
Integration of Synchronous Modules

in an Object Oriented Language

Guy Vidal-Naquet
Laboratoire de Recherche en Informatique
Université de Paris-Sud — Centre d’Orsay

91400 Orsay, France
E-mail: Guy.Vidal-Naquet@supelec.fr

and

Frédéric Boulanger
École Supérieure d’Électricité — Service Informatique

Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France
E-mail: Frederic.Boulanger@supelec.fr

ABSTRACT

This paper presents a model and tools to embed synchronous reactive modules
in an object-oriented language. Embedded modules behave and may communi-
cate synchronously, may be created or destroyed, and their interconnection may
change dynamically at run-time. They are able to communicate asynchronously
with other parts, synchronous or asynchronous, of the application.New syn-
chronous classes can be created either by static composition of instances of ex-
isting classes, or by inheritance.

1. Introduction and motivation

Complex systems have components of radically different natures:

• Reactive components, that have to deal with the environment, receive input
signals, produce output signals, and basically have to maintain a coherence
relation between input and output signals. These components often must have
properties dealing with real time and safety, and can communicate between each
other in a synchronous or asynchronous way.

• Transformational components, that compute values without interaction.

Examples of such systems are supervision systems (for transportation or telecom-
munications), autonomous robots, self-tuning control systems.

During the last decade, a new approach, called “synchronous” has been developed
for the programming of reactive modules 2. It relies on the hypothesis that the
reaction is instantaneous (in reality sufficiently fast), which gives rise to a model
and programming languages that allow to treat time in a rigorous way and to marry
parallelism and determinism. Informally, the execution of a program written in a
synchronous language is like the functioning of an automaton with outputs: the



Fig. 1. Structuration

outputs are determined (instantaneously), and the next state is computed. One of
the main advantages of the synchronous approach is that proof of properties can be
done from the source code, after an automatic translation into mathematical language
3 6. The execution of code written in a synchronous language requires an execution
machine 1, in order to transform the input from the outside into signals that can
be treated, and symmetrically, transform output signals into data acceptable by the
outside. There is actually a drawback for using the synchronous approach: code is
monolithic, i.e. it is not possible to compile the parts of a system separately and
assemble them, parallelization is therefore difficult.

The work we present here is aimed at smoothing the integration of these modules
in complex systems, by allowing them to be viewed as regular objects. This will
allow to take advantage of the features of object oriented programming techniques,
like class libraries, inheritance, methodology for structuration, dynamic creation of
objects. This paper does not provide a methodology for dealing with reactive com-
ponents, but provides tools for the application of OO methodologies or object based
software platforms. For example, our system was easily integrated in a few days,
in the Ptolemy environment of the University of Berkeley which is used for the
simulation and the prototyping of heterogeneous systems 4.

We give two examples where OO could be applied:

Structuration enables to name a whole set of components with a single name, these
components may be reactive or transformational.

On figure 1, the acquisition module has two sensors (e.g. for pressure and
temperature), which send their data in a synchronous way to three computation
modules, whose results go through a voting module, the result of the vote is



Fig. 2. Dynamicity of objects

logged on a data base, which can be done asynchronously (this is shown by
// between Vote and Logs) and is also transmitted to two actuators. One
would like to see the acquisition module and the actuator module as entities,
i.e. objects.

Dynamicity which means in this context that objects can be created at run-time,
and connections between objects can be changed. In the example of figure 2,
a controller is in charge of adjusting a valve, according to a schedule. If the
pressure and/or the temperature becomes too high, another “crisis” module is
substituted, and controls the valve, and a safety valve, with a possibly shorter
sampling period.

In this scheme, the object “Regular Control” is destroyed, and the objects
“Crisis Control” and “Safety Valve” are created. “Pressure” and “Temperature”
are then connected to “Crisis Control”.

In another possible scheme, shown on figure 3, the modules “Crisis Control” and
“Safety Valve” would have already been present, and the connections would
have changed on the fly. The advantage is a faster switch between the two
configurations, but more memory is used because the modules exist all the time.
From an external point of view, the behavior is the same with both schemes.

2. Operational model

We now present an operational model for the execution of synchronous modules.
This model will be used as a reference for implementation. It gives the basic objects
we use, and also the properties that have to be satisfied by any implementation. We
use the following notations: If f is a function from A into B, and A′ is a subset of A,
fbA′ will denote the restriction of f to A′.



Fig. 3. Dynamicity of links

For a nuplet, U = 〈e1, e2, . . . , en〉, U/ei
will denote the component ei of U .

2.1. Synchronous classes

A synchronous class defines the input and output signals, the set of states, and
the reaction to inputs.
Let τ be a finite set of types
B the set of booleans {T, F}
Dt a set of values of type t, t ∈ τ
V =

⋃
t∈τ

Dt the set of possible values

Definition 1 A class C of synchronous objects is defined by:

C = 〈siC , soC
, ΓC , ΣC , σ0,RC〉

siC and soC
are two finite sets of input and output signals of C, the types of the signals

are given by the function:
ΓC : siC ∪ soC

−→ τ

The set of states ΣC is a (possibly infinite) subset of N, σ0 is the initial state.
RC is the reaction function:

RC : (V × B)siC × ΣC −→ (V × B)soC × ΣC

B is used to indicate if a signal is present or not.

We distinguish a special subset of outputs, intuitively output signals whose value
depends only on the state of the object, and not on the value of the input signals.
More precisely, s ∈ soC

is said to be input-independent when

∀v, v1 ∈ (V × B)siC , v′, v′1 ∈ (V × B)soC , σ, σ1, σ
′
1 ∈ ΣC ,



RC(v, σ) = (v′, σ′)
RC(v1, σ) = (v′1, σ

′
1)

∣∣∣∣∣ =⇒ v′(s) = v′1(s)

The notion of input-independent signal is important because, as we will see later,
it allows to break ‘causality loops’.

2.2. Synchronous objects

An object is an instantiation of a class, and is identified by a name, it reacts in
the way described by the reaction function of its class. More precisely: Let A be an
alphabet, the set of possible names N is the set A+

Definition 2 The instance O of class C = 〈siC , soC
, ΓC , ΣC ,RC〉 with name η ∈ N ,

is defined by
O = 〈η, si, so, Γ, Σ,R〉

where si = η • siC , so = η • soC
, Σ = ΣC

∀s ∈ si ∪ so, Γ(η • s) = ΓC(s)
R is the reaction function of O defined from RC by renaming all signals s to η • s.

2.3. Clocks

A clock represents the evolution of a set of (synchronous) objects which react syn-
chronously. It is a sequence of instants, and at each instant, the clock is characterized
by:

• the set of objects on it, and the state they are in,

• the connection between the input and output signals of the objects on the clock,

• the values and the presence of the different signals.

Let C be the set of all synchronous classes (which cannot be created at run-time).
We can define the set M of all possible objects. M is isomorph to (N ×C). We note
Pf (M) the set of finite subsets of M.

Definition 3 A clock H is a sequence of seven-uplets

H = (Hn)n∈N = (〈SI , SO, T, Γ,S,L, E〉n)n∈N

T ∈ Pf (M) is the set of objects on clock H at instant n,
SI , SO are the finite sets of input and output signals at instant n,
Γ is the typing function of SI ∪ SO i.e. Γ : SI ∪ SO −→ τ .
SI , SO, can be viewed as interface signals between the clock and the outside world.



Fig. 4. Connection function

SIHn
= SI ∪

⋃
O∈Hn/T

O/si is the set of all input signals in H at instant n

SOHn
= SO ∪

⋃
O∈Hn/T

O/so is the set of all output signals in H at instant n

SHn = SIHn
∪ SOHn

is the set of all signals in H at instant n.

SI and SO can change with n, so Γ changes because its domain changes.

A clock is furthermore characterized at instant n by the functions:

State evolution S : T −→ N. For each O ∈ T, S(O) ∈ O/Σ,

Connection (or link) L : SIHn
−→ SOHn

(An input signal is linked to just one output
signals, but several input signals can be linked to the same output signal),

Evaluation E : SHn −→ V ×B. The evaluation function indicates with a boolean if
a signal is present or not, and gives the values of the signals. Note that a signal
has a value even when it is not present.

Figure 4 gives an example of connections, where are output signals, and are
input signals. On this figure, the clock is characterized by:

Hn/T = {O1, O2},Hn/SI
= {b},Hn/SO

= a

SIHn
= {b, O1 • g,O2 • d,O2 • e}, SOHn

= {a, O1 • c, O2 • f}

Hn/L(O1 • g) = a,Hn/L(O2 • d) = a,Hn/L(O2 • e) = O1 • c,Hn/L(b) = O2 • f



2.4. Constraints on clocks

A system may contain several clocks. Objects that communicate synchronously
must be on the same clock.

In the following list, the constraints are not properties that can be deduced, but
are properties that are compulsory for any implementation of the model.

1. An object cannot belong to more than one clock,

2. ∀i, j ∈ N, O ∈ Hi/T , O ∈ Hj/T =⇒ ∀k ∈ [i, j], O ∈ Hk/T . The instants when an
object belongs to the clock form an interval of N,

3. let ≺Hn be the precedence relation defined on the objects of Hn by:

O ≺Hn O′ ⇐⇒ ∃s ∈ O/so ,∃s
′ ∈ O′

/si
/ Hn/L(s′) = s

and s is not input-independent.

The transitive closure ≺̇ of ≺ is a partial order,

4. At any given instant, two connected signals are of the same type, have the same
value, and are both present or absent. More formally:

Hn/L(s) = s′ =⇒ Hn/E(s) = Hn/E(s
′)

5. For any object O in Hn/T and Hn+1/T , with reaction function RC , input signals
η • si, and output signals η • so, if RC(Hn/Eb(η • si), Hn/S(O)) = (v, σ), then
Hn/Eb(η • so) = v, and if O ∈ Hn+1/T then Hn+1/S(O) = σ.

Condition 5 means that the value of the output signals of an object O at instant
n (i.e. the restriction of the evaluation function to these signals) are computed ‘in-
stantaneously’ from the value of the inputs of O through the reaction function, and
that the reaction function computes the state of the object at instant n+1.

Condition 1 is necessary to determine what is an instant for an object.
Condition 2 is necessary to allow the computation at instant n−1 of the state of

an object at instant n.

Theorem 1 If condition 3 is satisfied, then there exists a unique evaluation function
and a unique state evolution function that satisfy 4 and 5



Fig. 5. Use of input-independent signals

A formal proof can be given, we give below the general idea: Condition 3 insure
that there is no causality loop that would cause a signal to be a function of itself.
Therefore, starting from a minimal object (according to ≺̇) and using condition 4,
one can determine the value of its input signals. Then, using condition 5, one can
determine the value of its output signals, and its state for the next instant. So one
can completely determine the values of all signals and the state of all objects at the
next instant in a stepwise manner.

Figure 5 shows how an input-independent signal breaks a causality loop. This
module is a counter, which increments its output at each instant of the clock. The
signal reset resets the counter to 0. The module DELAY breaks the causality loop:
at instant n, it stores the value of its input signal in the state of instant n+1. The
module INC produces 0 as output when its input signal r is present, and n+1 where
n is the value of input signal i, otherwise.

INC is an instance of class CI, with

CI/Σ = e, CI/σ0 = e, τ = t1, t2,Dt1 = N,Dt2 = B, CI/Γ(i) = t1, CI/Γ(r) = t2

We denote by

(
r : (value, presence)
i : (value′, presence′)

)
the element f of (V × B)si such that

f(r) = (value, presence) and f(i) = (value′, presence′)

∀k ∈ N,⊥ denoting any value,

CI/R(

(
r : (⊥, T )
i : (k,⊥)

)
, e) = ((ic : (0, T )), e)

CI/R(

(
r : (⊥, F )
i : (k, T )

)
, e) = ((ic : (k + 1, T )), e)

CI/R(

(
r : (⊥, F )
i : (k, F )

)
, e) = ((ic : (k, F )), e)

DELAY is an instance of class DE, with

DE/Σ = {σi}i∈N, DE/Γ(s) = DE/Γ(ds) = t1



DE/R((s : (i, T )), σj) = ((ds : (j, T ), σi)

The value of ds is completely determined by the state σj, and therefore ds is
input-independent.

2.5. Dynamicity

There are two types of dynamicity in our model:

• dynamicity of processes,

• dynamicity of connections.

Since we view the objects as black boxes, without analyzing their semantics, we can
only describe dynamicity in the model.

2.5.1. Dynamicity of objects

The destruction of a synchronous object O at instant n, is expressed by:

O ∈ Hn/T

O 6∈ Hn+1/T

∀s ∈ SIHn
,Hn/L(s) ∈ O/so =⇒ Hn+1/L(s) is not defined unless explicitly stated

by a connection request.

If Hn+1/L(s) is not defined, and Hn+1/E(s) = (k, b) where k ∈ V and b ∈ B then
Hn+1/E(s) = (k, F ). The signal keeps the same value, but is absent, this is compatible
with the approach in synchronous programming that says that a signal keeps the same
value unless explicitly modified.

Dynamicity of objects is needed when the number of objects in the system is not
known, for example in traffic control, but can be used in other cases (see example of
Figure 2)

The instantiation of a synchronous object O of a class C at instant n, is expressed
by:

∀t ≤ n,O 6∈ Ht/T

O ∈ Hn+1/T

Hn+1/S(O) = σ0 (initial state of class C)



2.5.2. Dynamicity of connections

At instant n the connection of an input signal s ∈ SIHn+1
to an output signal

s′ ∈ SOHn+1
imposes that Hn+1/L(s) = s′.

A connection is requested at instant n, and effective at instant n+1.

3. Execution machine for clocks

For a clock, the execution machine, at instant n will do the following:

1. Process requests of creation and destruction of objects (determination of Hn/T )

2. Process requests of (dis)connection (determination of Hn/L), check that prop-
erty 3 is satisfied

3. Schedules an order of reaction for the modules that satisfies dependency rela-
tions (there exists one thanks to property 3)

4. Evaluates Hn/Eb(Hn/SO
) from the environment

5. Make each object O ∈ Hn/T react, which allows to compute Hn/EbO/so and
Hn+1/S(O) from Hn/EbO/si

. The latter can be computed thanks to Hn/LbO/si

and property 4.

As part of its reaction, an object may request the instantiation or the destruction
of another object, and may request the connection or disconnection of two signals. At
this time, the model does not yet specify how these requests are send and processed.

4. Composite synchronous classes

In this section we describe two ways of building new classes, without (for brevity’s
sake) their completely formal definitions.

4.1. Composition of classes

It is possible to build new classes whose instances are composed of interconnected
instances of existing classes. The formal definitions are not given here for brevity’s
sake, but can be deduced easily from the definitions of the input, output, state func-
tion and evaluation function of a clock.



Fig. 6. Construction of a derived class by filtering

Figure 5 is an example of a composite class COUNTER built from an instance of
class INC and an instance of class DELAY.

4.2. Inheritance

We keep the notion that when a class A inherits from a class B, the behavior of
A is a refinement of the behavior of B. Since we consider here a synchronous class as
a black box, we cannot state properties of behavior, but structural properties:

A synchronous class
B = 〈si, so, Γ, Σ, σ0,R〉

inherits from a synchronous class A implies:

• A/si ⊆ B/si ,A/so ⊆ B/so ,

• A/si ∩B/so = ∅,A/so ∩B/si = ∅,

• ∀s ∈ (A/si ∪A/so) ∩ (B/si ∪B/so),B/Γ(s) = A/Γ(s).

These conditions express that the interface of class B includes the interface of
class A. A way to derive a class B from a class A is to filter the inputs and the
outputs of an instance of A with two additional objects as shown in Figure 6. A
typical example would be to derive an ABS brake from a usual brake by filtering the
output of the usual break according to an additional signal that indicates if the wheel
is skidding.



5. Realizations

Synchronous classes could be described in any suitable language. We have chosen
the family of synchronous languages, namely Esterel and Lustre 5. It could be
extended to Signal 3. These languages are compiled into an intermediate language
named OC. An OC program is basically a finite automata with outputs.

The basic components of our system are:

Occ++ which translate an OC program into a C++ class,

MDL the Module Description Language, used to describe the interface of synchronous
modules and to build new classes through composition and inheritance,

Mdlc the MDL compiler, which translates an MDL description into a C++ class.

libSync the class library which contains the classes needed to support synchronous
objects.

Composite classes may be used to avoid dynamicity when it is not needed. The
schedule of the components will be determined at compile time by Mdlc.

The communication between synchronous objects that belong to different clocks,
or between a synchronous object and a usual object is possible but nothing is imposed
by the model. Like in Ptolemy, the reason is to let as much freedom as possible to
the user. For example, the user’s policy could be to take into account all events, for
safety reasons. In this case the communication will be done with unbounded buffers.
Another policy could be to take into account only the last signal emitted. Different
policies are implemented with classes whose objects are associated with the input and
output signals of clocks.

A library of synchronous classes contains “useful” classes, like classes for interfac-
ing clocks with the external world (i.e. files, keyboard, graphical interfaces).

One advantage that was felt by users is the fact that is possible to combine syn-
chronous objects that are compiled separately, and react like one synchronous object,
thus avoiding a combinatorial explosion on the number of states. There is also an
implementation on the real time kernel VxWorks.

6. References

1. C. André and M.-A. Peraldi, Effective Implementation of Esterel Programs,
Workshop on Real-Time Systems, Euromicro’93, Oulu (Finland), June 1993

2. A. Benveniste and G. Berry, The Synchronous Approach to Reactive and Real-
Time Systems, Proceedings of the IEEE, vol. 79, no 9, September 1991



3. Albert Benveniste and Paul le Guernic, Hybrid Dynamical Systems Theory and
the Signal Language, IEEE Transactions on Automatic Control, vol. 35, no 5,
May 1990

4. J.T. Buck, S. Ha, E.A. Lee and D.G. Messerschmitt, Ptolemy, a Framework
for Simulating and Prototyping Heterogeneous Systems, International Journal
of Computer Simulation, vol. 4, April 1994

5. N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud The Synchronous Data
Flow Programming Language Lustre, Proceedings of the IEEE, vol. 79, no 9,
September 1991

6. N. Halbwachs, F. Lagnier and C. Ratel, Programming and verifying Real-Time
Systems by Means of the Synchronous Data-Flow Language Lustre, IEEE
Transactions on Software Engineering, vol. 18, no 9, September 1992


