Objects and Synchonous Programming

Charles ANDRE?, Frédéric BOULANGER ?,
Marie-Agnes PERALDI 13, Jean-Paul RIGAULT#,
Guy VIDAL -NAQUET?

1 Laboratoire Informatique Signaux, Systémes (I3S) — Unsir de Nice Sophia
Antipolis and CNRS — 41 bd Napoléon Il — 0604¢E Cede&, France

2 Laboratoire de Relterche en Informatique — Univsité Raris-Sud andSUPELEC—
SUPELEC- Plateau de Moulon — 91192F SURYVETTECede&, France

3 Laboratoire d’'Informatique &hnique — Ecole ytedinique Fédéale de Lau-
sanne — IN-Ecublens — CH-10LBUSANNE Switzerland.

4Ecole Supériew en Sciences Informatiques (ESSI) — Usitérde Nice Sophia
Antipolis — BP 145 — 069080PHIA ANTIPOLISCede, France

ABSTRAT: Clear structue, support for absaction, leuse and easy wlution, these & the

striking featues of the object-oriented apgarch. Formal description of theeactive behavior
making it possible to pve Iaical correctness, is the essence of the kyorous paadigm.

This paper poposes to combine these two agmhes. An intoductory @ample pesents the
notion of asynchronous objectThen, various issuelated to objects and symony ae

addressed. fally, we eport on our pogress in kilding a complete design andggramming

ervironment. Editas, compiles, simulatos, and interfaces towds model beders are inte-

grated within this evironment, whik should contriite to better softwarquality in the field of
real-time

KEY WORDS object-oriented, syrfmonous pogramming reactive systemseactive objects,
real time systems, symronous objects.

1. Intr oduction

The objectparadigm is well adapted tmmplex systenprogramming Its main
adwantage is the impr@ment in progranarchitecture. This impk@ment is obtained
first by a modular decomposition based on real entities used by the application (the



objects) and, second, by a clear separation between the (abstracénferfising
an object and the details aboutiitplementation (internal design). Reerful mecha-
nisms such as aggation, inheritance, polymorphism alNoto benefit from this
decomposition. As a consequence, the system isnatwith extensibility and reus-
ability, thus &voring evolution and maintenance.

So far, object-oriented programming has been applied mosthansformational
systemsthat is, systems that compute at thendinternal) speed. Opposite to these,
there aist reactive systems [HAR 85], which hae permanent interactions with their
ervironment at a rate imposed by thevieonment itself. Most reaate systems are
alsoreal time systems (i.e., their reactions are temporally constrained).

Synchronous programming [BEN 91] was introduced as a solution to reaefpro-
gramming requirements. Synchronous languages are founded on simple and rigorous
mathematical semantics. Hence, one aaitdleficient and safe compilers. In addi-
tion, thelogical correctness of programs can be pred formally However, synchro-
nous languages are mainly used to describe the control part ofvggagttems. ér
other aspects of programming (data representation and transformationyé¢helas-
sical (algorithmic) languages. Monesy, for an efective execution of the code gener-
ated by a synchronous language compite user must pwide an execution
machine [AND 93].

Our objectve is to combine theynchronous and object-oriented approaches in
order to designcomplex reactive systems. The combination may impact \szal
phases of the soffwe life gcle: requirement analysis, preliminary and detailed
design, implementation, testinggrification and alidation...

This paper is @anized as follas:

— We first recall the characteristics of the object-oriented approach.

— We then introduce arxample: the modeling of the &ifent operating modes
of a cassette player/record@ihis exkample is composed of classical objects
and of controllers modeled by synchronous objects.

— In part three, we present tegnchronous object paradigm.
— The fourth part deals wittommunication between objects.

— And finally, we give an @erview of a software workbench designed for pro-
gramming with synchronous objects.

2. Characteristics of the Object-Oriented Approach

Using the object-oriented approach means considering the system i@lpded
as a collection of discrete cooperating objects. These objects are sulalystam
tions integrating datagtate) and operations on these datathods). Data areencap-
sulated, they cannot be accessed directiyt lonly through a call to a method of the
corresponding object. Hence, each object is responsible fovritslata, that is for its
own state and thus, for itsvo behaior. The list of methods for axgn object consti-
tutes thanterface to manipulate (to use) the object; that is the only information that
other (non-related) objectsveato knav about.

Object-oriented analysis and design methods (e.g., OMT) usually distinguish



three models [EM 91]:

1. The object model, properly speaking, often termed also asdlass model?,
which describes the system objects, their usage ackeraind the (static) rela-
tionships thatxst between objects;

2. The dynamic model (or behavioral model), which specifies the (dynamic)
interactions between objects on the one hand, and thevechethaior of
individual objects on the other hand;

3. Thefunctional model, which deals with data transformation and computation.

One of the major attractions of the object-oriented approach is \terpof
abstraction: it mads it possible tox@resswhat changes in the system withouvhey
to describénow these changes occuédding or remaing objects is rather easgim-
ilarly, modifying an object locally is straightfoard, prewided that the modification
disturbs neither the intexe of the object nor the relationships of the object with
other objects. Thus, incrementavdlpment (adding objects), reusabiliynd main-
tainability (local modifications) are among the main benefits of the approach.

3. An Example

Our aim is to model and simulate the operations carried out by a play-record cas-
setté. The deice is composed of twdecks Peck1 is play-only andDeck? is play-
record). Playback and recording operationferobophisticated options vialving
sequences of simpler operations (e.g., continuous play from deck to deck, auto-
reverse cop, blank skipping...).

We model this cassette recorder as a collectiotogperating reactive objects.

Some objects are imposed by the application. So are sensors (fteh bmit
switches...) and actuators (motors, magnetic heads, LEDs...). A cassette can be con-
veniently abstracted by a class, which captures both theusesibf the tape and its
access methods.

Contrary to approaches &kSA/RT, which considercontrollers apart from data
flows, we assimilate controllers to objects. Of course, éine highly reactie objects.
ROOM [SEL 94] adopts a similar point of wewhere controllers are instances of
“actors” (actve objects).

Through this gample, we will stress twmajor issues:

— class modeling (interest and limitations),

— dynamic behaor representation.

1indeed, most object-oriented analysis and design methods are class-based; a class represents
the properties common to a set of similar objects that is, it represetygebéan object. Then

models use classes instead of individual objects.

2This example is inspired from an unpublished experiment performed by FBO&r&SINOT

with Reactive Objects [BOU 95].



In this kind of application, functional aspects are limited and will be ignored here.

3.1. The Class Model

Figure 1 presents a class moddh OMT for one of the application objects: the
magnetic tape. Iretct, there are tarsorts of magnetic tapes: the tape properly speak-
ing (Passive_Tape) and the tape once it has been loaded into the deck
(Tape_i n_Deck). The first object is rather pagsi its only dynamic property is the

Passive_Tape Tape_in_Deck
length direction
type side
position
broken move
read
write
move change_dir
read
write
break {private} EOT

Labeled_Tape Labeled_Tape_

in_Deck

label_A
label_B ‘

Figure 1. Class (object) model of a mpaetic tape

possibility to break. The second object, the tape inserted into a deck, enriches both
the data structure and the beiloa of the first: selection of the side and of the motion
direction, handling of the “end of tapeddt ) event. Inheritance (denoted by a trian-

gle in OMT) is suited to represent such a specialization. It is then possiblevi® deri
other kinds of tape, lik the ones which ka a label (abel ed_Tape) or even the

tapes that spontaneouslgnish into smo& (the “Mission Impossible” tapes!). As
indicated on figure 1, multiple inheritance reakt possible to represent thesavne
tapes once inserted into the deck

3 This “spontaneous” event emission is not directly representable in an OMT class model. Thus
we have enriched the OMT notation, as can be seen on figure 1.

4Note the use of the OMT “black triangles” representiimmial multiple inheritance as in C++:

there will be only one copy of the base class (Rassi ve_Tape) in the derived classes,
whatever the number of the inheritance paths happens to be.



When it comes to representing the deck itself, the situation gets a little tri@kier
course, we wish to consider a play-record deck as a specializationvitivigriof a
play-only deck. The components of a deck (controttestor(s), head(s)) may be rep-
resented with an aggyation as in figure 2. Note that the association between the

load
Tape_in_Deck

Player Read_Controller

Motor
cad e weor |

eject

5 ke
A H

PlayerRecorder ‘
record Full_Controller
{controllef must be

a Full_Controller}

Figure 2. Object model of the deck using aggregation.

deck and the tape it an aggrgation, lut a simple (abstract) associatior4d).
Indeed the tape and the deck are perfectly independent objects; each of theve may li
on its avn.

However, there is a problem with the model in figure 2. If a simple controller
(Read_Control | er) is suficient for a read-only deck, the full deck must accommo-
date a more complete controll@&u( | _Control | er). This situation is not directly
representable in OMTin figure 2, we represented it withcanstraint on aderived
aggreation. Another possible model is to derithe deck from the controlleas in
figure 3. This may appear sowteat illogical, since a dedls not a (specialization of
a) controller Hence, we userivate inheritance (that we represent by a small bar
crossing the association). One can note thgaatesymmetry of the scheme: multiple
inheritance mads it possible to correctly represent the structure of the play-record
deck compared to the play-only one.

Here, we meet a classical situation (and a huge matter of discussion) in the object-
oriented approach: inheritance may be used both with the semandidgypfng or
as a simple means share implementation (code). The discussion about these issues
is bgyond the scope of this paper

To complete the model, the playexcorder itself is merely the aggegion of two
decks:Deck1 is an instance of clags ayer, wherea®eck?2 is an instance ¢l ay-
er Recor der.

The OMTlike models do not sho precisely the xechange of messages and



load

Tape_in_Deck

{private}
Read_Controller Player
77 Motor

2

eject
play

A

{private}

PlayerRecorder
Full_Controller K
record

Figure 3. Object model of the deck using (multiple) inheritance.

events between objeCtsWe thus introduced a wetype of diagram to makthese
dynamic links gplicit (figure 4). On these diagrams lesxrepresent objects. Input
ports (=) and output portsto ) represent methods. Connections are directed from
an input port to an output one; theepresent point-to-point communications. The
aspects related to communications will be described in section 5. Note that in order to
keep the diagram ¢gble, seeral signals may be grouped together to formsds”.

This is the case for output signals from objesgboar d (pl ay. . . recor d) which

are also found as input @ntrol | er.

3.2. The Dynamic Model

The behwaior of each object isxpressed by the “dynamic model”. Usually
graphical representations are used (State gr&ng,ECHARTS in OMT, ROOM-
charts in ®OM...). We adopt th&&YNCCHARTS [AND 96-1], a n&v model dered
from STATECHARTS [HAR 85] and Agos [MAR 91]. TheSYNCCHARTS are state-
based models suited to reaetbehaior modeling. Thg support hierarchof states,
orthogonality information broadcasting and preemptions. On the last fomC-
CHARTS definitely surpasSTATECHARTS: they malke a clear distinction between

5This is somewhat unfair. Classical OMT dynamic model includes the description of the ex-
change of messages through the use of event-trace diagrams, but this description is not global to
the system, it is scenario-based. Also forthcoming versions of OMT may include a system-wide
description of messages and events exchange.



[ Deck 1

Deck 2

keyboard

display

Figure 4. Connections between the application objects.

various kinds of preemptions (abortion or suspension, weak or strong, see [BER 92]).

A detailed presentation of ttf&NCCHARTS is begyond the scope of this paper
We shall only comment twexamples of synccharts. Thare suficient to introduce
several key features of the model.

The syncchart in figure 5presses the betiar of the basic play-record control-
ler. Two macro states, nameédrmal _M Ctrl andBasi c_Ctrl, have concurrent
evolutions. The dotted line in figure 5 separates tledvthogonal components. The
behaior of the motor controlNor mal _M Ct rI macrostate) is gén in figure 6.

An arc between tw states stands for abortion: as soon as Ykateassociated
with the arc occurs, the source statexiseel and the tayet state is entered. An ordi-
nary arc denotes weak abortion: the preempted macrostate mag@ute its “last
wishes” before being killed. An arc with a small circle at its origin denogg®rmg
abortion: the preempted state is not alled to eecute ay reaction. Note that both
weak and strong abortions are instantaneous and synchronous with the occurrence of
the triggering eent.

The behsior of a syncchart is fullydeterministic. If several eents can abort a
macrostate, a priority order must beegi (by small intger numbers né to the tran-
sition). InBasi c_Ctrl, eventrec is given the highest priorityeventr ewi nd the
lowest.

A synchronous model, IkSYNCCHARTS, relies on the notion of aimstant.
There is a clear distinction between strictly future and presefutime occurrences.
The symbol #”, which prefixes someents, stands for the latter case (gtgec in
theBasi c_Ctrl| _St at e means that if ec is present when entering this macrostate,



PlayRec_Ctrl

Basic_Ctrl

(rec + play + wind + rewind)

!

( Basic_Ctrl_State

1
#rec
# play # wind e # rewind

( Wind_Ctrl \ ( Rewind_Ctrl
[ ] @ @) [ \

@Normal_M_Ctrl

Mpause, Mtoggle, Mstop )

.

Figure 5. Control of the play-record deck.

then the component stalRec_Ctr1 must be entered immediately). The absence of
prefix# requires that only a strictly future occurrence be considered.

The evolution of a syncchart is controlled by triggeringents évent-driven sys-
tems). Cowmersely a syncchart can act upon itsvieanment (output weents). In
SYNCCHARTS as in Moore machinesutputs can be associated with states: a signal
identifier written in an ellipse (a state) indicates that this signal is emitted venene
the state is aate. For example, when the stat# nd_Ct r | is actve, MFF (Motor Fast
Forward) is sustained, so that a tape can bend. A syncchart can also emit signals
while a transition is tadn, as in a Mealy machine. This possibility is nowgho the
given xamples.

Normal_M_Ctrl

Mtoggle

# Mpause @) # Mpause
o o G oo
Q

Mtoggle

Figure 6. Motor control.

An emitted signal may be hidden from theieonment and used for internal pur-



poses (synchronization). Signasause, Mst op, M oggl e arelocal to the macro
statePl ayRec_Ctrl . When in thel dl e state,Basi ¢c_Ctr| emits the local signal
Mst op that influences the bebiar of the motor controlleiSince a signal may coey
a \alue, local (alued) signals are also used for internal communication.

In figure 6, special arcs are dmx they have no source state, théamget a state,
and thg end by a small circle head.e/¢all themsuspension arcs. When thevent
associated with a suspension arc is present, thettsiate is “frozen”, just as if time
did not flav with respect to the internat@utions of the state (e.g., whéht op is
present, the nested state graph can neither change state, nor emit signals). A suspen-
sion can be immediate (e.ystop in Normal _M Ctrl), or strictly future (e.g.

M oggl e).

To sum up, theSYNCCHARTS are suitable for modeling sophisticated reecti
behaiors. The promote preemption as a first class concept, so that normal as well as
abnormal behaors can be easily specified. Moveg SYNCCHARTS rely on a for-
mal semantics [AND 96-1] and thean be compiled into equlentESTEREL pro-
grams (program 1 is aBSTEREL program equialent to theNormal _M Ctrl

nmodul e Normal M Ctrl:
i nput Mstop, Mause, M oggl e;
out put M-, MB;
suspend
| oop
do
suspend
sustain M
when i nmedi at e Mpause
wat chi ng M oggl e;
do
suspend
sustain MB
when i nmedi at e Mpause
wat chi ng M oggl e
end | oop
when i nmredi at e Mst op
end nodul e

Program 1. Example of trandlation of a SYNCCHART to ESTEREL.

syncchart of figure 6). ThuSYNCCHARTS may be seen as a graphicatiant of the
ESTERELlanguage.

4. Synchronous Objects

As we sav in section 2, the object-oriented approach is wepful abstraction



tool. It allows us to sayhat changes without necessarily specifyhayv it changes.
The synchronous approaclvgs a similar leel of abstraction for the specification of
the behsior (when modules interact).

In the synchronous model, signals are abstractions of communicatiogsaréhe
instantaneously broadcast throughout the system. Thysctmstitute the medium
through which concurrent subsystems communicate. Arbitrarily compleractions
may be represented easilshe synchronous composition of the subsystems can be
defined rigorously and has interesting properties such as the determinism of the par-
allel composition.

As the tape deckxample shwis, an application may use both transformational
and synchronous reaati entities. The object-oriented approach permits thgrate
tion of both kinds of elementsy encapsulating the synchronous code into objects.
Synchronous modules are well suited to this encapsulation sincedhemunicate
only through their signals and thus can be considered as blag&.box

So, the first step is to turn a synchronous module into a class that wesgall a
chronous class. Instances of this classueathe same reagé behsior as the original
synchronous module. All the synchronous classeseldrom an abstract cldss
namedSynchr onous that defines the basic protocol ofyaynchronous object. i
this basic protocol we can define a synchroneasuion machine thatrgservesthe
synchronous semantics of the modules in the object-oriented language.

This allowvs synchronous objects to be interconnected and to communicate syn-
chronously The beheior of such a netark of synchronous objects is identical to the
behaior of a synchronous programuiti with the corresponding modules. Hence,
synchronous class libraries can be usediidl Iprograms without needing a synchro-
nous language compileand so, without needing the source code of the modules. Of
course, this separate compilation has limitations: the directed interconnection graph
of the objects must be yic, except when a non-instantaneous depernglaac
explicitly stated, such as for a deldpdeed, checking the causality of communica-
tion loops requires the kmdedge of the semantics of the modules—weeht
“open the black box”.

5. Communication between Objects

Regular objects communicate through messages. Synchronous objects are objects
but they have a synchronous reagi part which communicates only through signals.
So we hge to define ng protocols to transport signals within messages between
synchronous objects, and to meagignals accessible through messages for the com-
munication between synchronous objects agdleg objects.

6 An abstract class is a class with methods the implementation of which is deferred to derived
classes. Such a class cannot be instantiated. It defines an interface subset shared by all its sub-
classes.

—10-—



5.1. Synchronous Communication and Clocks

Synchronous communication between objects implies that the objects which
communicate togetheshare the same notion of an instant. The eecution machine
implements this notion with th@ ock class. Seeral instances of this class (that is
several “clocks”) may be used in the same program in order to proeestsdhat
occur at diferent time scales. Each clock determines a scheduling of the objects it
manages according to their connections andesmdkem react in an order that satis-
fies their dependencies. All the objects managed by the same clock constitute the
clock domain.

Contrary toESTEREL in which synchronous communication ispeessed by
“name sharing” (all the signals that share the same nameetih@ samealue), syn-
chronous communication between synchronous objects is a point to point communi-
cation, and seeral input signals can be connected to a same output signal. The reason
is the follaving: when tvo objects are instantiated from the same class, their signals
bear the same name althoughytlwerrespond to independent entities; hencey the
mustnot be connected. Therefore, the name sharing scheme cannot be used. Thus,
input signals hee aconnection method that tales an output signal asgament and
allows the eplicit declaration of the connections between synchronous objects.

This point to point connection scheme raslit possible to use the type checking
mechanisms of C++ [STR 86] to ensure that an input signal can only be connected to
an output signal of the same type.

5.2. Asynchronous Communication

Synchronous objects must be able to communicate wgthlae objects or with
synchronous objects belonging to another clock domain. So we need a mechanism
for asynchronous communication. Communicationsitena clock domain are not
really an issue since one can read takie of the output signals of a synchronous
object without disturbing it. On the other hand, communications entering a clock
domain requirea synchronization phase: we must kild a synchronousvent from
one or seeral asynchronousents.

Turning asynchronousvents into synchronous/ents is not a tvial task. It is
carried out byinterface objects [BOU 93]. These special synchronous objects are
sensitve to asynchronousrsents that actate some of their methods, andythgo-
duce synchronousrents for the other objects related to the same clock. Such objects
may be written in C++ or in a synchronous language. In the latter case, nothing
should be assumed about the simultaneity of the inputs since this notion has no mean-
ing for asynchronousvents.

5.3. Dynamicity
We hare seen that synchronous objects can be interconnected and can communi-

cate synchronously under the control of a clodk. $tuch a group of objects (a clock
domain), it is alvays possible to write an egalent program in a synchronous lan-

- 11 -



guage, and to use proof tools to check some properties. The object-oriented approach
brings the reusability anddéilitates the intgration. But once a synchronous module
has been translated into a C++ class, nothing forbids to dynamically create or destro
instances of this class during theseution of a program.df this, we must be able to
dynamically change the connection graph, disconnecting deleted objects and con-
necting navly created ones.

We then reach a higher order of description sincevantenot only triggers the
reaction of an objectut may trigger a “clock reaction’—a modification of the egui
alent synchronous program.

The main dravback of dynamicity is the lack of a synchronous programvagui
lent to a dynamic clock. This forbids the use of classical proof tools to check proper-
ties on the behaor of this clock. But dynamicity alles us to gpress synchronous
behaiors that cannot bexpressed in a synchronous language while still benefiting
from the synchronous approach for thgelepment of the components of the system
and for the control of dynamicity

Dynamicity may also be used in systems where the number of objects to manage
is not knavn beforehand. Examples of use of dynamicity are presented in the thesis
of FrédéricBOULANGER [BOU 93].

6. Software Wor kbench

To support our approach to object-oriented synchronous programming, we are
developing a platform that inggates seeral softvare applications dedicated to syn-
chronous programming (editors, compilers, simulators, code generators, and proof
systems). Figure. 7 presents the main components of our platform described in detail
in another paper [AND 96-2].

6.1. Editors

The description of a synchronous object can be eitkeraikor graphical. Classi-
cal textual editors are used for C+ESTEREL MDLC [BOU 93] programs. On the
other hand, we & developed our wn graphical editors fo6RAFCET [AND 94]
andSYNCCHARTS.

6.2. Compilers

Synchronous modules can be specified by synchronous languagest{RE or
ESTEREL as well as by synchronous formaliSn&RAFCET or SYNCCHARTS).
Compiling a synchronous module is a comptesk, which imolves \arious compil-
ers (see Figure. 7)USTRE, ESTEREL GRAFCET, SYNCCHARTS compilers yield
an intermediate common code ko as theoC code.occ++ [BOU 93], another
compiler then turns th@c file to a C++ synchronous class. The rea&ctynchro-
nous code is embedded within the synchronous class. It is accessible through the
standard intekce that we hee developed for synchronous objects.

—12 —



Synchronous Object Descriptions

LUSTRE GRAFCET SYNCCHARTS ESTEREL MDL
i
v
SyncCharts
grafoet compiler
compilers

lustre
compiler

esterel
compiler

BAC | [ AUuTO

TEMPEST

implementations

grafcet esterel .
simulation simulation C++ files

XSIM SOFA

reactive object
simulation

Simulators

Figure 7. The Synchronous Object Platform.

OCcC++ can also generate a module description file (iatexfsource file...).

MDLC (Module Description Language Compiler) supports the creationwf ne
classes by composition and detion. The Module Description Languagen()
allows us to define memodules by static connections between andvaions from
existing modules. A devied class inherits the behar of its supefclass and may
have additional input or output signalgDLC produces a C++ synchronous class

from anMDL description.

A library of classes, calledB SYNC, provides the gecution emironment neces-

sary for synchronous classes generatedbg++ or MDLC.

—-13—



6.3. Simulators

At each stage of the delopment, reacte behaiors can be tested. Simulators,
automatically generated from synchronous objectsenitadasy to analyze reactions
to stimuli. Their graphical inteates deeloped with Tcl-Tk [OUS 94] éér friendly
animation.

A deeper insight in the program dynamics is brought about by interaithula-
tions with visualization of thexecution at the sourcevel (backvard-mapping to
source). It is all the more useful since representations describe concue@rtans.
Such simulations can be performed P®TEREL programs XES simulator) and
GRAFCET (GRANNY simulator) [AND 96-3].

6.4. Proof Tools

A synchronous program written lUSTRE, ESTEREL GRAFCET, SYNCCHA-
RTS can be compiled into a finite automaton or a system of equations. On these repre-
sentations, proof tools can be applied. Automata are analyzedty [DES 89],
MEC [ARN 94], orTEMPEST [JAG 95]. Boolean equation systems are by-products
of BooleanLUSTRE programs an&RAFCET. The safety properties of such systems
are eficiently tested by a specific tool: tBaC (Boolean Automaton Cheek) model
checler [HAL 94] [AND 96-3].

7. Conclusion

Combining the object-oriented approach and reacsiystem modeling is an
emeping domain of research. Avieworks hae started to>plore this promising
field (ROOM method [SEL 94], O-Charts [HAR 94], ReaetiObjects [BOU 95]).
This paper aims at presenting amngoneering contribtion.

The first adantage of the synchronous object approach is toentak&asier to
model complg reactve systems. The object werelies on well-knan analysis and
design methods (e.g., industrial standards {IMMT) and the bekér description
benefits from the rigorous semantics of the synchronous model.

In order to gin the most from this method, it is essential tweha complete
development platform. At present, this objeetiis partially fulfilled. In particular
tools for code generation argadlable, the taget language being another industrial
standard (C++).

This ewironment could not be complete without simulators and automatic links
to formal proof tools. &+ this purpose, we pvale interfices with seeral model
checlers.

We are cominced that the synchronous object approach will be the basis for
numerous further delopments and will contrilie to impreing the softvare quality
indispensable for critical real time systems.

—14 -



Bibliography

[AND 93] ANDRE C. and PERALDI M.A., “Effective implementation of ESTEREL
programs”, ¥ EUROMICRO Workshop on Realime Systems, Oulu (Finland), June
1993.

[AND 94] ANDRE C. andGAFFE D., “CoopératiorGRAFCETESTEREL", Colloque AGI'94,
Poitiers (France), June 1994.

[AND 96-1] ANDRE C., “Representation and Analysis of ReaeiBehaiors: A Synchronous
Approach”, Symposium on Discrete éus and Manafcturing Systems, CE3¥%
IMACS, July 9-12, 1996, Lille (France), p. 19-29.

[AND 96-2] ANDRE C.,BOUFAIED H., GAFFE D., andMARMORAT J.P, “Ervironnement
pour la programmation synchrone des systémes réactifs”, Actes des Conférences
RTS&ES'96, 10-12 javier 1996, Rris (France), p. 27-41.

[AND 96-3]. ANDRE C. and GAFFE D., “Proving Properties of GRAFCET with
Synchronous d@ols”, Symposium on Discrete Emnts and Manafcturing Systems,
CESA96 IMACS, July 9-12, 1996, Lille (France), p. 777-782.

[ARN 94] ARNOLD A., BEGAY D., and CRUBILLE P, “Construction and Analysis of
Transition Systems with MEC”, olume 3 , AMAST Series in Computing, dfd
Scientific, Singpore, 1994.

[BEN 91] BENVENISTE A. andBERRY G., “The synchronous approach to resetind real-
time systems”"Proceeding of the IEEE79(9):1270-1282, September 1991.

[BER 92]BERRY G., “Preemption in concurrent systemFroc FSTTCSLecture notes in
Computer Science, 761:72—-93, 1992.

[BOU 93] BOULANGER F, Intégration de Modules Synchrones dans la Programmation par
Obijets, Doctoral thesisSUPELEC/ Université de Bris-sud, December 1993.

[BOU 94] BOULANGER F.,, DELEBECQUE H., and GVIDAL-NAQUET G., “Intégration de
Modules Synchrones dans un Cycle dedé@ppement par ObjetsActes des Confénces
RTS'94 11-14 jawier 1994, Rris (France), p. 245-260.

[BOU 95]BoussINGT F, DOUMENC G., andSTEFANI J.B., “Reactie Objects”, Research
Report 26-64, INRIA, Sophia-Antipolis (France), October 1995.

[DES 89]DE SIMONE R. andVERGAMINI D., “Aboard AUTO”, Technical Report 111,
INRIA, October 1989.

[HAL 94] HALBWACHS N., . “BAC: A boolean automaton chemk, Technical report,
VERIMAG, Montbonnot (France), February 1994.

[HAR 85] HAREL D. andPNUELI A., “On the deelopment of reacte systems in logic and
models of concurrent system®ATO ASI SeriesK.R Apt Ed., Springe¥erlag, 13:477—
498, 1985.

[HAR 94]HAREL D.and GERY E., “Executable Objects Modeling with Statecharts”,
Technical Report CS94-20,al¢mann Institute of Science, September 1994 @eagust
1995).

[JAG 95]JAGADEESAN L.J., PucHOL C., and @n OLNHAUSEN J., “Safety Property
Verification of ESTEREL Programs and Applications teelEcommunication Softare”,
Conference on Computer Aide@nfication (CA/'95), Liege (Belgium), July 1995.

[MAR 91] MARANINCHI F, “The ARGOS language: Graphical Representation of Automata
and Description of Reagt Systems”, Proc. IEEE Intl. Conf. ofsual Languages, 1991,
Kobe (Japan)..

—15—



[OUS 94]OUSTERHOUT J.K.., Tcl and the Tk Toolkit, Professional Computing Series.
Addison-Weésley, 1994.

[RUM 91] RUMBAUGH J.,BLAHA M., PREMERLANI W., EDDY F, andLORENSENW.,
Object-Oriented Modeling and Design, Prentice-Hall, Engleood Cliffs, 1991.

[SEL 94]SELIC B., GULLEKSON G., andWARD PT., Real-Time Object-Oriented Modeling,
John Wley Publ., 1994.

[STR 86]STROUSTRUP B., The C++ Programming Language, 2nd Edition, Addison-\&sley
Publishing Compay; 1991.

—16—



About the Authors

Charles J ANDRE receved his “Doctorat d’Etat” in Electrical Engineering
from the Unversity of Nice (France) in 1981. Since 1983, he has been a profes-
sor of Automatic Control and Computer Science, and since 1989, the Head of
. the Electrical Engineering Department of theuénsity of Nice. He also heads
theSPOR'S research team in the I13S laboratdrie topic of his thesisas the
theory of Petri nets. His application domain hesheed to real-time systems

and especially to their synchronous programming.

| Frédéric BOULANGER receved his Engineering deee from SUPELEC
(1989) and his doctorate giee from the Uniersity of Raris XI Orsay (1993).

He is presently a member of the scientific fstafthe Computer Science

' Department of the “Ecole Supérieure d’Electricité” in Gif-Swette, and a
member of the Computer Science Laboratory at thevegsity of Raris XI
Orsay His scientific interests include the use of the object-oriented approach
for the intgration of seeral formalisms (among which the synchronous approach), and the use
of thePTOLEMY ervironment together with the synchronous model.

¥ Marie-Agnés PERALDI receved her doctoral dgee from the Umiersity of

Nice Sophia Antipolis (France) in 1993. The topic of her thesis thie syn-
chronous approach to the design of real-time systems. From December 1994 to
September 1995, sheawon a post-doctoral position at the Swiss Federal Insti-
vl tute of Technology (Lausanne), in the Industrial Engineering Laboratory (LIT).

' On September 1995, she joined the 13S laboratory where she is currently
“Maitre de conférences” in tt&POR'S team. Her current research interests are in the field of
real-time local area netwks and distribted control systems.

Jean-Paul RIGAULT is an alumnus of the “Ecole des Mines dei$?, from

which he receied his engineering dece in 1972. After holding geral teach-

ing and research positions at the “Ecole des Mines”, he is currently a professor
at the Unversity of Nice Sophia Antipolis and director of ESSI, an engineering
school in Computer Science. Hasvamong theery first members of the team
who designed and deloped theESTEREL synchronous language. His inter-
ests are in the field of object-oriented safterengineering, the C++ language,
and real-time reacté systems.

Guy VIDAL-NAQUET receved his “Doctorat d’Etat” in 1981 from the Uni-
versity of Riris VI. He is currently a professor at the nsity of Raris X1 and

at the “Ecole Supérieure d’Electricité”. He is a member of the Computer Sci-
ence Laboratory at the Umirsity of Riris XI Orsay His scientific interests
include real-time and distnibed systems and formal methods for specification
and analysis.

—17 —



