
An Object Execution Model for Reactive

Modules with a C++ Implementation

Frédéric Boulanger, Guy Vidal-Naquet

École Supérieure d’Électricté and LRI - Université de Paris-Sud Orsay

Abstract

We present an execution model that allows reactive modules that
follow the synchronous paradigm (all computations are ended before a
new flow of data arrive) to be represented by objects that communicate
synchronously or asynchronously. This model is intended to be used in
the object-oriented design of complex applications that mix reactive and
transformational parts. The reactive parts may be developed in any syn-
chronous language, or even implemented in hardware. Our model allows
synchronous communication between separately compiled parts, when
there is no dependency loop. The object model allows dynamic cre-
ation and destruction of objects. This is supported by our model, along
with dynamic changes in the synchronous communication network. This
leads to the notion of reaction of a clock (a set of synchronous objects
that communicate synchronously). A clock reacts to signals at instant t
by producing outputs at t and determining what is going to be its state
at t+1 (with a new set of objects and a new communication network).
The nature of asynchronous communications is intentionally not imposed
in order to be adapted to each application domain. This model is im-
plemented by two tools and a C++class library. The first tool, occ++,
translates oc code (automaton description) into a C++class. The sec-
ond, MDLC, compiles descriptions of composite modules written in the
Module Description Language. A library provides the execution machine
for synchronous objects. The implementation works on any Unix ma-
chine, and has been ported to the real-time kernel VxWorks. This paper
does not provide a methodology for dealing with reactive components,
but presents tools for the application of Object Oriented methodologies,
or object based software platforms, to systems with reactive components.
Our system was integrated in the PTOLEMY environment which is used
for the simulation and the prototyping of heterogeneous systems.

1 Introduction and Motivation.
Complex systems usually have components of radically different natures:
• Reactive components, that deal with the environment, receive input signals,
produce output signals, and maintain a coherence relation between inputs and
outputs. These components must often have real time and safety properties,
and communicate with each other in a synchronous or asynchronous way.

1



• Transformational components, that work without interaction with other com-
ponents during their computation.

Examples of such systems can be found in the fields of supervision, trans-
portation, telecommunication, autonomous robots, self-tuning control systems.

During the last decade, the synchronous approach has been developed for
the programming of reactive modules [BEN&BER-91]. It relies on the syn-
chronous hypothesis: reaction is instantaneous (in reality sufficiently fast). This
leads to a model and to programming languages that treat time in a rigorous
way, and where parallelism and determinism are not antinomous.
Informally, the execution of a program written in a synchronous language is
like the functioning of an automaton with outputs: outputs are instantaneously
determined, and the next state is computed.

An advantage of the synchronous approach is that proofs can be obtained
from the source code, after an automatic translation into mathematical lan-
guage [BEN&BER-91],and [HAL-93]).

There are actually two drawbacks to using the synchronous approach: 1)
the code is monolithic, i.e. it is not possible to compile parts of a system
separately and assemble them and; 2) parallelization is therefore difficult.

The work we present here is aimed at smoothing the integration of these
modules in complex systems, by allowing them to be viewed as objects. This
will allow developers to take advantage of the features of object oriented pro-
gramming techniques, like class libraries, inheritance, methodology for struc-
turation, dynamic creation of objects. We give two examples where Object
Oriented technologies could be applied with reactive components:
• Structuration enables us to name a whole set of components with a single
name. These components may be reactive or transformational. In Fig.1 the

Figure 1: Structuration of Objects

acquisition module has two captors , which send their data in a synchronous
way to three computation modules, whose results go through a voting module.
The result of the vote is logged (asynchronously) on a data base, and is also
transmitted to two effectors. One would like to see the acquisition module and
the effector module as whole entities, i.e. objects.

2



• Dynamicity which means in this context that objects can be created at run-
time, and connections between objects can be changed. In the following exam-
ple of a controller, an object is in charge of adjusting a valve. If the pressure
and/or the temperature becomes too high, a "crisis" module is substituted,
and controls the valve and a safety valve.

Figure 2: Dynamicity of Objects

In this scheme, the object Regular Control is destroyed, and the objects
Crisis Control and Safety Valve are created. Pressure and Temperature are
connected to Crisis Control. In another possible scheme, Crisis Control and
Safety Valve would have already been present, only the connections would have
changed.

2 Execution model.
We now present an execution model for synchronous modules. This model
describes our basic objects: synchronous classes, instances of a class, clocks
and basic operations: creation, and destruction of an object. This model will
be used as a reference for implementation, i.e. every constraint and property
given in this section will have to be satisfied by any implementation. Formal
definitions can be found in [BO&VI-94]

2.1 Synchronous Classes.
A synchronous class C is defined by :1) a set of input and output signals. Signals
have typed values and can be present or absent; 2) a set of states, with an
initial state; 3) a reaction function: at instant t, given a state and the values
of input signals, the reaction function computes the presence and values of
output signals at instant t, and the state at instant t+1, (in accordance to the
synchronous model).

We distinguish a special subset of outputs called input-independent, which
depends only on the state of the object, and not on the values of the input
signals. The presence, and the value of an input-independent signal can be
evaluated independently of the inputs.

3



2.2 Synchronous Objects and Clocks
An object is an instantiation of a class C, and is identified within the class by
a name η, it is unambiguously designated by the identifier η • C. An object
reacts in the way described by the reaction function of its class.

A clock represents the evolution of a set of (synchronous) objects, it is
determined by a sequence of instants. At a given instant a clock is characterized
by: 1) a set of input signals, and a set of output signals; 2) the set of objects on
it, and the state they are in; 3) the connection between the input and output
signals of the objects on the clock; 4) the values and the presence of the different
signals.

A clock is not related to a physical measure of time, but with a sequence
of events. A clock has to satisfy the following constraints which are not prop-
erties, in the sense that they cannot be deduced from the model itself, but are
mandatory for any implementation of the model.
1. An object belongs to only one clock.
2. The instants when an object belongs to a clock form an interval, i.e. an
object cannot disappear and reappear
3. At a given instant, two connected signals are of the same type, have the
same value, and are both present or absent
4. For a given object η •C in a state σ, the presence and values of output signal
at instant t, and the state at instant t+1 are given by the reaction function of
the class C.
5. Let the precedence relation ≺ on objects, be defined by O1 ≺ O2 when there
exits a non input-independent output signal of O1 connected to an input signal
of O2. The transitive closure of ≺ is a partial order.

Condition 4 means that for an object O the output signals at instant t and
the state of O at instant t+1 are computed instantaneously by the reaction
function.

The following figure gives an example of a clock at a given instant.

Figure 3: Connected Objects on a Clock

Note that R is an output signal (produced by the outside world), and d an
input signal (that is used by the outside world)

Condition 5 expresses that connections like in Fig. 3 can happen, only if
ic or sd is input independent.

One can show that if conditions 3,4,5 hold, then at an instant n, given the
states of the objects, and the values of the input-signals of the clock, one can

4



determine unambiguously all output signals at instant n, and states at instant
n+1.

If in Fig.3 object ′1 is a counter, which increments a number at each instant
of a clock, and the signal r resets the counter to 0. The object O2 breaks the
causality loop if it introduces a delay: at instant n, it stores the value i of the
input signal in the state si for instant n+1. The module O1 produces as output
0 when the signal restarts is present, and n+1,where n is the value of input
signal i, otherwise.

2.3 Dynamicity.
There are two types of dynamicity in our model:
Dynamicity of connections, and dynamicity of processes.
Since we view objects as black boxes, without analyzing their semantics, we
can only describe dynamicity in the model, without saying why it occurs.

The destruction of a synchronous object O at instant n, has the following
consequence for object O′ which depend on O:
If the input signal s of O′ is connected to an output signal of O, at instant
n+1, s is not present, but has the same value it had at instant n, unless it is
connected to an output signal of an object that exists at instant n+1 (the signal
keeps the same value, but is absent, this is compatible with the approach in
synchronous programming, that says that a signal keeps the same value unless
it is explicitly modified).

Dynamicity of objects is needed when the number of objects in the system
is not known, for example in traffic control, but can be used in other cases (see
example of Fig. 2)

The instantiation of synchronous object O of a class C at instant n, takes
effect at instant n+1.

A connection is requested at instant n, and effective at instant n+1. Dy-
namicity of connections has a very low cost, and may be useful to change the
configuration of the system according to some conditions. Dynamicity of ob-
jects is a little more time consuming, but is sometime necessary. For example,
some systems do not specify an upper limit on the number of potential man-
aged objects. There is of course a limit, imposed by the size of the available
memory, and by the time constraints. The allocation of memory has to be
decided at run-time, because a static allocation would prevent an optimal use
of memory. Even when the maximum number of objects is known, one may
want to reuse memory when some objects are not used.

2.4 Execution machine for clocks.
For a clock, the execution machine [AND&PER - 93] at instant n will do the
following: 1) Process requests of creation and destruction of objects; 2) Process
requests of (dis)connection; 3) verify property 5; 4) schedules an order of reac-
tion for the modules that satisfies dependency relations (there exists one, from
the above result); 5) evaluates the state of each object existing on the clock;

5



5) make each object react: Determine the output signal at instant n, and the
state n+1, which can be done due to property 5.

3 Composite synchronous classes.
In this section we describe informally two ways for building new classes.

Composition: It is possible to build new classes whose instances are com-
posed of interconnected instances of existing classes. The formal definitions
are not given here but can be deduced easily from the definitions of the input,
output, state function and evaluation function of a clock.
For example, from the classes of O1 and O2, we could make a class COUNTER,
as described in Fig. 3.

Inheritance: We keep the notion that when a class A inherits from a class
B, the behavior of A is a refinement of the behavior of B. Since we consider
here a synchronous class as a black box, we cannot state properties of behavior,
but structural properties:

A synchronous class B inherits from a synchronous class A implies that the
interface of class B contains the interface of class A.
A way to derive a class B from a class A is to filter the inputs and the outputs
of an instance of A with two additional objects.
A constraint that is not imposed by the model, but that seems useful with
respect to the general discussion on inheritance, is that if all the signals not in
A are absent, then the reaction function of class B is the same as the reaction
of class A. A typical example of inheritance is the construction of an ABS
brake from a usual brake.

4 Realizations.
Synchronous classes are described with synchronous languages, [HAL-93], and
compiled into an intermediate language OC. This allows us to use all syn-
chronous languages that can produce OC code, without the task of compiling
synchronous languages. An OC program is basically a finite automata with
outputs. The basic components of our system are: 1)OC++, which translates
an OC program into a class; 2) the Module Description Language (MDL) with
which we can build classes through composition and inheritance; 3) MDLC a
tool that produces a synchronous class from a description file in MDL.
A user who does not need dynamicity can create composite classes, for which
scheduling will be determined at compile time by MDLC.

The communication between synchronous objects on two different clocks, or
between a synchronous object and a usual object is possible in an asynchronous
way. Like in PTOLEMY nothing is imposed by the model, in order to let as
much freedom as possible to the user.
Among possible type of communication we have: treatment of all events, in the
order they came (a missed event is an error); treatment of all events (a given
percentage of missed events is not an error); treatment of the last event .

6



Different policies are implemented with classes whose objects are associated
with the inputs and outputs signals of clocks. These objects are the equivalent
of the device drivers of an operating system. Their design require a precise
specification of how asynchronous events must be translated into synchronous
events, i.e. how synchronous objects perceives the asynchronous world.

A library of synchronous classes provides the execution machine for syn-
chronous objects and useful classes, like classes for interfacing with files, key-
board, graphical interfaces. With our system it is possible to combine sepa-
rately compiled synchronous objects which react like one synchronous object,
and thus to avoid a combinatorial explosion on the number of states. There is
also an implementation on the real time kernel VxWorks,

Developed at the University of Berkeley, the PTOLEMY system stands as
an object-oriented framework that supports various execution models, or do-
mains [BUC&al -94]. We are currently working on a translator from the output
of Lustre and Esterel compilers to the Ptolemy language. The target domains
may be DE (Discrete Events) and SDF (Synchronous Data Flow). Since both
DE and SDF do not match the reactive synchronous execution model, we will
develop a SREC (Synchronous Reactive Execution and Communication) do-
main which will be another target for our translator. Such a domain is not
intended to replace synchronous compilers for building synchronous reactive
systems, but to provide support for the execution of synchronous modules in
Ptolemy. We have studied the interface of the SR domain to other domains
(especially DE and SDF) to determine the meaning of communications between
them. The goal is to allow the use of synchronous reactive modules to control
the behavior of data-flow processes. This may ease the co-design of special
purpose hardware and of the software that drives it, since the border between
hardware and software can be adjusted through simulation before choosing an
implementation.

References

[AND&PER - 93] C. André and M.A. Peraldi: Effective Implementation of ES-
TEREL Programs. Workshop on Real-Time Systems, Euromicro’93,
Oulu (Finland), June 1993

[BEN&BER-91] A. Benveniste, G. Berry: The Synchronous Approach to Reactive
and Real-Time Systems. Proceedings of the IEEE, vol 4, April 1994

[BO&VI-94] F. Boulanger, G. Vidal-Naquet: Integration of Synchronous Modules in
an Object Oriented Language. in Information Systems, Correctness and
Reusability pp.279-291, Word Scientific ,1995.

[BUC&al -94] J.T. Buck, S. Ha, E.A. Lee, D.G. Messerschmitt: PTOLEMY , a
Framework for Simulating and Prototyping Heteregeneous Systems. In-
ternational Journal of Computer Simulation, 19(2):87-152, November
1992.

[HAL-93] N. Halbwachs: Synchronous Programming of Reactive Systems: Kuwer
Academic Press,1993.

7


	Introduction and Motivation.
	Execution model.
	Synchronous Classes.
	Synchronous Objects and Clocks
	Dynamicity.
	Execution machine for clocks.

	Composite synchronous classes.
	Realizations.

