
Synchronous Reactive Programming in Ptolemy

Frédéric Boulanger
Frederic.Boulanger@supelec.fr
tel: (33 ˜ 1) 69 85 14 84
fax: (33 ˜ 1) 69 85 12 34

and

Guy Vidal-Naquet
Guy.Vidal-Naquet@supelec.fr
tel: (33 ˜ 1) 69 85 14 75
fax: (33 ˜ 1) 69 85 12 34

École Supérieure d’Électricité — Service Informatique
Plateau de Moulon

91192 Gif-sur-Yvette Cedex
France

and

Laboratoire de Recherche en Informatique
Université de Paris-Sud Orsay

Bâtiment 490
91405 Orsay

France



ABSTRACT
Synchronous reactive languages allow a high level de-

terministic description of reactive systems such as control-
command systems. Their well defined mathematical se-
mantics makes it possible to check formal properties on the
control of a system.

In previous work, we developed an object-oriented ex-
ecution model for synchronous reactive modules. This
model is implemented as a set of tools and a C++ class li-
brary, and allows us to use object-oriented methodologies
and tools for the design of complex applications with both
transformational and reactive parts.

Among these design tools, the Ptolemy system stands as
an object-oriented framework that supports various execu-
tion models, or “domains”. We are currently working on
a translator from the output format of the Lustre and Es-
terel compilers to the Ptolemy language. Since no existing
domain matches the reactive synchronous execution model,
we also plan to develop a SEC (Synchronous Execution and
Communication) domain. Such a domain will provide sup-
port for the execution of synchronous modules in Ptolemy.

One of the most interesting features of Ptolemy is the
communication between domains. Therefore we discuss
the interface of the SEC domain to other domains to deter-
mine the meaning of communications between them. The
main goal is to allow the use of synchronous reactive mod-
ules for the control of the behavior of data-flow or discrete
event processes.

SYNCHRONOUS AND OBJECT-ORIENTED
APPROACHES

A reactive system, as defined by Harel and Pnuelli
(1985), is a system that interacts continuously with its envi-
ronment, at the pace of this environment. This defines reac-
tive systems as opposed to transformational systems (they
get all their data at the beginning and stop when they have

produced their result), and interactive systems (they interact
with their environment, but at their own pace).

In the category of the reactive systems, we find most
of the real-time systems (control/command, signal process-
ing), but also user interface systems or network protocols.

These systems are generally deterministic, must obey
time and reliability constraints, and are often described as
several concurrent processes. The synchronous approach,
which is based on the hypothesis that a system reacts in-
stantaneously to its inputs by producing its outputs at the
same time, makes it possible to describe reactive systems
in high level languages that combine parallelism and de-
terminism. A real system cannot react instantaneously, but
provided that the reaction to an event is finished when the
next event occurs, the system can be considered to follow
this model.

Lustre (Halbwachs et al., 1991) and Signal (Benveniste
and Le Guernic, 1990) are two data-flow synchronous reac-
tive languages. With these languages, a system is described
as a network of operators, each operator being itself either
primitive or described by another network of operators. The
operators communicate through signals. A signal is a series
of values associated with a clock that specifies when the
values are present. The network of operators is equivalent
to a system of equations between the signals. The com-
piler solves this system of equations for the clock part of
the signals, and yields a sequential deterministic ordering
of elementary operations on the value of the signals. The
result of the compilation can easily be translated into any
sequential language.

Esterel (Berry and Gonthier, 1992) is an imperative par-
allel language in which processes communicate through
signals by instantaneous broadcast. A signal has a value
which is remnant, and it can be emitted or not at a given
instant. Control takes no time in Esterel, and only three
primitives — the emission of a signal, the test for the pres-



ence of a signal — and the execution of an instruction until
the occurrence of signal, permit the expression of all be-
haviors. A fourth “exec” primitive has been added (Berry
et al., 1992) to handle the interaction between synchronous
and asynchronous processes. The exec primitive allows the
execution of an asynchronous task to be integrated in the
semantics of the other primitives of Esterel.

The mathematical semantics of the synchronous lan-
guages makes it possible to check formal properties on pro-
grams. For instance, if one writes a synchronous program
to drive an elevator, it is possible to check that the elevator
never moves with the door open. These proofs only deal
with control properties (a signal is emitted or not), they do
not concern properties of data values. The possibility to
make formal proofs on the behavior of a system is very im-
portant for some applications where a design flaw may have
catastrophic consequences.

The lack of support for the joint use of synchronous mod-
ules and transformational code in the same application led
us to develop an object-oriented execution model for syn-
chronous modules (Boulanger, 1993). Once compiled, a
synchronous module is a black box whose behavior can
only be observed through its input and output signals. This
is very close to the notion of an object with encapsulated
data, whose behavior can only be observed through the ac-
tivation of its methods. The occ++ tool1 uses this similarity
to translate the intermediate code produced by the Lustre
and Esterel compilers into a C++ class. The libSync class
library implements the execution machine for synchronous
objects and allows them to communicate synchronously. A
set of interface classes implements the communication be-
tween synchronous objects and their environment, which
includes transformational and interactive code or even hard-
ware. For example, we developed an interface between lib-
Sync, the VxWorks kernel and data-acquisition VME cards.

SYNCHRONOUS REACTIVE EXECUTION MODEL
The synchronous reactive execution model of libSync

and occ++ makes interconnected synchronous objects be-
have just like the corresponding synchronous modules in
a synchronous language. At a given instant, all signals have
a value and are emitted or not. Since the system is com-
posed of several synchronous objects, we must make them
react in turn, but in an order that preserves the synchronous
semantics.

For example, figure 1 shows two interconnected modules
A and B. The value of the α and β signals must be the same
for both modules, so B must react after A because the value
of β is computed by A. But the value of αmust be preserved
after the reaction of A so that B sees the same value of α as
A.

1The software presented in this paper is available at
ftp://ftp.supelec.fr/pub/cs/distrib/

Preserving the synchronous semantics obviously pro-
hibits loops in the dependency graph because it would make
one input of a module dependent on one of its outputs, and
cause a signal to have several values in the same instant.

So, one limitation of our execution model is that instan-
taneous loops are forbidden. However, loops are allowed
if they contain a connection (for instance through a delay)
that does not imply an immediate dependency. With this
limitation, finding an order of reaction for the synchronous
modules consists in a topological sort of the dependency
graph. Several orders may be possible, but will be strictly
equivalent from the synchronous point of view. However,
scheduling directives are available to influence the choice
among the possible orders since it may have an influence
on side effects of the modules (for instance, the order of
activation is visible if some modules write on a file when
they react because the reader is not synchronous and reads
the file line after line, even if these lines were written at the
same instant).

To sum up, in our synchronous execution model, instan-
taneous loops are not allowed, the order in which objects
react is determined statically by a topological sort of the
dependency graph, and each object reacts exactly once in
an instant.

PTOLEMY
The Ptolemy system (Buck et al., 1991), developed at the

University of California at Berkeley, is an object-oriented
framework within which diverse models of computation (or
domains) can coexist and interact. It supports heteroge-
neous system specification, simulation and design and is
extensible: users can create new components in a domain
or even create entirely new domains.

Since our goal is to combine the use of the synchronous
paradigm with other models of computation, Ptolemy is a
very good foundation upon which to build a synchronous
reactive domain. First, this new domain will benefit from
currently existing domains, and second, if an application
needs to use synchronous modules with another paradigm,
its designer will benefit from the Ptolemy kernel to make
them interact.

Let us introduce some terminology: in Ptolemy, basic
building blocks are called “stars”. Stars communicate by
exchanging data tokens named “particles” between their
“portholes”. Stars can be composed into new building
blocks called “galaxies”. A complete application is called a
“Universe”. “Wormholes” allow the use of building blocks
of a domain in another domain. Particles exchanged be-
tween two domains go through “Event horizons”.

Before studying the new synchronous domain, we must
take a look at the existing domains to determine if a new
domain is really necessary. The most promising domain to
host synchronous reactive modules is the Discrete Events
(DE) domain, but we will also discuss why the Synchro-



nous Data Flow (SDF) domain, although its name contains
“Synchronous”, is not appropriate for synchronous reactive
modules.

THE SDF DOMAIN
In this domain, a star consumes a fixed number of parti-

cles on each of its inputs and produces a fixed number of
particles on each of its outputs when it is fired. The firing
order of the stars is determined statically before the run so
that the production and the consumption of particles bal-
ance on each connection. It is possible to build a network
of stars for which there is no possible scheduling, in which
case the scheduler reports an error.

If we suppose that each synchronous star consumes ex-
actly one particle on each of its inputs and produces ex-
actly one particle on each of its outputs when it is fired, the
scheduling of SDF matches the scheduling of our synchro-
nous execution model.

The problem with SDF is the hypothesis that each syn-
chronous star will consume or produce exactly one particle
on each of its ports. A synchronous module produces events
only when specified by its behavior, and consumes events
only when they occur. So all we can say is that a synchro-
nous star produces or consumes at most one particle on each
of its ports when it is fired.

A simple solution to this issue is to store an attribute of
presence in the value of the particles: a particle is produced
at each firing, and the attribute of presence says whether it
corresponds to a real event or not. But this forbids the use
of all the built-in data types of Ptolemy and is not practical.

THE DE DOMAIN
In the DE domain, stars interact through dated events.

The scheduler maintains a global event queue and fetches
the event at the head of the queue, which is the earliest
event. This event is sent to the input port of its destination
star, as well as all other simultaneous events for input ports
of the same star. The star is then fired, producing events on
its output ports.

If several stars can be fired because they have simulta-
neous events on their inputs and may produce events with a
zero delay, the order of their firings is determined according
to a topological sort, so that a star which depends on the out-
put of another star is fired after it. The effective scheduling
algorithm is more subtle, but this will be enough to show
what may go wrong for synchronous modules in DE.

Except for the dynamic scheduling, which is not neces-
sary for synchronous modules as we saw in the descrip-
tion of the execution model, everything seems fine in DE to
make synchronous stars behave correctly. We have devel-
oped a translator from the oc code produced by Esterel and
Lustre to pl, the Ptolemy Language. This translator, ocpl,
produces a DE star from a synchronous module. This star

can be dynamically linked into Ptolemy so that we are able
to experiment with it. Examples of use of synchronous DE
stars are available too.

One example shows what differs between the DE seman-
tics and the synchronous reactive semantics: the “Four Tur-
tles”. Four turtles are initially placed at the corners of a
square and move on a grid. The behavior of each turtle is
to take a step toward the next one if the distance between
the two turtles is greater or equal to 2 grid units (a step is of
length 1 or

√
2 grid units). “Taking a step” must be under-

stood as choosing a new position and producing a particle
that represents this position.

Since the interconnection of the turtles makes a loop, we
must introduce a delay. We put a delay between every pair
of turtles to conserve the symmetry of the system which is
represented on figure 2.

The system evolves until the four turtles are grouped at
the center of the square, as shown on figure 3.

There are two kinds of possible delays in DE: Delay stars
and arc delays. The first kind is a star that produces a
particle which is equal to the one it receives, but with a
timestamp incremented by the value of the delay. Such de-
lays make the time progress. The second kind of delay is
a property of the connection: it just informs the scheduler
that what seems to be a delay-free loop is perfectly safe.

The first issue we met in DE is that a star is fired only if
it receives an event on any of its inputs. In the synchronous
execution model, a star is fired each time there is a new
instant, that is to say, each time the previous instant has
been processed. To make the system start, we must make
our turtles derive from the RepeatStar class so that they
are initially scheduled. After this initial phase, the events
they produce while moving keep the simulation alive until
they meet at the center of the square.

In the arc delay version of the example, the initial firing
of the four turtles occurs because they have been scheduled
during the setup of the simulation. They emit their current
position with timestamp zero, so they all have an event on
their input. They are triggered again, consume the event
on their input (which contains the position of their target),
compute their new position and emit this new position with
the same timestamp as the input event, which is zero. In this
system, time does not progress and all the activations take
place at instant zero. Since the display star does not produce
events, it is never scheduled and particles accumulate on the
arcs between it and the turtles. When the four turtles meet
at the center of the square, they stop producing events since
their position does not change any more. Then, the display
star is the only one to have events on its input and it is fired
until the particles that have accumulated are all consumed.

With this example, we can see that in DE, all simulta-
neous events for a star may not be processed in the same
firing, and a star may be fired several times in the same
instant, which breaks the main rule of our synchronous ex-



ecution model.
So, even if synchronous reactive modules may be used

in DE, this domain does not provide a truly synchronous
reactive execution model (but that was not the purpose of
its designers).

THE SR DOMAIN
At the University of California at Berkeley, Stephen Ed-

wards is working on a SR (Synchronous Reactive) domain.
This domain is targeted toward the heterogeneous design of
synchronous reactive systems. Whatever the original par-
adigm used to specify the building blocks, their behavior
must be defined by a monotonous function. The behavior
of the whole system at each instant is the least fixed point of
the composition of the module functions. This fixed point
is computed by convergent iteration.

In the SR domain, instantaneous loops are allowed be-
cause the behavior of the system is computed at each in-
stant. If an instantaneous loop is not causal, this will only be
detected at the instant when the causality fault appears. The
counterpart of this lack of compile time causality checking
is the small time needed to determine the behavior of the
system, what makes it possible to compute it at each in-
stant.

So SR can be seen as a synchronous reactive emulator,
allowing the rapid prototyping of synchronous reactive sys-
tems from heterogeneous building blocks with great flexi-
bility. SR systems may be used as stars in our Synchronous
Execution and Communication domain.

THE NEW SEC DOMAIN
While SR deals with the heterogeneous design of syn-

chronous systems, our project concerns the integration of
already compiled synchronous modules into a heteroge-
neous design: we want to provide a synchronous reac-
tive execution model to host synchronous modules and al-
low them to communicate with other domains. We do not
require the behavior of the modules to be expressed by
monotonous functions: the reaction of a module is atomic,
producing all the output events at once.

The building blocks in our SEC (Synchronous Execution
and Communication) domain are already compiled, and we
do not deal with causality checking. These blocks are either
obtained through ocpl from a description in a synchronous
language (more exactly, it is the state machine in the oc
format which is translated, so only Esterel and Lustre are
currently usable with ocpl), or written from scratch in C++.
They are considered as black boxes so, unless otherwise
specified, all their outputs are supposed to depend on all
their inputs.

The “unless otherwise specified” means that it is possi-
ble to make the box “less black” by saying that such output
does dot depend instantaneously on the inputs, or that such

input does not influence instantaneously the outputs. This
makes it possible to specify and use delays to break instan-
taneous loops since we can express the fact that the output
of a delay does not depend on its input instantaneously.

The most important problem to solve is the meaning of
the communications between SEC and other domains. We
have already considered the problem of the communication
between synchronous and asynchronous worlds in the lib-
Sync library. When asynchronous events arrive in a syn-
chronous system, they must be “synchronized”, i.e. put on
a particular instant of the synchronous system. The simplest
way is to put an asynchronous event on the next occurring
instant of the system, but this may not always be what we
want. And what should we do when two or more asynchro-
nous events occur between two instants of the synchronous
system? Should the earlier event be discarded or should we
queue the events to absorb a temporary burst?

This choice is very dependent on the desired behavior
of the synchronous system, and it must be done by the de-
signer since it is related to the application domain. In lib-
Sync, interface classes are in charge of the synchroniza-
tion of asynchronous events, and the designer of a system
chooses the appropriate synchronization policy for asyn-
chronous events. He may write a new interface class to
implement a particular policy. We think that the same so-
lution applies for the SEC domain: their will be interface
stars to communicate with other domains, just as there are
interface stars to communicate with the user or the operat-
ing system in other domains.

Basic interface stars may be provided with SEC to imple-
ment the most common strategies of synchronization (event
queuing, discarding all but the latest event) as well as the
enforcement of the implications and exclusions that can be
specified in a synchronous language. Implications and ex-
clusions are assumptions on the behavior of the asynchro-
nous world that allow the compiler to optimize the object
code. An implication states that the presence of a signal
implies the presence of another signal. An exclusion states
that a signal is never present when another is. Since this
information is used by the compiler, it is very important
to make sure that these rules will be respected at run-time,
otherwise the system will have to react to an event that is
considered impossible.

We have only dealt with the issue of the inputs to a syn-
chronous system. There is no difficulty for the outputs since
a synchronous star produces at most one event on each of
its outputs: all we have to do is to make sure that a particle
is produced on each output when we communicate with a
domain such as SDF. This can be done with a “Sampler”
star, like in DE.

HOF: HIGHER ORDER FUNCTIONS
Once a system is described as a graph of black boxes,

transforming its graph transforms the system. We have



developed the bdl (Block Description) language to define
generic transformations of a graph and to apply them to the
graph of an application. Such transformations are useful
to handle multiple configurations of the same system. For
example, we used transformations to add safety features to
an application, allowing separate development of its oper-
ational and safety parts. In this context, a transformation
may consist in replacing a module with N copies of this
module and to add a voter on the outputs. Even if such a
transformation seems simple, combinations of transforma-
tions may involve such a large number of connections that
it would be error prone or even impossible to do them by
hand.

Using transformations facilitates the maintenance and
the management of several configurations because it
loosens the coupling between the application and its op-
erating environment: from the same initial graph, several
transformations will produce the different configurations or
versions.

The HOF domain in Ptolemy allows the design of stars
that apply other stars to their inputs. The behavior of these
stars is to modify the interconnection graph of the system
and to disappear before the simulation or the code genera-
tion begins. HOF stars even allow the use of conditions and
recursion in the design of a system without runtime over-
head since these stars do not appear in the simulation or in
the generated code.

So, by making HOF a subdomain of SEC, we will be
able to implement a graphical version of bdl, and this will
allow the design of complex systems that would be painful
to build step by step.

CONCLUSION
Our first experiments with ocpl reveal the need for a new

domain that will provide a suitable execution semantics to
the modules produced by synchronous languages compil-
ers. This new domain will come with interface stars that
implement various communication strategies with the other
domains, and will allow the use of Higher Order Functions
stars to build complex systems or handle several configura-
tions of the same system.

These experiments also show that using synchronous re-
active modules in Ptolemy is promising for the design of
heterogeneous systems that mix data-flow signal process-
ing and event driven behaviors. This comes from the pos-
sibility to rapidly go back and forth between edition and
simulation, and from the richness of the existing domains.

REFERENCES
Harel, D. and Pnuelli, A., 1985, “On the Development

of Reactive Systems”, Weizmann Institute of Science, Re-
hovot, Israel.

Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D.,

1991, “The Synchronous Data Flow Programming Lan-
guage LUSTRE”, Proceedings of the IEEE, 79(9), Septem-
ber 1991.

Benveniste, A., and Le Guernic, P., 1990, “Hybrid Dy-
namical Systems Theory and the SIGNAL Language”, IEEE
Transactions on Automatic Control, 35(5), May 1990.

Berry, G., and Gonthier, G., 1992, “The ESTEREL

synchronous programming language: Design, seman-
tics, implementation”, Science of Computer Programming,
19(2):87-152, November 1992.

Berry, G., Ramesh, S., and Shyamasundar, R.K., 1993,
“Communicating Reactive Processes”, Proceedings of the
20th ACM Conference on Principles of Programming Lan-
guages, Charleston, Virginia.

Boulanger, F., 1993, “Intégration de Modules Syn-
chrones dans la Programmation par Objets”, PhD thesis
2977, University of Paris-XI–Orsay.

Buck, J., Ha, S., Lee, E.A., and Messerschmitt,
D.G., 1991, “Ptolemy: A mixed-paradigm simula-
tion/prototyping platform in C++”, in Proceedings of the
C++ At Work Conference, Santa Clara, CA.

FIGURES

�
�
�
� �
�
�
�γ

βα

B

A-

--
-

Fig. 1: Synchronous communication

Display

Fig. 2: The “Four turtles” example

Fig. 3: Evolution of the “Four turtles” example


