ > 0.

Therefore, if for any ϵ > 0, the computation of the Lie derivatives con-
cludes that it is possible to enter the qualitative zones centered around the
equilibrium point, it means that the critical point is a stable equilibrium and
therefore that the system may converge to this point. Otherwise, if for ϵ suf-
ficiently small, the Lie derivative does not allow the system to enter the quali-
tative zone defining the neighborhood of the critical point, it implies that this
equilibrium is unstable and that the system shall not converge.

Moreover, if one can determine the limit value of ϵ from which entering
the qualitative zone of distance ϵ from the critical point becomes impossible,
one can deduce the numerical trajectory and the coarse shape of the limit
cycle in which the behavior will be trapped.

These examples show that using qualitative zones to complete the previ-
ously defined qualitative models can allow us to discriminate behaviors that
would have been qualitatively equivalent otherwise and, therefore, add relia-
bility to the analysis authorized by our models.
Example of formal proof using qualitative reasoning

To illustrate the capability of a qualitative model to prove some system prop-
erties, let us consider a simple system composed of two cars advancing on a
road following an axis x. The considered system is then represented by a set
of two continuous variables X = (x1, x2), with Q = ∅. Considering that at
time t = 0, the first car is at x1 = 0 and the second one is at x2 = d > 0, the
second car is ahead of the first one by an advance of d. The system’s dynamics
are defined using the differential equations:{

ẋ1 = c1
ẋ2 = c2

(7.1)
with c1 > c2.Then, it appears evident that the second car will overtake the first one and
stay ahead until the equations of the dynamics change.
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By computing the qualitative automaton of this system using three qual-
itative borders defined by the nullclines x1 = 0, x2 = 0 and x1 − x2 = 0, we
obtain the following automaton:

0 + +

+ + + + + 0

+ + -

Figure 7.1: Qualitative automaton of the two cars with constant speeds
This result corresponds to the expectations as the initial state where the

first car is at x1 = 0 is repellent, while its two successors are transitive. The fi-
nal state, on the contrary, is absorbent: the first car, once ahead of the second
one, cannot return behind.

It is also possible to consider amore complex version of this systemwhere
the speeds of the vehicles are not constant but evolving linearly with constant
accelerations.

This system is defined with four continuous variables, corresponding to a
setX = (x1, x2, ẋ1, ẋ2), with the initial conditions (d > 0, 0, v1 > 0, v2 > v1).This new system would be defined by the equations:{

ẍ1 = c1
ẍ2 = c2

(7.2)
with c1 > c2.This new system should exhibit an uncertain behavior where the first car
may be temporally overtaken by the second one but could also stay ahead
depending on the values of c1 and c2. It is, however, certain that after some
time, x1 will definitely be higher than x2.For this system, considering the nullclines x1 = 0, x2 = 0, x1−x2 = 0, ẋ1 =

0, ẋ2 = 0, ẋ1 − ẋ2 = 0, we obtain the qualitative automaton represented in
Figure 7.2.

Once again, the obtained results correspond to the expected behaviors
and prove that, independently from the numerical behavior, the finality of
such a system is that the first car will always finish ahead of the second one.

7.2 . Supervised Quantitative Simulation

The process of qualitative model creation can now be partially automa-
tized to generate a hybrid automaton representing the system’s behavior. If
qualitative models are mainly used for theoretical and upstream tasks such
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Figure 7.2: Qualitative automaton of the two cars with constant accelerations

as verification, proof, and diagnosis, our contribution of adding the concept
of qualitative zones to the qualitative model gives a glimpse of possible con-
crete applications of qualitative reasoning on concrete CPS, even once already
designed and generated.

The second application we present here is the use of the qualitative map
(including the qualitative positions) to optimize the performances of numer-
ical simulation. Guided by the knowledge encompassed in the map, we can
guide the execution of a simulation to improve the quality-cost ratio.

More specifically, we intend to solve one major drawback of numerical
simulation, which is the regular need for rollback to precisely localize an event
that the simulation just passed without knowing exactly its occurrence time
te. Qualitative maps will give improvement possibilities to prevent the occur-
rence of the qualitative events and, therefore, adapt the simulation time step
to locate the event moment as precisely as possible without having to roll-
back.

Improving the execution of a numerical simulation can be achieved by up-
grading different parameters. In our studies, we focused on the computation
time and the quantization precision.

The reduction of computation time can be easily influenced by modifying
the simulation time step, which can be done with our newly obtained model
to improve the adaptation strategy and preserve the precision of the results.
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7.2.1 . Adaptive time steps
Adapting the step of a numerical simulation to the situation is something

classical. The idea has been expressed in many works such as [126, 127, 128]
on various types of systems and dynamics, and is even applied to stochastic
differential equations [129]. As explained in [130], adaptive step algorithms
consist of defining ameasure to control the integration time step at each iter-
ation. This measure can be the estimated precision of the simulation process,
the intensity of the derivative values at each iteration, themean value, and the
standard deviation of a potential stochastic term. It must be used to adapt the
integration step to the situation.

Standard integration methods such as Euler or Runge-Kutta have been
used as bases to develop adaptive steps processes.

Using an adaptive integration step for computing the value of the state
variables over time can both reduce the number of required steps to reach
the end of the simulation and also improve the precision in the critical areas
where we want to locate the occurrence of qualitative events.

Where some programsmake a first simulation to get an approximation of
the result and make a second run with an adapted integration time step [131],
we prefer a single-run method, which is suitable for resource management
and real-time analysis.

We adapt the integration step to the speed of variation of the variables
in order to limit numerical errors, and we adapt it according to our system’s
qualitative model to determine when events occur.

Considering that we mainly deal with ODEs and that the very nature of
qualitative abstractions prevents us from comparing the computed system
state to a reference value, the major option we have left is to adapt the sim-
ulation step to the value of the derivative with respect to time dX

dt = Ẋ (that
contains knowledge about the variation direction and speed). Moreover, the
values of Ẋi are among the knowledge that is intrinsically defined by the qual-
itative zones as developed in chapter 5. The frontier of a qualitative zone is
indeed defined using the isocline equation pk = ±c with pk ∈ Pm for a mode
m and c a constant value.

Therefore, we made the choice of developing a new abstraction function
αz that abstracts for each mode the numerical state of the system on the
maps of qualitative zones. If we note Zm the set of all the chosen qualitative
zones on the modem, the abstraction function αz is defined as

αz : (Q,X)→ P(Zm) (7.3)
(m,X) 7→ {qz}X∈qz

The output of αz is the set of qualitative zones defined on the modem of
the system S in which the numeric valueX stands.
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As qualitative states (and therefore qualitative zones) are characterized by
the nullclines/isoclines that define them, the knowledge of αz(m,X) for any
(m,X) ∈ (Q,X) gives information about the event that is about to happen,
and about the magnitude of the derivative values Ẋi for every component of
X . If X is in a zone corresponding to the proximity of an event (symbolized
by the inequality |pk(X)| < ϵ with pk ∈ Pm), it can be considered that the
qualitative border supported by pk may be crossed and therefore the corre-
sponding qualitative event may be triggered, which could imply a change in
the dynamics or in the variation direction.

On the contrary, ifX is in a zone defining a high value of at least one com-
ponent of Ẋ , the risk is that the current simulation step may be insufficient
to encapsulate the strong variation ofX in the steps to come.

Both cases require reducing the integration step h to adapt to the need
for more precision in these precise areas in order to avoid rollback and loss
of knowledge that would be irreversible.

7.2.2 . Time step and maximum variation
One of the major drawbacks of qualitative reasoning in the case of nu-

merical simulation is that once knowledge has been lost, there is no reliable
method to earn it back. One method to adapt the precision level with time
is to switch models depending on the amount of estimated accuracy of the
simulation, but it requires being able to measure the error and, therefore,
to know the exact state of the system in some specific instants, which is not
possible in many cases.

The usual way to adapt the integration step to the variation speed of the
state variables is to use the largest integration step that mathematically guar-
antees a bounded error on the computed value. The main factor of error in
numerical simulation comes from an integration step that is too large with re-
spect to the variation speed of the system’s values, represented by the deriva-
tive values dX

dt = Ẋ .
To simplify the computations, we chose to reasonwith a discretized repre-

sentation of the time scale represented using decimal numbers (i.e., the scale
used to define our integration steps is defined as the set D of numbers that
can be expressed as a

10k
with a ∈ Z and k ∈ N.

As exposed in the previous paragraph, we had a double objective: mak-
ing sure to avoid rollback and optimizing the computational resources of the
simulation.

In order to force the simulation to adapt its time step to the gradient val-
ues, we impose the value ⌈log10(|hẊi|)⌉ to be upper bounded to a referencevalue for each Xi ∈ X with h the current integration step. As automating
the choice of this value would require the model to analyze complex infor-
mation such as the system’s nature, its supposed application, or the units of
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the implied physical units, we require this value to be imposed by the user.
They must be chosen according to the distance defining the different null-
clines around the qualitative borders to have a reference time step coherent
with the evolution of the system.

To prevent any qualitative transition from being missed, it must be made
impossible to cross a qualitative border (and therefore change the qualitative
state of the system) without stopping in the neighborhood of the associated
frontier defined by the proximity qualitative zone. This criterion ensures that
the system will not have an unplanned transition, which would require a roll-
back of the simulation to detect its exact spot. We made the choice of a log10gradation to be consistent with the time scale discretization and to stay close
to human reasoning (which is a key element of qualitative reasoning as ex-
posed in [63]).

Some experiments were achieved using bases such as 2 or 16 instead of
10, and it appears that smaller bases improve the precision while bigger ones
reduce the number of simulation steps. Base 10makes the program structure
more intuitive and understandable and fits qualitative reasoning philosophy
while fitting a compromise between the two objectives. The choice between
these possibilities will depend on the objective of the model and the prefer-
ence between efficiency and simplicity. As every model does not have the
same requirements and variation speed and amplitude, some systems will
naturally favor one choice over the others.

Consequently, when one of the components of |Ẋ| is too high, the qualita-
tive pilot will automatically slow down the simulation by reducing by a factor
10 the integration step.

On the contrary, when the pilot finds that the term ⌈log10(|hẊi|)⌉ is more
than ten times inferior to its upper bound for any i ∈ J1, nK, the integration
step h is increased by the same factor 10 to adapt to the new situation that
exposes fewer risks of sudden unanticipated evolution.

It is to be noted that classical adaptivemethods would also adapt the inte-
gration step h to the acceleration values Ẍ = d2X

dt2
that encompass the speed

of variation of the derivative and therefore the sharpness of a movement.
However, our experiments quickly showed us that the computation of the
zeros and small values of the 2nd order derivatives of classic ODEs pose im-
portant complexity and solvability problems.

Consequently, we did not develop this direction, which could not be gen-
eralized to the study of most CPSs.

7.2.3 . Proximity planning
The second adaptive aspect we use in our approach is the adaptation of

the integration step to the distance to the nullclines. Once again, the qualita-
tive zones introduced in chapter 5 play a central role. This time, the interesting
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isoclines constants are not the high values but the smaller ones, describing
a physical proximity of the system state with an upcoming qualitative event.
We aim to avoid missing any transition between behavioral phases or even
between two operating modes. We also would like to avoid computing a tran-
sition that does not exist by using a bad integration step.

Therefore, we reduce the integration step by a given magnitude when the
current state enters the neighborhood of a nullcline, defined by the isoclines
associated with small distance values ϵ. As the different qualitative events do
not have the same importance (a discrete transition will generally be consid-
ered more critical than a change of qualitative state), each qualitative zone
will be given a criticality factor k ∈ N. The more critical the associated quali-
tative event and the smaller the distance characterizing the qualitative zone,
the highest k will be. The value kref corresponding to the criticality factor ofa situation outside of any qualitative zone defined to delimit direct proximity
with a qualitative event is fixed at 1. Then, the current value of kwill have to be
related to the integration step to define the adaptation function. Depending
on the policy of the simulation and the favored criteria between number of
steps and precision, the relation can be either geometric (h = h0

k ) or logarith-mic (h = h0

10k−1 ). In order to stick with the chosen time scale, the second option
seems more interesting, but the reduction of the time step will be sharper.

We chose to use a magnitude of 10 for the same reason we evoked in the
precedent paragraph. This reduction of the integration step appears in areas
that are close to nullclines.

It is to note that this adaptation is to be combinedwith the reduction to the
derivative exposed in the precedent paragraph: the intersection between two
qualitative zones defining respectively a high derivative Ẋi and the proximity
to a qualitative border |pk| < ϵ is even more at risk because the strong value
of Ẋi could lead to cross the border supported by pk = 0 faster than in other
conditions.

If, at the same time t, X is also positioned in a qualitative zone corre-
sponding to a high value of Ẋj , j ̸= i, the strong variation generated by Xjwill increase the probability of a sudden crossing of the nullcline Ẋi = 0.

Such a situation leads to a double reduction of the integration step in or-
der to perfectly situate the crossing time, which is particularly at risk of hap-
pening fast.

Let us consider the derivative vector −→̇X =
∑n

i=1 Ẋi
−−→
dXi. If there exists

i ∈ J1, nK such that Ẋi changes its sign at a time t, by continuity and supposing
the qualitative pilot correctly adapted the integration step h to the value of the
highest derivatives, Ẋi(t − h) and Ẋi(t) will be both in a close neighborhoodof the nullcline Ẋi = 0 represented by the qualitative zones supported by the
equation |Ẋi| < ϵ.

The controller is then more careful about the occurrence of mistakes or
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unplanned behavior in these situations. The adaptation to the proximity of
an event can be compared to the adaptation of someone walking near a cliff
on a mountain path: this person will walk more slowly and more carefully
when close to the cliff in order to avoid any bad move. The reduction of the
integration step in a simulation can prevent the appearance of false positives
(i.e., computed transitions that do not exist in the system) and detect with
precision the transition timing without requiring rollback [39].

7.2.4 . Variable quantization
Quantization can be defined as the process of discretizing a value or a set

of values from a continuous space to a discrete representation. Just as we did
with the integration step, we assumed that we could modify the quantization
precision and adapt it to the qualitative position of the system to deal with the
precision requirements that come with the proximity of a qualitative event
and the variation speed.

The introduction of a variable quantization is developed in the works on
quantized states system (QSS) simulation [132, 133, 134]: these works intro-
duce themodification of the quantization precision to deal with the important
gradient of a system’s evolution. In [132], the process aims at representing
piece-wise linear functions using piece-wise constant functions by approxi-
mating the values of the original function on a discrete quantization grid ap-
plied on the system state space. Any continuous function quantized with such
a process then becomes a step function, with a distance between two sets that
depends on the quantization precision.

The quantization of the state space takes place with the definition of rect-
angles, which define a partition of the initial space on which each possible
value included in the same rectangle will be associatedwith the same abstract
value.

Defining a quantization for the numerical simulation can be efficient in
saving computation resources if the quantization precision corresponds to
the imperatives of the system and to the current simulation step.

However, any reduction of the integration step will modify the require-
ments for quantization precision. A smaller time step will imply more regu-
lar computations and, therefore, a stronger deviation when the uncertainty
caused by the approximation is consequent.

Therefore, the challenge is to define a relation between these two ele-
ments under the form lt = f(li, ht) with lt the quantization precision at a
time t, li the initial precision at the beginning of the simulation and ht theintegration step at time t.

Modification in the quantization step is a tough process as improving the
computation time is an important stake, but the risk of losing too much infor-
mation is to be considered. As there is no opportunity to regain knowledge
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during the simulation, any loss is definitive and must be avoided.
Using the abstraction algorithmdeveloped in chapter 4 and the Lie deriva-

tive formula, the qualitative model exhibits the qualitative behavior, which
includes all the theoretically possible trajectories throughout the set of com-
puted qualitative states and, therefore, perfectly delimits the normal opera-
tion of the system. Implementing this knowledge in a qualitative pilot offers
the possibility to adapt the simulation step to the situation in order to avoid
errors and unplanned transitions and optimize both computation time and
precision.

Using the same logic, we quantized the state space of the system when
building the semi-qualitative model that we use to supervise the quantitative
simulation. However, our experiments showed that we need more informa-
tion and smaller quantization rectangleswhenwe reduce the integration step.
Otherwise, we accumulate errors too fast and drift too far away from the real
trajectory. A solution is to adapt the quantization to the current time step. For
this, we use a function that takes as input the initial state space precision and
the current integration step and returns the current quantization. Thinking
in terms of order of magnitude, we could choose the size of the quantization
rectangle as d = h×di, with d the current quantization step, di the initial one,and h the current integration step.

It is to note that just as in [40], we thought about adapting the quantiza-
tion precision to the contractive or expansive nature of the flow functions: a
contraction will allow more uncertainty around the real value and, therefore,
have given more margin to use bigger quantization grids.

However, given the difficulty of studying the derivatives of the flow condi-
tion in the general case, this possibility was not implemented.

7.2.5 . Results and limits
In this section, we apply our approach to a Brusselator (see Example 1 on

page 10) and compare the results to other methods. We made many simu-
lations starting from different initial points, but we show the results starting
from the (5, 4) initial point. Other starting points gave similar results. We stop
the simulation at time 10. For the quantitative simulation, we used the Euler
method. Everything was implemented in Python. For all the plots shown here,
abscissas and ordinates correspond respectively to the values of x and y.
Fully Adaptative vs. Fixed Integration Step

First, we choose a = 1 and b = 1.7 to make the system convergent. The
initial integration step is set to h = 0.1. Our results are pretty close to the
actual behavior computed with precise numerical methods (see Figure 7.3).
In contrast, a fixed-step model with a time step of 0.1 diverges completely
from the real solution and has already left the validity area of the differential
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Figure 7.3: Real brusselator simulation behavior (blue) vs. the results obtainedwith our adaptive simulation (orange)

Figure 7.4: Single-step brusselator simulation with h = 0.1
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equation with a negative value of y after only one step (see Figure 7.4). When
pushed further, this simulation diverges to give meaningless results.

To obtain results similar to those given by our approach, we have to use
a fixed integration step h = 0.01. However, this leads to the computation of
1002 steps in 0.08 seconds, while our approach computes only 290 steps in
0.07 seconds.

To illustrate the importance of that difference, we show the same kind
of results with a = 1 and b = 2.7, which makes the system divergent and
changes the stopping criterion to a fixed number of steps. The results are
shown in Figure 7.5 and Figure 7.6.

This example shows that our approach computes an entire cycle of the
behavior in 280 steps. On the contrary, the fixed integration step method
requires more than 800 steps, as shown in Figure 7.7.

The difference with our approach is particularly visible when the values
stay far from the nullclines. In these areas, our semi-qualitative model effi-
ciently supervises the numerical simulation, taking advantage of the fact that
it is useless to keep a small time step when there is no chance of having some
brutal change in the derivative or the values of x and y. This saves execution
resources that can be better used in critical areas where they are needed.

On a simple system like the Brusselator, dividing the total number of sim-
ulation steps by more than three does not yield a big improvement in execu-
tion time. However, on complex systems withmany components, where each
step is more costly, we believe that the improvement will be more impressive
and that the extra computations we perform to supervise the simulation will
save more time than they consume. This has still to be verified on a more
significant use case.

To complete the comparison, we showhow false transitions are generated
with the fixed integration step method when it gets near the two nullclines.
Figure 7.8 shows the result of the simulation with a fixed integration step of
0.025 on one full cycle of the system. Transitions are represented as colored
arrows on our figures. We can see that when we get near the two nullclines,
five false transitions should not exist. This is easily understandable, consid-
ering that when both derivatives have a low absolute value, a change of sign
completely reverses the total derivative of the system. On the contrary, when
one of them has a high absolute value, a change of sign of the lower one does
not significantly influence the total derivative. Yet, the inability to react quickly
in the presence of a sufficiently high derivative causes another deviation.
Partially Adaptive Models

To better understand the role of the two kinds of adaptation of the integra-
tion step we use in our model, we ran the simulation with partially adaptive
models.
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Figure 7.5: Execution of our adaptive algorithm with 280 steps

Figure 7.6: Fixed integration step (0.01) with 280 steps
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Figure 7.7: Fixed integration step (0.01) with 800 steps.

Figure 7.8: Fixed integration step of 0.025 and false transitions
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Figure 7.9: Comparison between the reference behavior (blue) and an execu-tion using qualitative event proximity adaptation only.

Figure 7.10: Comparison between the reference behavior (blue) and an exe-cution using high derivatives adaptation only.
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Figure 7.9 shows the result of a full-cycle simulation when the integration
step (initially set to 0.025) is only adapted to the proximity of the nullclines.
Significant errors appear very quickly when the state variables vary rapidly
but are corrected progressively when the derivatives are low. Hence, the ap-
proximation of the limit cycle is still quite good and we observe three false
transitions. Figure 7.10 shows the result of a full-cycle simulation when the in-
tegration step (initially set to 0.025) is only adapted to the variation rate of the
variables. The approximation is better in the area where the variables evolve
rapidly. Still, we observe as many false transitions as before due to the lack
of precision near the two nullclines.

This shows that the combination of both adaptations is required to get
good results with a reasonably sized initial integration step.
Perspectives and limits

As a result, we can upgrade the precision of a numerical simulation compared
to a constant-step execution and get results with initial time steps that would
not have allowed a classic simulation to work. The detection of the precise
moment of the transitions is alsomore accurate because adapting the simula-
tion step near the neighborhood limits implies that any post-transition point
will be in immediate proximity to the transition border. Consequently, the
deviations caused by late detection of the transition threshold decrease. We
also noted a reduction of false transitions caused by significant inertia on the
variation of the variables when some derivatives have high values. As the sim-
ulation controller automatically reduces the time step in these situations, the
inertia is canceled due to the high number of computation points. It does not
cause any false transition that could completely deviate the simulated trajec-
tory from the actual behavior. Moreover, the execution time of an adaptive
simulation is far lower than that of a precise simulation with constant and
small time steps. The simulator saves time when the system is not in any
proximity zone and has no high derivative among its variables. It keeps it for
areas of the state space where we seek precision and reliability. Therefore,
simulation piloting using qualitative reasoning offers an interesting trade be-
tween time complexity and result precision. Now that we can nearly automa-
tize the creation of such a qualitative pilot, it is almost possible to generalize
it to any kind of CPS expressible with ODE dynamics. We still need to define
some parameters, such as a reference time-step that strongly depends on the
working context of the system and that a general rule cannot choose for any
CPS. We will also have to fully automatize the definition of such a pilot using
the qualitative analysis presented above.

Still, some limitations remain that prevent us from generalizing this func-
tionality to any system and fully automatizing the creation of this qualitative
pilot.

120



The limit value imposed to maxi(⌈logk(|Ẋidt|)⌉) will depend on the re-
searched precision of the model, which is not something automatically quan-
tifiable. Therefore, the intervention of a human agent is required. Moreover,
it also strongly depends on the case studies, the system’s nature, and the
stakes around the simulation. All these parameters create an important com-
plexity around the choice of the bounds, and the translation of the system’s
constraints to a numerical bound is a very difficult task.

The choice of the reference time steps poses the sameproblem: Is it realis-
tic to choose a generic simulation step thatmay be used for any type of system
in any possible use case? And if not, how do we translate the systemic and
situational constraints to an algorithm that could choose an adapted value?

In the next section, we develop a generalization of these ideas in a con-
nected context, which is the monitoring of systems for real-time execution.

7.3 . Real-Time System Monitoring

The different stakes developed in the case of model simulation can be
transposed in the situation of system supervision: the need to avoid unex-
pected transitions, the loss of precisionwhen the state variables have a strong
variation with respect to time, and the requirements of improving the execu-
tion time without impacting negatively the precision of the operations. The
constraint of precision in the occurrence of events is even more important
than in simulation, as rollback is not possible in real-time execution. In this
situation, the integration step is replaced by the sampling frequency, and the
quantization precision is equivalent to the sensor accuracy.

Themain difference between the two contexts is that the presence of sen-
sors in a systemmonitoring situation implies that the loss of knowledge is no
longer definitive. If a numerical simulation can generally not claim back infor-
mation once lost, amonitored system can rely on its sensors to get knowledge
back and counterbalance the precision sacrifices to save computation time.
This difference completely changes the stakes, as the lack of precision can be
solved at any moment depending on the requirements of the situation. Once
again, qualitative reasoning has an important role to play in the choice of the
sampling instants and frequency and in the required precision of the different
measurements.

The areas of interest in the case of systemmonitoring aremainly the same
as in numerical simulations: they aremainly composed of the proximity areas
around the nullclines defining either qualitative events or specific use case
constraints or landmarks, and areas where one or more variable exhibits a
high variation speed in the system’s reference. As such events are to be de-
tected before occurrence in order to adapt our expectations of a real-time
system, the proximity of a guard frontier is critical knowledge that can be valu-
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able in the case of system monitoring. Moreover, if rollback is considered a
last-resort solution for numerical simulation, it is not even an option for real-
time system monitoring. Therefore, we proposed to use our qualitative map
to adapt the sampling step to the qualitative position of the system.

7.3.1 . Sampling step adjustment
Let qp = (m, qs, qz) be the qualitative position of the system S at a time t

with respect to the definition 43. Whilem gives knowledge about the dynam-
ics of the system and its movements to come, and qs can be used to explicit
the possible future qualitative transitions and, therefore, the current risks at a
given time, qz will inform the operator about which of the identified unwanted
event is the most likely to happen at a given point and therefore where the
focus should be on the short term. Just as for guided simulation, the interest
given to a qualitative zone is then expressed using the same criticality factor k
than in section 7.2, whose value will grow with the importance of the consid-
ered zone. And just like the simulation step, sampling frequency will increase
with the value of k. As each qualitative position is associated with a value of
k, it must also be associated with a sampling frequency. If we consider fref tobe the initial sampling frequency and the default frequency when k = 1, the
sampling frequency fs will evolve following a function f(fref , k) that will haveto be defined according to the system andmonitoring requirements. As in the
previous section, the geometric and logarithmic relations were envisaged.

7.3.2 . Measurement quality and state space quantization
As evoked in section 7.2, one major drawback of qualitative reasoning

is the loss of information due to the abstraction of numerical values. Once
abstracted, the only known method to obtain numerical information from a
qualitative space is to use the concretization function [35], which uses the
constraints defining a qualitative state to deduce the corresponding numer-
ical values. From this perspective, the case of real-time system monitoring
seems to be a perfectly fitting application domain to qualitative reasoning, as
the ability to use sensors to gain information offsets the induced knowledge
loss. When the quality of the knowledge about the state variable is not suffi-
cient or when one wants to compare the actual trajectory of the system with
the expected behavior, one just has to require new measurements from the
system sensors in order to refresh and update the numerical knowledge of
the system. This possibility is particularly useful when the qualitative behav-
ior tree exhibits a split between two branches and when the prediction of the
trajectory is not trivial or ensured. In this situation, the presence of a con-
cretization function β does not make sense, as calling the sensors is enough
to get a precise numerical state. Therefore, the choice can be made to adapt
measurement accuracy to the value of k of the current qualitative zone. This
allows optimization of computation time in state space areas where precision
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is not required and the focus only on zones corresponding to critical situa-
tions. Moreover, one can also modify the quantization precision of the state
space in order to adapt the computation complexity and precision, depending
on the need for reliable knowledge. This position is somewhat similar to the
works onQSSmethods [132, 135], where the quantization precision is adapted
to the requirements of each simulation step (mainly to deal with flow varia-
tion). This point also raises the possibility of using more than one criticality
factor and decoupling the precision requirements for the different variables:
this implies updating some variables’ values more often than others depend-
ing on their variation speed and the distance to the nearest events projected
in their dimension.

In our experiments, we made the choice to fix the minimal quantization
precision to 1% of each value and to upgrade it as much as possible when re-
quired. This is a very generic approach, but the choice of a policy will strongly
depend on the system’s nature and use cases. It is, therefore, impossible for
now to highlight a general rule on this point.

7.3.3 . System stopping criteria

If the monitoring of the system is to be automatized, one has to define
stopping criteria if something unplanned were to happen.

Such criteria may be both qualitative and quantitative. The first ones are
simpler to define as they match our qualitative modeling of the CPS. A quali-
tative criterion could be the violation of an invariant condition or a change of
qualitative state (both represented in our model by qualitative events). Qual-
itative transitions are stored in the behavior tree as the technically possible
invariant violations; such conditions are convenient to anticipate and verify
using a qualitative model. To this extent, one can call the abstraction function
αp after every measurement to get the corresponding qualitative position of
the measured value. This position must have its validity checked and com-
pared to the abstraction of the previous measurement in order to know if a
transition took place. If it indeed happened, the existence of this transition in
the behavior tree must be verified.

If the qualitative position or the previous transition is not valid, we can
deduce that the system exhibits an invalid behavior and that there must have
been a malfunction. Stopping the system to avoid further error propagation
is then necessary.

The other category of stopping criteria that can be developed is based on
numerical analysis. It consists in a comparison between the last measured
state variables values to reference values previously obtained by numerical
simulations or by uncertainty propagationmethods such as flow-pipe [39, 41].
This intersects with sampling frequency adaptation as the deviations are likely
to appear in the state space areas involving sharp movements. The next step
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is the choice of a maximum authorized error threshold, either expressed by a
maximum distance to the expected trajectory or by a limit rectangle that the
trajectory should not leave.

7.4 . Application to Design Space Exploration

As explained in the introduction (see section 3.2 on page 43), the first sig-
nificant element required to process the exploration of the design space is an
adapted representation of themodel. Using a discretization process, we get a
qualitative representation of the system corresponding toQM = ⟨Q,X,B, F,

I, T, P ⟩ with B a mapping from each mode q in Q to a set of qualitative bor-
ders defining the qualitative state they separate. The qualitative states are
then represented as an array of {−1, 0, 1}, showing the position of the corre-
sponding state with respect to each frontier in B. This representation can be
applied to fully designed systems or more abstract ones with non-valuated
parameters in P . The second case implies the impossibility of computing the
transitions between qualitative states, as this knowledge requires the com-
putation of the sign of the Lie derivative [35] to deduce the allowed transition
directions. For a polynomial pwhose zeros define a border of the system, the
Lie derivative corresponding to p can be written as

LX(p) =
∑
Xi∈X

∂p

∂Xi

∂Xi

∂t

Determining the sign of this expression requires the ability to fully evaluate p

and the derivatives of all the variablesXi.As DSE requires optimization criteria or necessary constraints, it is pos-
sible to integrate these elements in the construction of the frontiers during
the abstraction process. If R(P,X) ∈ Kn+m is a predicate on X and P that
should be satisfied by the system, then the equations composingR(P,X) can
be considered individually to define new borders.

7.4.1 . Parameters evaluation
The second necessary aspect of DSE is the choice of an analysis method.

When a value or a subset of values is available for P , it is essential to test its
pertinence using an adapted solver. Many behavioral properties of a dynamic
system can be conveniently represented using temporal logic [136]. However,
predicate satisfiability for temporal logic is more complex and costly than
first-order logic (FOL) evaluation. Moreover, qualitative reasoning gives us an
adapted support to reason on first-order logic predicates. We will limit our-
selves to the properties expressible as FOL predicates to apply the possibili-
ties of qualitative reasoning. This choice implies representing the behavioral
constraint we want to express as predicates.
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For example, let us suppose we want a deterministic behavior for the
system modeled through its discretization in qualitative states. In that case,
we may wish to have a direct transition from the qualitative state (m1, s1)to (m1, s2). In temporal logic and considering a temporal structure (T, <),
we could write the predicate corresponding to a necessary transition qs =

(m1, s1) U qs = (m1, s2) with s1 and s2 qualitative states of the system in
mode m1, i.e., abstractions of values of X following an abstraction function
adapted to the system. In FOL, we could write it using the Lie derivative such
that (m1, s1) =⇒ ∀ b ∈ B(m1, s1) \B(m1, s2), LX(pb) ∗ pb(s1) > 0 ∧ for bf ∈
B(m1, s1) ∩ B(m1, s2), LX(pbf ) ∗ pbf (s1) < 0 where B(m1, si) is the set of
borders defining the qualitative state si in the mode m1 and pb the polyno-mial function whose zero corresponds to b. This predicate corresponds to the
evaluation of the sign of eachLX(pb) and its comparison to the evolution of pbafter crossing the corresponding qualitative frontier. A qualitative description
of the system gives us a convenient toolbox to express the dynamic logic of
the system as first-order logic predicates.

In our case, we keep using Z3 as it perfectly handles property verification
on parameter values. We use it as a Python library and create a solver s to
which we add the constraints on the system’s design, as will be shown later
in the algorithms we use for DSE. The command s.check() returns the satisfi-
ability of the created problem under the given constraints. Compared to con-
straint solving on the state space, the main difficulty here is that there must
be many calls to the solver to fix a value or a set of values of P that verify the
constraints.

7.4.2 . Design space exploration
The last element of an efficient DSE is an optimized research method to

choose the values or the sets of values of P . As already mentioned, we as-
sume that the design space is bounded. To develop a research method, we
have to separate two prominent cases depending on the nature of the design
space.
Finite Design Space

In the literature, DSE methods are mainly adapted to optimize the search for
solutions in finite design spaces. Many practices have emerged, including ge-
netic algorithms [137], machine learning methods [138], and other discrete
optimization methods. We chose to exploit the permissiveness of the SMT
solver Z3 to use branch-and-bound to specify the different parameters of P
sequentially without dealing with every possibility. In branch-and-bound, we
compute for each parameter pi of P the satisfiability of the constraints set
for every proposed value vi,j associated with every satisfiable combination of
vk,l for k < i. Here, vi,j corresponds to the jth authorised value of the ith ele-
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ment of P . By cutting the branch of the non-satisfiable partial combinations
ofP1−i, we save the computation time that could be lost to test trivially impos-
sible solutions. This algorithm is detailed in Algorithm 3, where possibleConfig
retains the authorized partial evaluation, allowing the constraints Constr to be
satisfiable. The function toConstr transforms the instantiation of the current
parameter pi to a constraint expressed as an equality. This new constraint is
noted newConstr, and its conjunction with Constr is noted compConstr. DP [pi]contains all the authorized valuesvi,j of the component pi of P . The operation
pre+v corresponds to the association of the authorized partial configuration
pre of the pk, k < i with the considered value v of pi.

Data : P, DP , Constr
Result : Possible values of the parameters in P

possibleConfig = [[]] ∗ length(P )
for i ∈ (0, length(P )− 1) do

p = P [i]
for pre ∈ possibleConfig do

for v ∈ DP [p] do
newConstrs = toConstr(pre+ v)
compConstr = newConstr ∧ Constr
s = SMTsolver
s.addConstraints(compConstr)
an = s.Check()
if an == SAT then

possibleConfig [i+ 1].append(
pre+ v)

)
end
if isEmpty(possibleConfig [i+ 1])
∧ i < length(P )− 1 thenStop

end
end

end
end
return possibleConfig

Algorithm 3 : Branch-and-Bound algorithm.
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Infinite Design Space

Although the exploration of a discrete design space is often practiced on fi-
nite discrete sets, developing the same techniques for continuous or infinite
research spaces can be crucial. We develop an approach based on dichotomy,
i.e., a successive partition of the search space into two distinct parts. For a sin-
gle parameter p, we define a minimum width of the remaining definition set,
and we subdivide it until we find that there is no solution in the set or that the
current width of the set is smaller than the minimum width. The algorithm is
shown in Algorithm 4, where DichotomialCut(Sp) proceeds to a split of the
set Sp. In the general case, if Sp is an interval onR, noted [a, b], the separation
is completed by computing the center of the interval c = a+b

2 . Otherwise, if Spis composed of many convex non-contiguous sets, the separation is done by
splitting Sp between two non-contiguous components. minSize corresponds
to the criteria onmax(∥a− b∥)a,b∈set to stop the splitting process. As in Algo-rithm 3, Constr represents the set of constraints on the design parameters.
allowedSets contains all the explored sets and Boolean values corresponding
to the satisfiability of the design constraint on each of these sets.

To deal with multi-dimensional P , we can combine Algorithm 4 and Al-
gorithm 3 to use dichotomy on every pi ∈ P sequentially and to divide the
different combinations with a disjunction of cases.

Interestingly, we process once again to a discretization of a continuous
space just as in the state space partitioning. The obtained partition of DP is
based on the respect of the design constraints. Using anoptimization function
could also give more tools to refine such a partition based on its magnitude
and variation. Moreover, the computation of its derivative would allow us to
compute its critical points and, therefore, its maximums.
Non-Uniform Probabilistic Distribution

In the main part of the cases, DP is a subset of R and often takes the form
of an interval. However, in some situations, it may appear that the design
space does not take this form. For example, if prior knowledge is available re-
garding the probability of the different possible values, the set can no longer
be represented using a simple interval. Some works, such as [139], proposed
solutions using probability density functions to represent this irregular dis-
tribution. This can be seen as a generalization of the non-probabilistic case
considering that ∀ (a, b) ∈ R2 such that a < b, the interval [a, b] can be repre-
sented by a probability distribution following the uniform probability density
law U(a, b) on the same interval.

One can also represent discrete sets using discrete probability laws. There-
fore, it is possible to model many design spaces using probability functions.
Using the expression of the probability density function for each p ∈ P , it is
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Data : p, Sp, Constr, minSize
Result : Domain of possible values for p
allowedSets = []
Sb, Su = DichotomialCut(Sp)
for set ∈ {Sb, Su} do

newConstr = toConstr(p ∈ set)
ConstrTot = newConstr ∧ Constr
s = SMTsolver
s.addConstraint(ConstrTot)
an = s.Check()
if an == Unsat then

allowedSets.append((set, False))
else

if max(abs(a− b))a,b∈set < minSize then
allowedSets.append((set, T rue))

else
allowedSets.concatenate(
Dichotomial search(
p, set, Constr,minSize

)
)

end
end

end
return allowedSets

Algorithm 4 : Dichotomial search algorithm
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possible to pick values of P according to these density functions and combine
this biased selection with the previously presented methods. However, this
way of exploring the design space better fits the classical numerical simula-
tion verification as it also applies gradient descent to orient the choice of new
values for the next simulation. It constrains the differentiability of the utility
function according to the researched element. This also corresponds better
to the selection of the variable’s initial values than to parameter valuation.

7.4.3 . Experimentation
At this stage of our research, we have not been able to apply the presented

algorithm to concrete cases, and we did not set up a test benchmark either.
We planned to test these algorithms on both simple systems such as a Brus-
selator system, with positive parameters a and b and state variables x and y,
whose dynamics is given by Equation 2.1, and on more complex ones such as
the Lorentz system, with positive parameters σ, ρ and β and state variables x,
y, and z, whose dynamics are given by Equation 7.4.

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz

(7.4)
Both systems exhibit different behaviors depending on the value of their

parameters. The convergence or periodicity of such systems is an essential
element in the trace of a system, so we will try to express the sets of validity
of the convergence of each one for finite and continuous sets of allowed val-
ues. If our method allows us to obtain sufficiently precise results correspond-
ing to theoretical calculations, it will be possible to consider further analysis
and computation to improve the efficiency and the generality of the process.
However, to consider the result interesting, it will be necessary to measure
the computation time of our tests to ensure that there is either a gain in com-
plexity, permissiveness, or generalization.

7.4.4 . Perspectives and future works
The next step to perfectly combine our different subjects would be to ex-

press the properties of the state space and the solution of the various con-
straints on the variable X depending on the chosen value of the parameters
P . The validity of a predicate would be expressed as X = f(P ) for the sub-
set of DP that allows these predicates to have a solution. To achieve this
goal, we searched many different methods and looked at other tools, such
as modal solvers or Wolfram Alpha, which give encouraging solutions in that
direction. However, it does not generalize well for systemswith toomany vari-
ables. Other tools that have been studied allowed this type of resolution but
only for low-degree polynomial functions. There is no possible generalization
for now.
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8 - GENERALISATION

As our works follow and complete works focusing on polynomial systems,
the proposed abstraction methods were designed mainly for systems with
polynomial constraints and dynamic equations. This is due to the simplicity
of polynomial equations resolution until a certain degree, while more general
functions do not offer such convenience for resolution. As polynomials are
almost the simplest mathematical functions to manipulate, the framework
of the polynomial system is very advantageous but still quite limited. It is,
however, possible to generalize this work to other categories of functions,
such as rational functions.

Depending on the nature of the considered equations, the abstraction
process will be different in order to fit the technical constraints of the state
space discretization process.

8.1 . Rational Functions

Considering that every rational function can be written in the form p1
p2
with

p1 and p2 two polynomials, the set of all rational functions on the variable set
X andwrittenK(X) can, by definition, be expressed as a product of setK[X]∗
(K[X]∗). Therefore, computing the zeros of a rational function is equivalent
to computing the zeros of its numerator polynomial p1 and verifying that theydo not match with the zeros of its denominator p2. This implies that Sympy
and Z3 solvers, primarily thought for polynomial functions, can perfectly deal
with rational equations.

Moreover, as it is easy to prove that K(X) is closed under the deriva-
tion just likeK[X], manipulating rational functions for state space abstraction
does not change the situation for the computation. It makes the resolution
more complex and the execution longer. However, as computing the quali-
tative map is an offline operation, the computation time does not constitute
an important criterion. The qualitative model is supposed to be generated
before the execution of the processes (be it a simulation or the monitoring of
the system) that use it.

The main problem will be the apparition of a singularity area near the
poles of the fractions, which will cause the qualitative borders to have unpre-
dictable shapes.

In spite of this inherent complexity, the generalization of our process to
rational fractions does not pose major problems.
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8.2 . Qualitative Tendencies and Hybridization

One of the limits of our state space abstraction process is that it strongly
depends on the ability of the symbolic solvers to find the zeros of the sys-
tem’s polynomial equations. Consequently, it can exhibit difficulties when in
the presence of high-degree and multivariate polynomial equations. A solu-
tion to circumvent this problem would be to apply a new abstraction process
of themost complex equations to decompose them into local and simpler ex-
pressions that would still exhibit the same qualitative characteristics but with
a smaller complexity.

Our objective is to extend the notion of OG to local rectangles to offer a
qualitative abstraction of the functions of a system using piecewise decompo-
sition. To this end, we will combine the tools presented earlier to propose a
qualitative local categorization and simplification of the equations of amodel.
We will then reduce the complexity and make the model’s behavior easier to
understand at the price of a loss in precision.

This function abstraction based on a state-space subdivision is strongly
inspired by the concept of hybridization [140]. In our case, we propose to
create new operating modes for each sub-space of the state space of a mode
depending on the dominant term (which we call qualitative tendency) in order
to consider only the most influential terms in every area to deal with more
complex expressions.

Let us consider the evolution of a variable y that varies according to the
function y = (t− 3)3− 4 ∗ t2− 2 ∗ t. From a global point of view, the observed
behavior of the variable will be that of a classic cubic function, with two phases
of polynomial growth separated by a decay phase. On a small scale, this decay
period is essential to determine a stop in the increasing qualitative behavior
observed earlier. However, on a larger scale, if we are just interested to know
the difference of magnitude at two times t1 and t2, this decrease period has
no interest: the tendency tells us that the variable followed a cubic growth
between t1 and t2. This difference between general behavior and local trajec-tory is the center of this contribution. Depending on the level of granularity
and the information we seek, we can adapt the expression of the equations
of a system to optimize its study without altering the results.

8.2.1 . Dominant terms and qualitative tendencies
As exposed in section 4.3, complex polynomials can become a problem

if the capacity of the solver is exceeded. This can happen when X is com-
posed of many variables and if the treated polynomials are of high degree. To
keep these case studies in the range of qualitative reasoning, we worked on a
function abstraction process [141] based on order of magnitude [111] and OG
reasoning. After having defined a reference value vi,m for every component
Xi ∈ X and every mode m ∈ Q expressing the anticipated order of mag-
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nitude of the variable Xi in the mode m and set of negligibility criteria νi,m,the process applies a hybridization method [93, 140] to abstract each func-
tion considered as too complex in a piece-wise continuous simplified function,
keeping for each sub-division of a mode state space the terms considered as
dominants and suppressing the termswhose impact on the dynamics are con-
sidered as locally negligible. Hybridization is often used to simplify continuous
complex systems by transforming them into a hybrid system that reproduces
their properties and behavior. The idea of hybridization consists in approxi-
mating a too-complex continuous vector field by a hybrid system with a col-
lection of simpler (constant, affine, or even polynomial) vector fields [140]. In
the case of already hybrid systems, it would lead to splitting eachmode of the
system into several modes with simpler equations. The comparison between
the different terms of an equation is possible using OMR [113]. More precisely,
as OMR can be either absolute or relative [113], we especially use relative OMR
to perform a comparison between the relative magnitude of an equation. Ab-
solute OMR compares different variables to a set of fixed reference values,
while relative OMR compares variables with each other as long as they are
comparable. The different comparison systems use their own operators, but
the operators Neg (Negligible) and Vo (Neighbor) seem to make a consensus.
We also chose to use Co (Comparable) from Rom.

Relative OMR andOG reasoning give a good basis for abstracting the func-
tions defining the CPS. In the case of high-degree polynomials, equivalent
classes impose the monomials of different OG to have different behaviors to
infinity. Consequently, monomial terms of different degrees applying on the
same variable ofX or parameter can be simplified if the considered variable
reaches sufficiently high values. The chosen negligibility criterion associated
with the variable gives the threshold authorizing this abstraction.

Theprotocol to apply relativeOMRandOG reasoning for polynomial equa-
tions is as follows.

After separating each of the target equations into monomial terms, the
algorithm will discretize the state space based on the relative prevalence of
each of the monomial terms on the others to create a piecewise continuous
function constituted of sub-functions simpler than the original one. Each sub-
function will correspond to a new mode of the qualitative model, meaning
that hybridization is applied to each mode separately. The abstraction of the
original function in each of these newly created modes is called qualitative
tendency of the function (see definition 44). It increases the number of oper-
ating modes of the qualitative model and the computation capacity for each.

Definition 44 (Qualitative tendencies) If f : Kn → K is a function on K,
let fr be the piece-wise continuous function abstracting f obtained accordingto the previously presented instructions for negligibility criteria νXi for each
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variable Xi. We call qualitative tendencies of f the continuous functions fidefined on a rectangle of Kn composing a continuous section of f .

Qualitative tendencies are thus defined as the sections of the abstracted
formulation of the equations of the system. It corresponds to a subspace of
the state space where the respective orders of magnitude of the variables
and where the local magnitude or growth of the equation implies a specific
influence relationship between its different terms. In the case of equations
involving different variables, the homogeneous terms are compared to each
other as the presence of an addition supposes a physical homogeneity in the
added terms. As example, consider a function f : x 7→ x3 − 2x2 − 2 defined
on R. If the negligibility criterion is chosen to be of 0.1 (meaning that xNe y
if |x|

|y| < 0.1), then the obtained abstracted piecewise continuous function can
be expressed as

fp =



−2 if |x| ⩽ 1√
10

x3 and x2Ne 2

−2x2 − 2 if 1√
10

⩽ |x| ⩽ 1
3√10

x3Ne 2 and x2

x3 − 2x2 − 2 if 1
3√10

⩽ |x| ⩽
√
10

x3 − 2x2 if√10 ⩽ |x| ⩽ 10 2Ne x3 and x2

x3 if |x| > 10 x2 and 2Ne x3

It is also possible to slightly change this expression tomake the abstracted
function continuous on R by evaluating the suppressed terms on the discon-
tinuity points when the continuity of the abstraction is a constraint. This mod-
ification requires a few more computations but does not radically change the
process or the result.

This way, it becomes possible to create another qualitative model of the
same system, which will contain less precise and more artificial frontiers, but
it will guarantee the possibility of processing and refining the model better
than with high-degree polynomial equations.

8.2.2 . State space sub-partitioning
The point is now to apply this partition based on OG to study the different

equations of the model and to map their behavior in the state space. As men-
tioned earlier, the approximated behavior of a variable depends on the scale
and the time of observation. To know which abstraction will be authorized,
we must first confront the equations to the magnitude taken by the variable
in the state space and then study the time slot we are interested in. This will
require a mapping of the state space that associates each set of the partition
to the dominant terms to be kept in the approximated equation. To take our
first example back, the dominant term of the function x 7→ x2− x+1 will not
be the same depending on the current value of x. If we choose a negligibility
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criterion of 10%, then the dominant term on (−∞, 10] and on [10,+∞) will be
x2, the dominant one on [−0.1, 0.1] will be 1, while there will not be a single
dominant term on [−10, 10] \ [−0.1, 0.1].

We achieve this mapping by analyzing the different terms of each equa-
tion and its variables, giving importance to the different terms in each area
of the variation space. Theoretically, it is possible to extend this manipula-
tion to logarithmic-exponential functions. However, for practical reasons, we
focussed our tests on polynomials only.

First, we explore the state space by analyzing the definition space of each
variable to avoid making useless computations. For example, we know for a
closed chemical reaction that the total quantity of one component will not ex-
ceed the sum of the initial quantity of all the components and that its density
will not exceed 1 by the definition of this variable.

Using the system’s equations and negligibility criteria, it is possible to au-
tomatize the model simplification with symbolic rules (particularly regarding
the degree of the monomials of a polynomial equation). Polynomials can be
studied using solvers to compute their zeros. Each termmust be studied sep-
arately and compared to the rest of the function using the negligibility crite-
ria and the scale chosen for this dimension of the system. This comparison
will imply their ranking between known landmarks where their local orders of
growth converge.

Each monomial function has an OG equal to its order. The resolution of
the equalities between the monomial terms in a function is necessary to an-
ticipate their dominance inversion.

The symbolic rules will have to be adapted to the negligibility limit. How-
ever, we can express them as: f(x) = o(eg(x)) for every f and g two polyno-
mial functions if x > vx, with vx the characteristic unitary value of the vari-able x (corresponding to the most suited magnitude for the values taken in
the system), or m(x) = o(n(x)) if m and n are two monomial functions with
c(n)− c(m) = k > 0 and x >

√
vx

k.
In the case of multi-variable functions, we first require a factorization tool

to separate the variables in the expression of the function. Once this step is
accomplished, we treat the univariate monomials just like in a classic polyno-
mial, treat the polynomial factors as if they were independent, and apply the
simplification in the complete function. When a product of many factors can-
not be simplified, we prefer not to simplify it because of the many influences
it merges. The result is a product of simplified polynomials that we consider
our final function.

The landmarks of the partition are placed where there is equality between
different components of the same equation. Around these landmarks, we
place an area of qualitative equality, where even if the components are not
equal, they are considered comparable, being too close to neglect one.
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Therefore, for a function f composed of n monomials fi, we study sep-arately the fi one after another. We inject them in a target function fp ini-
tialized at 0 such that we compute and solve the inequalities |fi| < |fp|

vf
and

|fi| > |fp| ∗ vf . In the intervals obtained by computation of these inequalities,
we consider respectively that fi is negligible compared to fp (meaning that in
this interval, the expression of fp will not evolve) and that fi dominates fp, (inthis case, we then impose on these intervals that fp = fi). On the rest of thestate space, we add fi to fp as they are comparable.

8.2.3 . Property preservation

As already mentioned, any model and, therefore, abstraction of any sys-
tem cannot preserve perfectly every property of the initial system [2]. The ab-
straction of high-degree polynomials will, therefore, imply a loss of knowledge
and precision in the representation of the system’s properties. If an equation
defining an important aspect of a system is to be abstracted using qualitative
tendencies, onemust first decidewhich of the initial equation’s characteristics
must be maintained in the abstract model.

The challenge would then be the translation from this requirement (ex-
pressed in natural language or with logical and mathematical predicates).

As the state space abstraction process presented in chapter 4, following
the equation abstraction of this section, uses the polynomials to compute
their zeros and the zeros of their derivatives, an accepting condition to ab-
stract the polynomials would be the preservation of these zeros and of the
extrema (corresponding to the zero of a derivative) of each equation so that
the transition conditions would be exact and would not cause a gap between
the original and the approximate nullclines. The preservation of the zeros and
extreme points is a real stake because all the qualitative characterization of
numerical values is based on the sign of the systems equations and of their
successive derivatives. If the sign of some of these equations is miscomputed
because of their abstraction, the resulting qualitative state will be wrong. If a
numerical error can be tolerated if limited to a decided extent, a false quali-
tative abstraction has more harmful consequences. A change in one digit of
the qualitative state expression can invalidate a major predicate of the sys-
tem behavior and completely destroy the coherence of the reasoning or of
the simulation.

In order to preserve the zeros and extrema, the abstraction process must
avoid any under-approximation in the areas where the original function may
change its sign or meet an extremum. Consequently, if the studied function
f can be expressed as a sum of monomials f =

∑k
i=0 fi, the abstraction pro-cess should authorize a simplification on the area Ea iff there exists a unique

i ∈ J0, kK such that ∀x ∈ Ea, ∀ j ̸= i, |fj(x)| ≪ |fi(x)|. If there are multiple
dominant terms that are neighbors or even comparable, the order of magni-
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tude of a sum of such terms is not determinable.
Consequently, the existence of multiple dominant terms in a single area

stops the simplification process in this subspace, as the sum of two terms
whose orders of magnitude are close cannot be positioned and could be neg-
ligible to other terms of the initial equation. This situation can happen in mul-
tivariate polynomials, such as f = 3x20 − 2x41 − x0. In the subspace defined
by the inequalities √νfx21 < |x0| <

x2
1√
νf
, the two monomials of highest de-

grees are comparable, and the term x0 cannot be neglected because its valuecould change the sign of f if the monomials of same magnitude have a dif-
ferent sign. Otherwise, adding the study of the sign of each monomial can
be considered, but this possibility is limited to the systems taking values in
Rn. Moreover, this functionality would clearly increase the complexity of the
abstraction process as both magnitude, sign, and operators will have to be
studied, which will explode the number of cases and new modes emerging
from the hybridization.

8.2.4 . Bounding the error
In this section, we present theoretical justifications that the obtained ap-

proximations give an error that we can confine or prove as negligible com-
pared to the function itself. For zero order functions expressed as f = g + h

with h a term or a sum of terms negligible compared to g on an interval [a, b],
the error between f and its approximation fp = g is |h|, that we supposed
negligible. If we are interested in first order dynamics of f , then let us call
F =

∫ b
a f(x)dx+F (a) = Fx+F (a), and use the same notation forG andH . If

h is negligible compared to g on [a, b], then we can affirm that, using the inter-
mediate value theorem, g will not change its sign. As h≪ g, if the negligibility
criteria is ν, we have |h| < |g|

ν . Therefore,
∀t > a, |

∫ t

a
h(x)dx| <

∫ t

a
|h(x)|dx <

∫ t
a |g(x)|dx

ν
=
|
∫ t
a g(x)dx|

ν

This means that |Hx| < |Gx|
ν =⇒ Hx ≪ Gx. This way, we can propagate thenegligibility to first-order dynamics and, with a simple recurrence, to higher-

order ones. Moreover, with a simple property, we can affirm that∫ t

a
|h(x)|dx < (t− a) ∗maxy∈[a,b](|h(y)|)

which means that we can easily bound the final error on finite rectangles.
In the case of infinite intervals, the first part of the proof still holds. How-

ever, it is not possible anymore to limit the error as the functionmay not have
an extremum on it.

In the presence of non-rational transcendental functions such as expo-
nential, logarithmic, or trigonometric expressions, the ability of polynomial
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solvers to symbolically find the zeros of the equations does not hold anymore.
The previous propositions and processes do not apply to systems defined at
least partially by such equations. Therefore, abstracting the expressions be-
fore constructing a qualitative model is a necessity. Depending on the nature
of these functions, the abstraction possibilities will show various benefits and
precision.

8.3 . Periodic and Stochastic Functions

The previous paragraph focused on the abstraction of polynomial func-
tions, butmany systems exist that cannot be represented by polynomial func-
tions alone. Some of them imply periodic or stochastic terms in their expres-
sions, such as the SHSs. Our work on the OG and hybridization only applies
to polynomial functions, but we also propose other simplifications adapted
to other categories of functions, taking advantage of properties of periodicity
and randomness.

In the case of dynamic differential equations on long intervals, it is more
complicated to assume that we can neglect a term of the equation. Even if a
term is relatively negligible with respect to the main part of the equation, it
can still be necessary if the simulation duration is long enough because the
deviations will add up. As R is archimedean, adding too many terms that are
negligible compared to xn may give a result that is not negligible compared
to xn. Consequently, reasoning dynamically on orders of magnitude in long
time intervals has limitations. Still, some specific functions, such as periodic
ones, exhibit properties that can still allow us to make abstractions and sim-
plifications depending on their amplitude and frequency. If the system is rep-
resented by an equation f = g+hwith g non-periodic and h periodic, we aim
to know if it is possible to suppress or to replace h in the simplified expression
fp of f .

Let us consider the interval of study IT of length T . The frequency of h
will show if h is locally periodic, i.e. if we can still observe the periodic nature
of h when we consider only its local behavior on IT . When the period p of h is
larger or comparable to IT , then we can consider h as non-periodic, and the
reasoning of this paragraph does not apply. Otherwise, if p≪ T , the question
is whether it is possible to use this periodic nature to simplify the expression.
By definition, a periodic function varies in cycles around its mean value m,
with higher and lower values that will alternate. Our logic is to consider that
the lower and higher values may offset each other with enough periods in
an interval. To ensure that, we must first compute m on an entire period
to locate its value compared to the characteristic value vq of the associatedvariable (corresponding to the order of magnitude of the values taken by the
variable onwhich the equation applies). Let usmake the hypothesis that every
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function we deal with is at least piece-wise continuous and, therefore, locally
integrable. We can compute the mean value taken by the function on one
period with

h̄ =

∫ t+p
t h(x)dx

p

If m ≪ vq according to the chosen negligibility criterion, with vq the charac-teristic value of f , then the mean effect of h on the complete function can be
neglected (by definition of the negligibility). However, we still have to look for
the volatility of h, represented by its amplitude. With hM and hm the extreme
values of h on one period, we still have to ensure that |hM−h̄| and |hm−h̄| arestill not too important with regard to vq. If |hM− h̄| < vq and |hm− h̄| < vq , thevolatility of h is contained and our last criterion is then satisfied. A high am-
plitude compared to vq could provoke qualitatively visible behavioral changesas high volatility generates an important impact on processes with a limited
mean. If |hM − h̄| < vq and |hm − h̄| < vq but h̄ is not negligible compared to
vq , we can still propose a simplification of h by replacing it by average value
h̄. If the movement around h̄ is sufficiently limited, it is possible to consider
only the mean value to identify the qualitative tendency.

When h is applied to a zero-order equation, the compensation property
comes easily from the periodic nature of the function and the required pred-
icates. This means that the deviation from the mean is restricted by a value
supposed to be at most comparable to vq. In the case of higher-order differ-ential equations, the demonstration is based on the Fourier series of periodic
functions. If the function h is periodic on IT , then it can be expressed as

h(t) =
+∞∑
n=∞

an(h)e
−2iπ n

p
t

Therefore, if we callH the integral function of h, then
H =

+∞∑
n=−∞

− p

2niπ
an(h)e

−2iπ n
p
t

which means that the successive integrations of h will converge to a func-
tion corresponding to the term of the fundamental frequency of h, and the
amplitude will regress with the integration. Therefore, what was true for the
function h will stay valid for its primitive function if p is sufficiently small. If
the conditions are satisfied, h can be replaced in the concerned areas by h̄

without causing a major deviation from the exact behavior. Consequently,
periodic functions may be abstracted by their mean values in the appropriate
conditions.

Everything explained here for periodic functions can also be considered
for stochastic terms of the functions. The analogy can be completed using
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the mean value of the stochastic function and by replacing the amplitude in
a period with the variance of the random variable. In this case, we rely on
the law of large numbers to observe the compensation after many pseudo-
periods for stochastic functions. After a high number of time steps, the mean
value of the random variable should converge to its theoretical mean, and
the limited variance limits the potential qualitative change that could be ob-
served. Therefore, we simplify it as earlier by replacing a stochastic function
r, verifying these criteria by its expected value m. Observing an artifact is
still possible because the standard deviation does not give us a maximum
amplitude but only a probabilistic value of the observed deviation to the ex-
pectancy. Nothing prevents a random variable from having an unpredictable
peak value way further from the expectancy than the variance made us think.
This approximation is less safe than the previous ones, but it still gives a tool
to help the system abstraction by transforming non-derivable terms into con-
stant monomials, allowing resolution and derivation, both impossible with
purely stochastic terms.

In brief, when faced with a periodic or stochastic term h in an equation,
we compute its mean value and compare it to vq. If h̄ is negligible compared
to this value, we consider it as 0. In any case, we must then examine the
amplitude/variance of the term and its period/sampling period. If both verify
the described criteria, their qualitative impact can be simplified to the mean
value of the term without considering the variation around it, which will only
cause local disturbances.

8.4 . Case Study and Illustration

In the following section, we present an illustration of the developed propo-
sitions. As we did not have enough time to automatize the processes for
abstracting periodic and stochastic functions, the described examples were
tested by manually computing the abstract functions using the rules and cri-
teria mentioned above.

8.4.1 . Windy ball and equation simplification
As in chapter 6, we made our experiments in Python to benefit from the

various computation and display libraries and options. Wemanually compute
the abstraction of the functions we presented earlier because of the difficulty
of symbolically accessing the information about the function that is necessary
to abstract periodic or stochastic behaviors.

To illustrate the interest of our proposition, we present two case studies
on awindy ball system and a Van der Pol oscillator (defined in the equation sys-
tem 6.1). The first one consists of a ball bouncing on a flat floor and exposed
to the effects of an irregular wind.
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We use a model where the evolution of the ball follows the ordinary dif-
ferential system 8.1: {

ẋ = 10(1 + 0.5sin(10t))
ÿ = −g (8.1)

Starting from an initial point (x0, y0) = (0, 10) and making a numerical
simulation from t = 0 to t = 7 with a time step of 0.007, using a classical
second-order Runge-Kutta integration method, we get the result shown in
blue in Figure 8.1.

Figure 8.1: Windy ball: suppressing the periodic term (orange) vs. real behav-ior (blue)
As the term based on the sin function is periodic with mean valuem = 0

and maximal amplitude 5, we can suppress this term from the differential
equation of ẋ and compare the new result to the first one as shown in orange
in Figure 8.1. This shows that if the position of the impacts is not exact because
of the deviation caused by the sin term in the real system, its periodic nature
makes the deviations compensate for each other. The tendencies are well
respected, leading to a qualitative reading of the simulation that is very close
to reality.

It is possible to modify the system’s dynamics to test more of our state-
ments. First, we can replace the sine with a stochastic term to compare the
new behavior with its approximation. In Figure 8.2, we can see that with a nor-
mal term defined by a Gaussian function gauss(µ, σ) with µ = 0.1 and σ = 1
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Figure 8.2: Windy ball system: suppressing the stochastic term (orange) vs.real behavior (blue)

and its approximation with g(t) = µ, we get very close results. This shows
that it is possible to consider only the value of µ when the exposed criteria
are satisfied.

We can also combine the two disturbing factors to see whether our domi-
nance reduction is additive. We show the result in Figure 8.3. Our approxima-
tion still efficiently captures the qualitative behavior of a periodic and stochas-
tic differential equation with a simpler ODE.

Finally, we make the system more complex and transform it into a hybrid
systemwith different equations for the wind depending on the altitude of the
ball. To make this model hybrid, we suppose that the change in the wind
effect is discrete and happens at a precise altitude. The equation of ÿ does
not change, but the dynamics of ẋ becomes:

ẋ =

{
10(1 + 0.5sin(10t)) if y > 2

11− y2 otherwise
The precise integration and its approximation are compared in Figure 8.4.

We can observe a little deviation around the third bound, but it disappears
for the next ones and does not change the qualitative behavior. It will only
change the location of some landmarks.
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Figure 8.3: Windy ball system: suppressing both periodic and stochastic termsvs. real behavior

Figure 8.4: Windy ball: hybrid system with wind shear
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8.4.2 . Van der pol and qualitative behavior
To highlight the interest of our proposition for qualitative behavior stud-

ies, we will apply it to the Van der Pol oscillator, which is a continuous two-
dimensional physical system described by the two differential equations in
6.1 for the two variables x and y, with b a positive constant parameter. In this
system, the values may oscillate depending on the value of b. As the oscilla-
tions happen around small values of x and y, we place the same characteristic
value q for both variables at 1 and choose a symmetric 2-logarithmic scale on
each of them, on both positive and negative values, which create a negligibil-
ity criterion of 1

2 . Therefore, by applying our algorithm to these elements, we
can propose a simplified version of the flow, which will then be expressed as:

ẋ =


10(x+ y) if |x| < 0.5

10(y − x3

3 ) if |x| > 4

10(y + x− x3

3 ) otherwise

ẏ =


b if |x| < b/2 and |y| < b/2

b− x if |y| < b/2 and |x| < 2b

b− 3
4y if |x| < b/2 and |y| < 2b

−x− 3y
4 otherwise

Figure 8.5: Cyclic execution of a Van der Pol system (blue) and its approxima-tion (orange)
We then show the superposition of the curves obtained for a simulation

of both systems with the same number of time steps and for two qualitative
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trajectories as shown in Figure 8.5 and Figure 8.6. The curves of the actual
systems are in blue, and the curves of the approximated one are in orange.

Figure 8.6: Convergent execution of a Van der Pol system (blue) and its ap-proximation (orange)
We can see in both figures that despite an apparent inaccuracy in numer-

ical values, the qualitative behaviors (convergence or limit cycles) are pre-
served, which is what we were aiming for. Moreover, switching from a 2-
logarithmic scale to a 4-logarithmic scale almost completely removes any vis-
ible offset between the curves.

8.5 . Limits and Non-Nullifiable Effects

In this paragraph, wewill expose the limitations of our contribution, which
appear in borderline situations and for very sensitive systems for which it is
impossible to apply the dominant term strategy we used before.

The first problem comes from the borderline cases. When the dominated
elements are in a border situation, being significantly inferior to the tendency
but not below the negligibility frontier or periodic with an amplitude of the
same magnitude as the characteristic quantities of the system, the approx-
imation fails. Such terms may cause significant consequences. An example
of this situation can be given by replacing the 0.5 factor of the sine function
with a 2 in the windy ball case study. The mean of the complete periodic term
stays unchanged, but not its amplitude. Themaximum distances to themean
are moving from 5 to 20, which is no longer inferior to ten. The comparison of
the simulation results in Figure 8.7 illustrates this ambiguity: qualitatively, the
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Figure 8.7: Limit of the approximation with 2 sin.

behavior has the same nature, but the shift of the corresponding landmarks
increases and even creates a phase opposition in the approximated behav-
ior. Another example is when the system’s parameters are near a behavior-
switching condition. For example, in the Van der Pol oscillator presented ear-
lier, when b is close to the switching value between the convergent and diver-
gent behavior, it is possible to observe wrong trajectories.

The second problematic configuration comes from systems where any
conditions or equationsmodification can completely invalidate or qualitatively
change the system’s behavior. A simple example derived from our previous
model is a windy ball with an uneven floor. If we choose a sinusoidal floor, we
can emphasize two inherent problems. The first is that it is only possible to ap-
ply the nullification to every periodic function with enough knowledge about
the internal variables of this function. In our example, the cosine term takes
as an argument the x coordinate of the ball, which is itself a non-expressible
function. It is impossible to simplify the composed function because we have
no clue that cosxwill indeed be periodic as we do not have an explicit expres-
sion of x. It is crucial to consider the composed functions, not only the top-
level ones. The second problem is the sensitivity to minimal changes in the
impact coordinates. A sinusoidal term with a low amplitude can completely
change the behavior. This result is illustrated in Figure 8.8.

With a wind of only 0.5 sin(15t) added to the dynamics of x in the sys-
tem, we see that the behaviors of the twomodels of the same system diverge
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Figure 8.8: Limit of the approximation in the case of chaotic systems.

quickly after the first bounce. This result raises the importance of being aware
of the model’s sensitivity before applying a dominant simplification.

8.6 . Perspectives

In this section, we present trails of works that we explored to improve the
approximation possibilities. However, we did not produce sufficiently solid
conclusions to integrate themwith our previous contributions. They still have
the potential of being investigated and discussed as they were inspired by al-
ready proven or employed techniques that can be either applied or improved
to fit our reasoning paradigm.

8.6.1 . Polynomial approximation
Once the degrees of the most complex polynomials have been reduced

and the periodic and stochastic functions have been simplified to their mean
value when possible, the problems come from the terms that enter in none
of the previously mentioned categories, such as exponential and logarithmic
functions. Considering the formula of orders of growth presented in sec-
tion 8.2, it appears that c(f : t 7→ ekt) = +∞ for any constant k > 0, meaning
that orders of growth are not sufficient to differentiate diverging exponen-
tial terms by their relative behavior to ∞. This implies that simplifications
cannot be achieved in the same way as with polynomials. Moreover, neither
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logarithms nor exponential functions give satisfying results when tested with
usual polynomial or SMT solvers. Fortunately, it appears that polynomial func-
tions are not just easy to manipulate but also very convenient for function
interpolation [142]. This is especially true for a uni-dimensional variable but
works on multi-variate functions interpolation has also been proposed [143].
Interpolation is particularly used to give a simple expression of a complex re-
lation between an entry element and its response. As a limited error is often
tolerated, interpolation allows precision to be traded for interpretability and
computability. Nevertheless, interpolation requires knowing the expression
or the values of the initial function on the complete state space. The case of
extrapolation is not treated here as polynomials are not particularly adapted
for this practice [142]. The first interpolation process generally used in poly-
nomial theory for derivable functions is the Taylor approximation expressed
∀ f ∈ Cn,∀x0, h ∈ K :

f(x0 + h) =
n∑

k=0

hk

k!
f (k)(x0) + hnϵ(h) (8.2)

where ϵ is a function such that lim
h→0

ϵ(h) = 0 and where n∑
k=0

hk

k!
f (k)(x0) is the

Taylor polynomial allowing the approximation.
It has the advantage of presenting a simple and intuitive form, allowing

an easy computation for qualitative reasoning. However, the Taylor formula
clearly lacks precision when h deviates from 0. This implies that the confi-
dence in the obtained qualitative model will be very low when the state space
is too large. Therefore, the best approximation method seems to be the
Chebyshev polynomials approximation. The approximation to the N th order
of a function g using Chebyshev polynomials can be written as

g(x) =
N∑
k=0

Ak ∗ Tk(x)

where Tk is the kth Chebyshev polynomial expressed recursively with
∀x ∈ K, T0(x) = 1, T1(x) = x

∀ k > 1, Tk(x) = 2 ∗ x ∗ Tk−1(x)− Tk−2(x)

∀ k < N, Ak =
2

N + 1

N∑
i=0

g(xi) ∗ Tk(xi)

where thexi are the interpolation points. Manyworks showed that the Cheby-
shev approximation polynomial is almost optimum as it is very near the op-
timal approximation polynomial. As the state space of concrete CPS will very
rarely be infinite, it will be possible in a vast majority of the cases to come
back to the polynomial case using such an approximationmethod for general
continuous functions.
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8.6.2 . Causality reasoning

Finally, one last developed possibility is to unify the different generations
of qualitative reasoning on systems to consolidate their respective influence
and combine their application areas. Originally, qualitative reasoning was
supported by causal ordering [99, 98]. This representation of a system high-
lights the causality dependence between its variables and components and
may integrate a notion of temporality. Mythical causality, for example, uses
the temporal ordering between cause and consequence to represent the be-
havior. Causality applied to qualitative reasoning, as developed by de Kleer
and Brown [98], uses QDE, which can be seen as abstractions of ODE applied
to define the confluences of the system. These qualitative equations asso-
ciate a sign to a formula composed of simple operations between variables
and parameters of the system. This idea of QDE has been used in more re-
cent productions such as [68, 87] to represent as simply as possible some
system’s properties and to reason on incomplete equations. This can be re-
lated to our approach, as the choice to abstract the dynamics of the system
is at the core of these contributions. One of the drawbacks of this choice is
that when models do not integrate sufficiently usable knowledge, reasoning
on it becomes irrelevant because all the achievable conclusions are too sim-
ple to present significant interest. A possibility to unify this area of qualitative
reasoning to the state space abstraction is to change the formulation of the
causality bounds (currently expressed with operators such asPROP,CPROP

or IPROP) by more standard equations with non valued parameters.
For example, the relation between two variables x and y, represented in

the absence of further knowledge as xPROP y implies a proportionality re-
lation between x and y. In the formalism exposed in [68], the notion of dy-
namic dependence is left out on purpose as the authors mainly focus on the
sign comparison between the two variables. Consequently, writing xPROP y

would technically be true in a situationwhere x = 1
y , even if the actual relationbetween x and y exposes an inverse proportionality.

Therefore, developing further this type of formalism to discriminate the
static and the dynamic relations could lead to the definition of amore general
modeling language that could manage both static and dynamic relations as
well as propose different specification precisions for the systems that can be
partially or completely known. The anticipated advantage is that these oper-
ators could then be translated to symbolic equations or constraints and be
used in a model like ours.

To this extent, the operator PROP should be kept for actual dynamic pro-
portionality (the relation that is expressed with x = cy with c a non-valuated
positive constant), while the sign similitude between x and y could be ex-
pressed using another operator such as SPROP or SSIM. To the same ex-
tent, the inverse proportionality could be reserved for two variables such that
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∃ c > 0, X = c
y which encompass an inverse proportionality relation, while the

negative proportionality (∃ c < 0, x = cy) could be expressed by the operator
NPROP. Therefore, using the already defined operators and adapting them
to a system that could be expressed with both static and dynamic relations,
the formalism could evolve with the given operators:

• PROP defining a dynamic proportionality between two variables i.e.
xPROP y =⇒ ∃ c > 0, x = cy.

• SPROP defining a symmetric similarity between the signs of the com-
pared variables, i.e., x SPROP y =⇒ x

|x| =
y
|y|

• NPROP defining a dynamic negative proportionality between two vari-
ables i.e. xNPROP y =⇒ ∃ c < 0, x = cy.

• IPROP defining a dynamic inverse proportionality between two vari-
ables i.e. x IPROP y =⇒ ∃ c > 0, x = c

y .
• QPROPdefining adynamic quadratic proportionality between two vari-
ables i.e. xQPROP y =⇒ ∃ c > 0, x = cy2.

• MPROP defining a dynamic monomial proportionality between two
variables i.e. xMPROP y =⇒ ∃ c > 0, n ∈ N, x = cyn.

• Pn defining a polynomial relation of known order between two vari-
ables, i.e., xPn y =⇒ ∃n ∈ N, p ∈ Kn[X], x = p(y).

• P defining a polynomial relation of unknown order between two vari-
ables, i.e., xP y =⇒ ∃ p ∈ K[X], x = p(y).

• R defining a rational relation between two variables i.e. xR y =⇒
∃ f ∈ K(X), x = f(y).

• LEdefining the existence of a logarithmic-exponential functionbetween
two variables, i.e., xLE y =⇒ ∃ f ∈ E , x = f(y).

• M defining a monotonous dynamic dependence between variables i.e.
x = M+y means that ∃f an increasing function such that x = f(y).
On the same logic,M−,M++ andM−− correspond respectively to the
existence of a decreasing function, a strictly increasing and a strictly
decreasing function relating x and y.

One can note that some relations are abstractions of others: a monomial
is a polynomial, and a proportional relation is a monomial. This hierarchy
allows the representation of different qualities of knowledge about the be-
havior of the system. A system with much knowledge will be expressed using
functional dependencies as we used in the state space abstraction process,
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and a system with very little or unreliable knowledge will exhibit operators
that highlight general properties such as P orM.

That would ensure that the literal expression of every relation could be in-
cluded in a model using polynomial functions to abstract the state space. By
enriching the set of allowed operators with, for example, QPROP, PnPROP,
PPROP, REL (meaning respectively the existence of a quadratic, polynomial
of the nth order, polynomial of unknown order and unknown but existent re-
lations between variables or components) and by relating each of these oper-
ators to a symbolic equation linking the variables to be used in an abstraction
process, it is possible to apply the presented system abstraction. The absence
of instantiated values for the parameters of the equation stops the possibility
of computing transition directions and, therefore, the dynamics of the sys-
tem but still allows a discretization of the state space and reasoning about
the qualitative position on the qualitative states of the system.
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9 - RELATED WORKS

9.1 . System State Space Abstraction

In [35], Tiwari introduced qualitative reasoning on hybrid automata us-
ing the system’s dynamics expressed as polynomial ODEs. Any system rep-
resented by a hybrid automaton, including such expression of its flow con-
dition, is relevant in this paper as the authors introduce a new automaton
structure that they relate to hybrid automata but without further formaliza-
tion. We further developed this newly introduced automaton structure, for-
malizing it as a tool to apply qualitative reasoning to systems state spaces.
We also highlighted the structural limits of the presented abstraction process
as the polynomial ODEs have very few chances of being either idempotent or
nilpotent. Moreover, we improved its qualitative model formalism by adding
the concept of qualitative zones to allow for further reasoning capabilities and
applications.

In [144], the authors presented an abstraction process of the system state
space using areas of interest and borders that are de facto invariant in order
to prove the specificity of the trajectories. The considered areas exhibit bor-
ders whose Lie derivatives allow an inward transition, which limits the poten-
tial studies. In our contribution, we deal with more general areas and prop-
erties, allowing for a more complete study of the system’s behavior.

In [26], the authors present a methodology and a formalism that extends
Tiwari’s, but that is still limited in its reasoning tools as it relies on the study of
qualitative states and on the form of the system’s equations. In our work, we
developed the applicability of this paradigm and new reasoning tools by intro-
ducing the concept of qualitative zones and by proposing abstraction meth-
ods to deal with the abstraction of the qualitative tendencies rather than with
the actual equation if they are not convenient for such a resolution.

The different productions dealing with QSS [132, 133, 134] developed a
method to discretize the state space of a system depending on the evolu-
tion of its variables. Our works proposed to further push this logic in order to
adapt the state space quantization also to the relative position of the system
to the different qualitative borders computed with the presented abstraction
process in order to avoid unplanned qualitative transitions and keep as much
knowledge as possible in a simulation without needing rollback to detect the
exact timing of a qualitative event.
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9.2 . Behavioral Abstraction

The concept of qualitative simulation, as introduced in [145] and devel-
oped in [69, 146], showed interesting results in the representation of the be-
havior of a given system using sign algebra and variation tables. It allows for
general demonstrations that behavior may vary in a certain direction or stay
in a certain bound, but it has strong limits when one is interested in more
specific properties or more complex invariant conditions that cannot be rep-
resented using landmarks. Our contribution, by analyzing more complex in-
equalities than comparison of a variable with zero and using the discretization
process we presented, gives far more concrete knowledge about the possible
behavior of the system without needing numerical computation and, there-
fore, exhibits strong and reliable properties that are particularly valuable for
the early studies and design of CPSs.

The qualitative analysis process presented in [68] improves the classic
qualitative simulation paradigm with the introduction of causality and sym-
metric relations between variables that enrich the reasoningmodels and gen-
eratemore representativemodels of systems. However, it still lacks reasoning
capabilities to prove behavioral properties that are more complex than the
expected ordering of qualitative states in the obtained qualitative behavior.
The represented behavior lacks the required precision to support interesting
demonstrations and applications as the deduced knowledge is very simple or
incomplete.

The diagnosis method proposed in [94] by Mosterman develops an effi-
cient process to represent the intended temporal and causal behavior of a
system, allowing fault detection and backpropagation to locate the origin of
the faulty trajectory and its cause. The limits stand in the fact that the first
representation is mainly used as a reference behavior and cannot be used
to support and prove more complex and interesting properties that are not
explicitly included in the system’s expression. Qualitative abstraction of the
system’s state space gives the possibility to serve both as a support to cre-
ate a reference behavior tree from which any deviation may be considered
as a faulty behavior but also as a tool to demonstrate critical properties that
will particularly make sense will specific use cases and as a solid assistance to
design the parameters of the system before any use or application.

9.3 . Design Space Exploration

Some works have studied the different possibilities offered by qualitative
reasoning. In [89], the authors focused on the description and the prediction
of the behavior of systems at a high level of abstraction, while in [34], Zaatiti
developed the diagnosis aspect of qualitative reasoning using more numeri-

154



calmethods. In [147], we proposed a technique to automatize system abstrac-
tion and the creation of hybrid automata. All these projects focused on the
state space study and showed the advantages and the limits of the different
approaches.

Manyworks proposed various approaches regarding DSE, from the classic
search in a finite design space as in [78] to works presenting deep-learning-
based strategies as in [138]. Methods also exist to deal with continuous sets
using probability density functions as with the Uranie platform [139] to repre-
sent the design space based onprevious knowledge andmore qualitative con-
straints regarding the expected value of parameters. However, this approach
is more appropriate to deal with the choice of the initial value of variables and
is, therefore, at the edge between state and design space exploration. Also,
many works regarding the solving of temporal logic constraints and its use
for optimization have been led (for instance [148]) and may allow significant
progress in the resolution of temporal and modal predicates. DSE, in its as-
pect of design optimization, has been more significantly treated in [149, 150].
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10 - CONCLUSION

10.1 . Summary of Results

In this thesis, wewere interested in improving the toolbox and the reason-
ingmethods for qualitativemodeling of cyber-physical systems using abstrac-
tion of the state space based on ordinary differential equations dynamics and
rational equations constraints. We based our work on an existing discretiza-
tion method, which we completed with the concept of qualitative zones. We
created a structure named "qualitative automaton" that is adapted to com-
pute the complete qualitative behavior of a system based on its abstraction
and on the resolution of the constraints associated with the transitions be-
tween the obtained qualitative states. We focused on systems described by
polynomial or rational equations as these forms allow formore symbolic com-
puting and resolutions than logarithmic or exponential functions. The compu-
tation of these automata required the use of various mathematical methods,
such as continuity theorems or the Lie derivative.

We created a prototype tool to automatize the system’s state space ab-
straction and the computation of the behavior tree based on the system’s
equations. We also proposed a solution to add new constraints in systems
to refine the qualitative abstraction to generate the representation that is the
most adapted to the considered application. This tool has been tested on
different use cases of different complexity and dimensions to challenge its
reliability on systems of different natures.

We presented diverse modeling and reasoning paradigms related to CPSs
and proposed new solutions to upgrade the possibilities of qualitativemodels
based on our literature review. We also explored different applications of our
works on state space abstraction, and we developed some algorithms that
fit with our qualitative automata to use them for property proof, trajectory
verification, and simulation piloting. These programs can be considered as
a supplement to the existing toolbox to study, verify, and understand CPSs
using the reasoning opportunities offered by qualitative models.

We briefly studied the possibilities offered by qualitative modeling in the
design of CPSs, particularly in choosing the values of the system’s parame-
ters. This research direction is still insufficiently developed, but we proposed
algorithms that could be associated with qualitative reasoning to allow im-
provement in the design process of CPSs.

Finally, we studied the possibility of generalizing our work to more com-
plex or less convenient systems with dynamics that do not fit the constraints
of having a polynomial or a rational expression. We considered the polyno-
mial interpolation of logarithmic-exponential functions, studied the negligibil-
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ity of stochastic dynamics terms, and proposed a unification between causal
relations and functional dependencies using a new set of causal relations that
can be transformed into symbolic functions.

10.2 . Limits and Perspectives

Our work still faces some limits, and many challenges remain to meet
the need for more permissive and efficient modeling paradigms and tools.
Among them, the most notable are:

• Currently, the main limitations of our tool involve the need to choose
andfix the abstractionparameters, whosemost adapted value depends
both on the system itself and its supposed use case, which is not some-
thing intrinsic to the system’s expression. Therefore, to fully automatize
the abstraction process and remove human intervention in the choice
of these parameters, it will be necessary to develop a program able to
analyze the system, its environment, its programmed objective, and its
associated constraints in order to adapt the modeling parameters and
to come up with a qualitative model that would be the most adapted to
the specific situation.

• The second problem, and the most important to solve, is the ability to
deal with partially instantiated and defined systems. Currently, wemust
knowall the system’s parameters to compute the behavior tree, as none
of the SMT solvers we tried could solve constraints with both variables
and unknown parameters. This is a clear lack of flexibility, as qualita-
tive reasoning is particularly interesting at the early stages of systems
development. Therefore, a significant improvement would be allowed
by the availability of a solver to address constraints with different levels
of unknowns, where the variables would be unknowns of the first level,
whose values may be expressed depending on the parameters, which
would then be unknowns of a second level. Currently, we are limited
to modeling systems with valued parameters to test their conformance
and reliability or to create an incomplete model to be used specifically
to choose a set of valid parameters. Being able to reason about the be-
havior of a system with symbolic values for its parameters would be a
major improvement in the relevance and use of qualitative reasoning.

• Another important perspective is thatwe could not automatize the func-
tional abstraction for equations that are not polynomial or rational ex-
pressions. We implemented a function that could approximate themost
complex polynomials with multivariate terms to more simple expres-
sions by considering the qualitative tendencies as we exposed them,
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but we did not automatize the mode division based on this new ex-
pression of the flow equation. Implementing the hybridization of the
considered systems is the next step to creating a complete qualitative
modeling tool.

• One of the limits of this contribution is the requirement of having a suf-
ficiently precise expression of the system to provide its abstraction and
behavioral study. We are not yet able to solve the situation where one
needs to analyze a system about which very little is known. This situ-
ation can happen, for example, during a certification process or qual-
ity control, when someone who may not have access to a system’s full
specification or description has to be knowledgeable about its reliabil-
ity or robustness. In this situation, our process would not be applicable
given that no equation could describe the system’s dynamics, which is
just empirically known to behave in a certain way. To solve this prob-
lem, a solution would be to combine our algorithms with solutions of
CPS identification as presented in [151]. CPS identification consists of in-
ferring the flow equation of a system based on its numerical trajectory,
using methods of pattern matching to deduce the concrete equations
defining the system. Combining CPS identification with qualitative rea-
soning would allow us to study and verify systems that we can only ac-
cess via their traces and which we cannot be certain of the structure of
the flow conditions. It would, therefore, be of great interest to develop
the use of qualitative reasoning to further use cases and applications.

• Most of the systems we dealt with in our contributions are determin-
istic systems or systems exhibiting stochastic elements that can be ei-
ther neglected or approximated. Unfortunately, many systems do not
fit these categories and imply non-negligible stochastic terms or even
evolve in non-deterministic or uncertain environments. Such a situa-
tion is far more complex to manage as we cannot apply the developed
elements if the system may evolve in a completely uncertain direction
depending on an environment we cannot control or predict. To this ex-
tent, some works such as [152] introduced the concept of Bayesian hy-
brid automata to deal with this uncertainty and to represent the control
of the system depending on the environment. It uses a collaboration
of three different automata, respectively, dedicated to the representa-
tion of the environment, its estimation by the sensors of the studied
CPS, and the control and evolution of this system depending on the re-
turned information from the previous automaton. Applying qualitative
reasoning in an uncertain environment could, therefore, be achieved
by using qualitative modeling on this set of three automata to abstract
their respective state space and evolution as well as their relations and
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dependencies. This would represent a major challenge as the three au-
tomata may have completely different state spaces and, therefore, dif-
ferent abstractions. It would then require a harmonization procedure
so that the different abstracted automata can still interact with informa-
tion that could be shared and understood by all three. More generally,
every system that will be subject to a control procedure that implies
uncertainty at any moment (be it caused by an uncertain environment,
by the low reliability of sensors, or by the necessity of human inter-
ventions in the process) will require more advanced research to adapt
qualitative reasoning and abstraction process to specific situations that
are difficult to include in classic hybrid automata.

• Finally, generalizing our methodology to a larger group of systems is
a major perspective that could definitely unify the different qualitative
reasoning methods. An ideal approach would be able to handle sys-
tems defined by ordinary differential equations or causal relations but
also partial differential equations or evenmore complex structures such
as cyber-physical systems of systems (such an approach would imply
managing different automata that would interact and influence each
other). It would allow scientists to apply qualitative models to far more
complex and sophisticated systems like connected cities, air traffic and
plane piloting, or energy networks coupled with power plants and dis-
tributors.
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10.3 . Publications

Conference workshops

• Qualitative models for the supervision of CPS simulations, Baptiste Gueu-
ziec, Jean-Pierre Gallois, Frédéric Boulanger, Proceedings of the 25th
International Conference on Model Driven Engineering Languages and
Systems: CompanionProceedings, 2022, Association for ComputingMa-
chinery, page 612–616, [125],
https://doi.org/10.1145/3550356.3561594

• Qualitative reasoning and cyber-physical systems: abstraction, modeling,
and optimized simulation, BaptisteGueuziec, Jean-PierreGallois, Frédéric
Boulanger, MoDeVVa 2023 - 20th workshop on model driven engineer-
ing, verification and validation, Västerås [Sweden], Sweden, Oct, 2023,
pages 781-790, [147],
https://doi.org/10.1109/MODELS-C59198.2023.00126

• Qualitative tendencies for hybrid system simulation, Baptiste Gueuziec,
Jean-Pierre Gallois, Frédéric Boulanger, MPM4CPS 2023 - 26th Interna-
tional conference onmodel driven engineering languages and systems,
Västerås, Sweden, Oct, 2023, pages 500-509, [141],
https://doi.org/10.1109/MODELS-C59198.2023.00087

National conference

• Abstraction qualitative et surveillance de systèmes cyber-physiques, Bap-
tisteGueuziec, Jean-PierreGallois, Frédéric Boulanger, Modélisationdes
Systèmes Réactifs, Toulouse, France, Nov, 2023, [153],
https://hal.science/hal-04255640

International conference

• Qualitative Reasoning and Design Space Exploration, Baptiste Gueuziec,
Jean-Pierre Gallois, Frédéric Boulanger, MODELSWARD 2024, Rome,
Italy, Feb, 2024, pages 203-210, [154],
https://doi.org/10.5220/0012417300003645

Journal

• Qualitative reasoning and cyber-physical systems: abstraction, modeling,
and optimized simulation, BaptisteGueuziec, Jean-PierreGallois, Frédéric
Boulanger, Innovations in Systems and Software Engineering, 2024,
[120], https://doi.org/10.1007/s11334-024-00567-0
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