
– 1 –

Objects and Synchronous Programming

CharlesANDRÉ1, Frédéric BOULANGER 2,
Marie-AgnèsPÉRALDI 1,3, Jean-Paul RIGA ULT1,4,
Guy V IDAL -NAQUET2

1 Laboratoire Informatique, Signaux, Systèmes (I3S) – Université de Nice Sophia
Antipolis and CNRS – 41 bd Napoléon III – 06041NICE Cedex, France.

2 Laboratoire de Recherche en Informatique – Université Paris-Sud andSUPÉLEC –
SUPÉLEC – Plateau de Moulon – 91192GIF SURYVETTE Cedex, France.

3 Laboratoire d’Informatique Technique – École Polytechnique Fédérale de Lau-
sanne – IN-Ecublens – CH-1015LAUSANNE, Switzerland.

4 École Supérieure en Sciences Informatiques (ESSI) – Université de Nice Sophia
Antipolis – BP 145 – 06903SOPHIA ANTIPOLIS Cedex, France.

ABSTRACT: Clear structure, support for abstraction, reuse, and easy evolution, these are the
striking features of the object-oriented approach. Formal description of the reactive behavior,
making it possible to prove logical correctness, is the essence of the synchronous paradigm.
This paper proposes to combine these two approaches. An introductory example presents the
notion of asynchronous object. Then, various issues related to objects and synchrony are
addressed. Finally, we report on our progress in building a complete design and programming
environment. Editors, compilers, simulators, and interfaces towards model checkers are inte-
grated within this environment, which should contribute to better software quality in the field of
real-time.

KEY WORDS: object-oriented, synchronous programming, reactive systems, reactive objects,
real time systems, synchronous objects.

1. Intr oduction

The object paradigm is well adapted tocomplex systemprogramming. Its main
advantage is the improvement in programarchitecture. This improvement is obtained
first by a modular decomposition based on real entities used by the application (the

– 2 –

objects) and, second, by a clear separation between the (abstract) interface forusing
an object and the details about itsimplementation (internal design). Powerful mecha-
nisms such as aggregation, inheritance, polymorphism allow to benefit from this
decomposition. As a consequence, the system is endowed with extensibility and reus-
ability, thus favoring evolution and maintenance.

So far, object-oriented programming has been applied mostly totransformational
systems that is, systems that compute at their own (internal) speed. Opposite to these,
there exist reactive systems [HAR 85], which have permanent interactions with their
environment at a rate imposed by the environment itself. Most reactive systems are
alsoreal time systems (i.e., their reactions are temporally constrained).

Synchronous programming [BEN 91] was introduced as a solution to reactive pro-
gramming requirements. Synchronous languages are founded on simple and rigorous
mathematical semantics. Hence, one can build efficient and safe compilers. In addi-
tion, thelogical correctness of programs can be proved formally. However, synchro-
nous languages are mainly used to describe the control part of (reactive) systems. For
other aspects of programming (data representation and transformation) they use clas-
sical (algorithmic) languages. Moreover, for an effective execution of the code gener-
ated by a synchronous language compiler, the user must provide an execution
machine [AND 93].

Our objective is to combine thesynchronous and object-oriented approaches in
order to designcomplex reactive systems. The combination may impact several
phases of the software life cycle: requirement analysis, preliminary and detailed
design, implementation, testing, verification and validation...

This paper is organized as follows:

– We first recall the characteristics of the object-oriented approach.

– We then introduce an example: the modeling of the different operating modes
of a cassette player/recorder. This example is composed of classical objects
and of controllers modeled by synchronous objects.

– In part three, we present thesynchronous object paradigm.

– The fourth part deals withcommunication between objects.

– And finally, we give an overview of a software workbench designed for pro-
gramming with synchronous objects.

2. Characteristics of the Object-Oriented Approach

Using the object-oriented approach means considering the system to be developed
as a collection of discrete cooperating objects. These objects are subsystemabstrac-
tions integrating data (state) and operations on these data (methods). Data areencap-
sulated, they cannot be accessed directly but only through a call to a method of the
corresponding object. Hence, each object is responsible for its own data, that is for its
own state and thus, for its own behavior. The list of methods for a given object consti-
tutes theinterface to manipulate (to use) the object; that is the only information that
other (non-related) objects have to know about.

Object-oriented analysis and design methods (e.g., OMT) usually distinguish

– 3 –

three models [RUM 91]:

1. The object model, properly speaking, often termed also as theclass model1,
which describes the system objects, their usage interface, and the (static) rela-
tionships that exist between objects;

2. The dynamic model (or behavioral model), which specifies the (dynamic)
interactions between objects on the one hand, and the reactive behavior of
individual objects on the other hand;

3. Thefunctional model, which deals with data transformation and computation.

One of the major attractions of the object-oriented approach is its power of
abstraction: it makes it possible to expresswhat changes in the system without having
to describehow these changes occur. Adding or removing objects is rather easy. Sim-
ilarly, modifying an object locally is straightforward, provided that the modification
disturbs neither the interface of the object nor the relationships of the object with
other objects. Thus, incremental development (adding objects), reusability, and main-
tainability (local modifications) are among the main benefits of the approach.

3. An Example

Our aim is to model and simulate the operations carried out by a play-record cas-
sette2. The device is composed of two decks (Deck1 is play-only, andDeck2 is play-
record). Playback and recording operations offer sophisticated options involving
sequences of simpler operations (e.g., continuous play from deck to deck, auto-
reverse copy, blank skipping...).

We model this cassette recorder as a collection ofcooperating reactive objects.
Some objects are imposed by the application. So are sensors (push button, limit
switches...) and actuators (motors, magnetic heads, LEDs...). A cassette can be con-
veniently abstracted by a class, which captures both the attributes of the tape and its
access methods.

Contrary to approaches like SA/RT, which considercontrollers apart from data
flows, we assimilate controllers to objects. Of course, they are highly reactive objects.
ROOM [SEL 94] adopts a similar point of view, where controllers are instances of
“actors” (active objects).

Through this example, we will stress two major issues:

– class modeling (interest and limitations),

– dynamic behavior representation.

1 Indeed, most object-oriented analysis and design methods are class-based; a class represents
the properties common to a set of similar objects that is, it represents thetype of an object. Then
models use classes instead of individual objects.
2 This example is inspired from an unpublished experiment performed by FrédéricBOUSSINOT

with Reactive Objects [BOU 95].

– 4 –

In this kind of application, functional aspects are limited and will be ignored here.

3.1. The Class Model

Figure 1 presents a class modelà la OMT for one of the application objects: the
magnetic tape. In fact, there are two sorts of magnetic tapes: the tape properly speak-
ing (Passive_Tape) and the tape once it has been loaded into the deck
(Tape_in_Deck). The first object is rather passive: its only dynamic property is the

possibility to break. The second object, the tape inserted into a deck, enriches both
the data structure and the behavior of the first: selection of the side and of the motion
direction, handling of the “end of tape” (eot) event3. Inheritance (denoted by a trian-
gle in OMT) is suited to represent such a specialization. It is then possible to derive
other kinds of tape, like the ones which have a label (Labeled_Tape) or even the
tapes that spontaneously vanish into smoke (the “Mission Impossible” tapes!). As
indicated on figure 1, multiple inheritance makes it possible to represent these new
tapes once inserted into the deck4.

3 This “spontaneous” event emission is not directly representable in an OMT class model. Thus
we have enriched the OMT notation, as can be seen on figure 1.
4 Note the use of the OMT “black triangles” representingvirtual multiple inheritance as in C++:
there will be only one copy of the base class (herePassive_Tape) in the derived classes,
whatever the number of the inheritance paths happens to be.

Figure 1. Class (object) model of a magnetic tape.

Labeled_Tape

label_A
label_B

EOT

length
type
position
broken

Passive_Tape Tape_in_Deck

Labeled_Tape_
in_Deck

move
read
write
break {private}

move
read
write
change_dir

direction
side

– 5 –

When it comes to representing the deck itself, the situation gets a little trickier. Of
course, we wish to consider a play-record deck as a specialization (a derivative) of a
play-only deck. The components of a deck (controller, motor(s), head(s)) may be rep-
resented with an aggregation as in figure 2. Note that the association between the

deck and the tape isnot an aggregation, but a simple (abstract) association (load).
Indeed the tape and the deck are perfectly independent objects; each of them may live
on its own.

However, there is a problem with the model in figure 2. If a simple controller
(Read_Controller) is sufficient for a read-only deck, the full deck must accommo-
date a more complete controller (Full_Controller). This situation is not directly
representable in OMT: in figure 2, we represented it with aconstraint on aderived
aggregation. Another possible model is to derive the deck from the controller, as in
figure 3. This may appear somewhat illogical, since a deckis not a (specialization of
a) controller. Hence, we useprivate inheritance (that we represent by a small bar
crossing the association). One can note the elegant symmetry of the scheme: multiple
inheritance makes it possible to correctly represent the structure of the play-record
deck compared to the play-only one.

Here, we meet a classical situation (and a huge matter of discussion) in the object-
oriented approach: inheritance may be used both with the semantics ofsubtyping or
as a simple means toshare implementation (code). The discussion about these issues
is beyond the scope of this paper.

To complete the model, the player-recorder itself is merely the aggregation of two
decks:Deck1 is an instance of classPlayer, whereasDeck2 is an instance ofPlay-
erRecorder.

The OMT-like models do not show precisely the exchange of messages and

Figure 2. Object model of the deck using aggregation.

Player

load
eject
play

record

PlayerRecorder

Motor

Head
2

Tape_in_Deck

Read_Controller

Full_Controller

load

{controller must be
a Full_Controller}

– 6 –

events between objects5. We thus introduced a new type of diagram to make these
dynamic links explicit (figure 4). On these diagrams boxes represent objects. Input
ports () and output ports () represent methods. Connections are directed from
an input port to an output one; they represent point-to-point communications. The
aspects related to communications will be described in section 5. Note that in order to
keep the diagram legible, several signals may be grouped together to form “buses”.
This is the case for output signals from objectkeyboard (play...record) which
are also found as input toController.

3.2. The Dynamic Model

The behavior of each object is expressed by the “dynamic model”. Usually,
graphical representations are used (State graphs,STATECHARTS in OMT, ROOM-
charts in ROOM...). We adopt theSYNCCHARTS [AND 96-1], a new model derived
from STATECHARTS [HAR 85] and Argos [MAR 91]. TheSYNCCHARTS are state-
based models suited to reactive behavior modeling. They support hierarchy of states,
orthogonality, information broadcasting and preemptions. On the last point,SYNC-
CHARTS definitely surpassSTATECHARTS: they make a clear distinction between

5 This is somewhat unfair. Classical OMT dynamic model includes the description of the ex-
change of messages through the use of event-trace diagrams, but this description is not global to
the system, it is scenario-based. Also forthcoming versions of OMT may include a system-wide
description of messages and events exchange.

Figure 3. Object model of the deck using (multiple) inheritance.

Player

load
eject
play

Motor

Head

2

record

PlayerRecorder

Tape_in_Deck

Full_Controller

Read_Controller

load

{private}

{private}

– 7 –

various kinds of preemptions (abortion or suspension, weak or strong, see [BER 92]).
A detailed presentation of theSYNCCHARTS is beyond the scope of this paper.

We shall only comment two examples of synccharts. They are sufficient to introduce
several key features of the model.

The syncchart in figure 5 expresses the behavior of the basic play-record control-
ler. Two macro states, namedNormal_M_Ctrl andBasic_Ctrl, have concurrent
evolutions. The dotted line in figure 5 separates the two orthogonal components. The
behavior of the motor control (Normal_M_Ctrl macrostate) is given in figure 6.

An arc between two states stands for abortion: as soon as the event associated
with the arc occurs, the source state is exited and the target state is entered. An ordi-
nary arc denotes aweak abortion: the preempted macrostate may execute its “last
wishes” before being killed. An arc with a small circle at its origin denotes a strong
abortion: the preempted state is not allowed to execute any reaction. Note that both
weak and strong abortions are instantaneous and synchronous with the occurrence of
the triggering event.

The behavior of a syncchart is fullydeterministic. If several events can abort a
macrostate, a priority order must be given (by small integer numbers next to the tran-
sition). In Basic_Ctrl, event rec is given the highest priority, event rewind the
lowest.

A synchronous model, like SYNCCHARTS, relies on the notion of aninstant.
There is a clear distinction between strictly future and present-or-future occurrences.
The symbol “#”, which prefixes some events, stands for the latter case (e.g.,#rec in
theBasic_Ctrl_State means that ifrec is present when entering this macrostate,

Figure 4. Connections between the application objects.

Deck 1

play

keyboard

rec

Heads

Motors
eot

Tape

line outline in

Ampli

out

L.SpµPh.

Deck 2

heads

Controller

display

motors

in

display

– 8 –

then the component stateRec_Ctrl must be entered immediately). The absence of
prefix# requires that only a strictly future occurrence be considered.

The evolution of a syncchart is controlled by triggering events (event-driven sys-
tems). Conversely, a syncchart can act upon its environment (output events). In
SYNCCHARTS as in Moore machines,outputs can be associated with states: a signal
identifier written in an ellipse (a state) indicates that this signal is emitted whenever
the state is active. For example, when the stateWind_Ctrl is active,MFF (Motor Fast
Forward) is sustained, so that a tape can be wound. A syncchart can also emit signals
while a transition is taken, as in a Mealy machine. This possibility is not shown in the
given examples.

An emitted signal may be hidden from the environment and used for internal pur-

Figure 5. Control of the play-record deck.

PlayRec_Ctrl

@Play_Ctrl

@Normal_M_Ctrl

Basic_Ctrl_State

Wind_Ctrl

MFF Mstop

Rewind_Ctrl

MFB Mstop

Mstop

Idle

@Rec_Ctrl

12

3 4

Mpause, Mtoggle, Mstop

goto1, goto2

Basic_Ctrl

(rec + play + wind + rewind) stop

rec
rewind# wind

play

Figure 6. Motor control.

Normal_M_Ctrl

Mtoggle

Mtoggle

MB MF
Mpause # Mpause

Mstop

– 9 –

poses (synchronization). SignalsMpause, Mstop, Mtoggle are local to the macro
statePlayRec_Ctrl. When in theIdle state,Basic_Ctrl emits the local signal
Mstop that influences the behavior of the motor controller. Since a signal may convey
a value, local (valued) signals are also used for internal communication.

In figure 6, special arcs are drawn: they have no source state, they target a state,
and they end by a small circle head. We call themsuspension arcs. When the event
associated with a suspension arc is present, the target state is “frozen”, just as if time
did not flow with respect to the internal evolutions of the state (e.g., whenMstop is
present, the nested state graph can neither change state, nor emit signals). A suspen-
sion can be immediate (e.g.Mstop in Normal_M_Ctrl), or strictly future (e.g.
Mtoggle).

To sum up, theSYNCCHARTS are suitable for modeling sophisticated reactive
behaviors. They promote preemption as a first class concept, so that normal as well as
abnormal behaviors can be easily specified. Moreover, SYNCCHARTS rely on a for-
mal semantics [AND 96-1] and they can be compiled into equivalentESTEREL pro-
grams (program 1 is anESTEREL program equivalent to theNormal_M_Ctrl

syncchart of figure 6). Thus,SYNCCHARTS may be seen as a graphical variant of the
ESTEREL language.

4. Synchronous Objects

As we saw in section 2, the object-oriented approach is a powerful abstraction

module Normal_M_Ctrl:
 input Mstop, Mpause, Mtoggle;
 output MF, MB;
 suspend
 loop
 do
 suspend
 sustain MF
 when immediate Mpause
 watching Mtoggle;
 do
 suspend
 sustain MB
 when immediate Mpause
 watching Mtoggle
 end loop
 when immediate Mstop
end module

Program 1. Example of translation of a SYNCCHART to ESTEREL.

– 10 –

tool. It allows us to saywhat changes without necessarily specifyinghow it changes.
The synchronous approach gives a similar level of abstraction for the specification of
the behavior (when modules interact).

In the synchronous model, signals are abstractions of communications. They are
instantaneously broadcast throughout the system. Thus they constitute the medium
through which concurrent subsystems communicate. Arbitrarily complex interactions
may be represented easily. The synchronous composition of the subsystems can be
defined rigorously and has interesting properties such as the determinism of the par-
allel composition.

As the tape deck example shows, an application may use both transformational
and synchronous reactive entities. The object-oriented approach permits the integra-
tion of both kinds of elementsby encapsulating the synchronous code into objects.
Synchronous modules are well suited to this encapsulation since they communicate
only through their signals and thus can be considered as black boxes.

So, the first step is to turn a synchronous module into a class that we call asyn-
chronous class. Instances of this class have the same reactive behavior as the original
synchronous module. All the synchronous classes derive from an abstract class6

namedSynchronous that defines the basic protocol of any synchronous object. With
this basic protocol we can define a synchronous execution machine that preserves the
synchronous semantics of the modules in the object-oriented language.

This allows synchronous objects to be interconnected and to communicate syn-
chronously. The behavior of such a network of synchronous objects is identical to the
behavior of a synchronous program built with the corresponding modules. Hence,
synchronous class libraries can be used to build programs without needing a synchro-
nous language compiler, and so, without needing the source code of the modules. Of
course, this separate compilation has limitations: the directed interconnection graph
of the objects must be acyclic, except when a non-instantaneous dependency is
explicitly stated, such as for a delay. Indeed, checking the causality of communica-
tion loops requires the knowledge of the semantics of the modules—we have to
“open the black box”.

5. Communication between Objects

Regular objects communicate through messages. Synchronous objects are objects
but they have a synchronous reactive part which communicates only through signals.
So we have to define new protocols to transport signals within messages between
synchronous objects, and to make signals accessible through messages for the com-
munication between synchronous objects and regular objects.

6 An abstract class is a class with methods the implementation of which is deferred to derived
classes. Such a class cannot be instantiated. It defines an interface subset shared by all its sub-
classes.

– 11 –

5.1. Synchronous Communication and Clocks

Synchronous communication between objects implies that the objects which
communicate together share the same notion of an instant. The execution machine
implements this notion with theClock class. Several instances of this class (that is
several “clocks”) may be used in the same program in order to process events that
occur at different time scales. Each clock determines a scheduling of the objects it
manages according to their connections and makes them react in an order that satis-
fies their dependencies. All the objects managed by the same clock constitute the
clock domain.

Contrary toESTEREL in which synchronous communication is expressed by
“name sharing” (all the signals that share the same name have the same value), syn-
chronous communication between synchronous objects is a point to point communi-
cation, and several input signals can be connected to a same output signal. The reason
is the following: when two objects are instantiated from the same class, their signals
bear the same name although they correspond to independent entities; hence, they
mustnot be connected. Therefore, the name sharing scheme cannot be used. Thus,
input signals have aconnection method that takes an output signal as argument and
allows the explicit declaration of the connections between synchronous objects.

This point to point connection scheme makes it possible to use the type checking
mechanisms of C++ [STR 86] to ensure that an input signal can only be connected to
an output signal of the same type.

5.2. Asynchronous Communication

Synchronous objects must be able to communicate with regular objects or with
synchronous objects belonging to another clock domain. So we need a mechanism
for asynchronous communication. Communications leaving a clock domain are not
really an issue since one can read the value of the output signals of a synchronous
object without disturbing it. On the other hand, communications entering a clock
domain requirea synchronization phase: we must build a synchronous event from
one or several asynchronous events.

Turning asynchronous events into synchronous events is not a trivial task. It is
carried out byinterface objects [BOU 93]. These special synchronous objects are
sensitive to asynchronous events that activate some of their methods, and they pro-
duce synchronous events for the other objects related to the same clock. Such objects
may be written in C++ or in a synchronous language. In the latter case, nothing
should be assumed about the simultaneity of the inputs since this notion has no mean-
ing for asynchronous events.

5.3. Dynamicity

We have seen that synchronous objects can be interconnected and can communi-
cate synchronously under the control of a clock. For such a group of objects (a clock
domain), it is always possible to write an equivalent program in a synchronous lan-

– 12 –

guage, and to use proof tools to check some properties. The object-oriented approach
brings the reusability and facilitates the integration. But once a synchronous module
has been translated into a C++ class, nothing forbids to dynamically create or destroy
instances of this class during the execution of a program. For this, we must be able to
dynamically change the connection graph, disconnecting deleted objects and con-
necting newly created ones.

We then reach a higher order of description since an event not only triggers the
reaction of an object but may trigger a “clock reaction”—a modification of the equiv-
alent synchronous program.

The main drawback of dynamicity is the lack of a synchronous program equiva-
lent to a dynamic clock. This forbids the use of classical proof tools to check proper-
ties on the behavior of this clock. But dynamicity allows us to express synchronous
behaviors that cannot be expressed in a synchronous language while still benefiting
from the synchronous approach for the development of the components of the system
and for the control of dynamicity.

Dynamicity may also be used in systems where the number of objects to manage
is not known beforehand. Examples of use of dynamicity are presented in the thesis
of FrédéricBOULANGER [BOU 93].

6. Software Workbench

To support our approach to object-oriented synchronous programming, we are
developing a platform that integrates several software applications dedicated to syn-
chronous programming (editors, compilers, simulators, code generators, and proof
systems). Figure. 7 presents the main components of our platform described in detail
in another paper [AND 96-2].

6.1. Editors

The description of a synchronous object can be either textual or graphical. Classi-
cal textual editors are used for C++,ESTEREL, MDLC [BOU 93] programs. On the
other hand, we have developed our own graphical editors forGRAFCET [AND 94]
andSYNCCHARTS.

6.2. Compilers

Synchronous modules can be specified by synchronous languages (LUSTRE or
ESTEREL) as well as by synchronous formalisms (GRAFCET or SYNCCHARTS).
Compiling a synchronous module is a complex task, which involves various compil-
ers (see Figure. 7).LUSTRE, ESTEREL, GRAFCET, SYNCCHARTS compilers yield
an intermediate common code known as theOC code.OCC++ [BOU 93], another
compiler, then turns theOC file to a C++ synchronous class. The reactive synchro-
nous code is embedded within the synchronous class. It is accessible through the
standard interface that we have developed for synchronous objects.

– 13 –

OCC++ can also generate a module description file (interface, source file...).
MDLC (Module Description Language Compiler) supports the creation of new

classes by composition and derivation. The Module Description Language (MDL)
allows us to define new modules by static connections between and derivations from
existing modules. A derived class inherits the behavior of its super-class and may
have additional input or output signals.MDLC produces a C++ synchronous class
from anMDL description.

A library of classes, calledLIB SYNC, provides the execution environment neces-
sary for synchronous classes generated byOCC++ or MDLC .

Figure 7. The Synchronous Object Platform.

LUSTRE GRAFCET SYNCCHARTS MDL

lustre
compiler

grafcet
compilers

SyncCharts
compiler

esterel
compiler

OC filesBAC AUTO

Proof
Tools

OCC++OCC

C files C++ files

MDLC

C++ files

GRANNY XES

XSIM SOFA

grafcet
simulation

esterel
simulation

reactive object
simulation

implementations

ESTEREL

TEMPEST

Simulators

Synchronous Object Descriptions

– 14 –

6.3. Simulators

At each stage of the development, reactive behaviors can be tested. Simulators,
automatically generated from synchronous objects, make it easy to analyze reactions
to stimuli. Their graphical interfaces developed with Tcl-Tk [OUS 94] offer friendly
animation.

A deeper insight in the program dynamics is brought about by interactive simula-
tions with visualization of the execution at the source level (backward-mapping to
source). It is all the more useful since representations describe concurrent executions.
Such simulations can be performed onESTEREL programs (XES simulator) and
GRAFCET (GRANNY simulator) [AND 96-3].

6.4. Proof Tools

A synchronous program written inLUSTRE, ESTEREL, GRAFCET, SYNCCHA-
RTS can be compiled into a finite automaton or a system of equations. On these repre-
sentations, proof tools can be applied. Automata are analyzed byAUTO [DES 89],
MEC [ARN 94], or TEMPEST [JAG 95]. Boolean equation systems are by-products
of BooleanLUSTRE programs andGRAFCET. The safety properties of such systems
are efficiently tested by a specific tool: theBAC (Boolean Automaton Checker) model
checker [HAL 94] [AND 96-3].

7. Conclusion

Combining the object-oriented approach and reactive system modeling is an
emerging domain of research. A few works have started to explore this promising
field (ROOM method [SEL 94], O-Charts [HAR 94], Reactive Objects [BOU 95]).
This paper aims at presenting a new pioneering contribution.

The first advantage of the synchronous object approach is to make it easier to
model complex reactive systems. The object view relies on well-known analysis and
design methods (e.g., industrial standards like OMT) and the behavior description
benefits from the rigorous semantics of the synchronous model.

In order to gain the most from this method, it is essential to have a complete
development platform. At present, this objective is partially fulfilled. In particular,
tools for code generation are available, the target language being another industrial
standard (C++).

This environment could not be complete without simulators and automatic links
to formal proof tools. For this purpose, we provide interfaces with several model
checkers.

We are convinced that the synchronous object approach will be the basis for
numerous further developments and will contribute to improving the software quality
indispensable for critical real time systems.

– 15 –

Bibliography

[AND 93] ANDRÉ C. and PÉRALDI M.A., “Effective implementation ofESTEREL

programs”, 5th EUROMICRO Workshop on Real-Time Systems, Oulu (Finland), June
1993.

[AND 94] ANDRÉ C. andGAFFÉ D., “CoopérationGRAFCET/ESTEREL”, Colloque AGI’94,
Poitiers (France), June 1994.

[AND 96-1] ANDRÉ C., “Representation and Analysis of Reactive Behaviors: A Synchronous
Approach”, Symposium on Discrete Events and Manufacturing Systems, CESA’96
IMACS, July 9-12, 1996, Lille (France), p. 19-29.

[AND 96-2] ANDRÉ C., BOUFAÏED H., GAFFÉ D., andMARMORAT J.P., “Environnement
pour la programmation synchrone des systèmes réactifs”, Actes des Conférences
RTS&ES’96, 10-12 janvier 1996, Paris (France), p. 27-41.

[AND 96-3] . ANDRÉ C. and GAFFÉ D., “Proving Properties of GRAFCET with
Synchronous Tools”, Symposium on Discrete Events and Manufacturing Systems,
CESA’96 IMACS, July 9-12, 1996, Lille (France), p. 777-782.

[ARN 94] ARNOLD A., BEGAY D., and CRUBILLÉ P., “Construction and Analysis of
Transition Systems with MEC”, volume 3 , AMAST Series in Computing, World
Scientific, Singapore, 1994.

[BEN 91] BENVENISTE A. andBERRY G., “The synchronous approach to reactive and real-
time systems”,Proceeding of the IEEE, 79(9):1270–1282, September 1991.

[BER 92]BERRY G., “Preemption in concurrent systems”,Proc FSTTCS, Lecture notes in
Computer Science, 761:72–93, 1992.

[BOU 93] BOULANGER F., Intégration de Modules Synchrones dans la Programmation par
Objets, Doctoral thesis,SUPÉLEC / Université de Paris-sud, December 1993.

[BOU 94] BOULANGER F., DELEBECQUE H., and G.V IDAL -NAQUET G., “Intégration de
Modules Synchrones dans un Cycle de Développement par Objets”,Actes des Conférences
RTS’94, 11–14 janvier 1994, Paris (France), p. 245–260.

[BOU 95] BOUSSINOT F., DOUMENC G., andSTEFANI J.B., “Reactive Objects”, Research
Report 26-64, INRIA, Sophia-Antipolis (France), October 1995.

[DES 89]DE SIMONE R. andVERGAMINI D., “Aboard AUTO”, Technical Report 111,
INRIA, October 1989.

[HAL 94] HALBWACHS N., . “BAC: A boolean automaton checker”, Technical report,
VERIMAG, Montbonnot (France), February 1994.

[HAR 85] HAREL D. andPNUELI A., “On the development of reactive systems in logic and
models of concurrent systems”,NATO ASI Series, K.R Apt Ed., Springer-Verlag, 13:477–
498, 1985.

[HAR 94] HAREL D.and GERY E., “Executable Objects Modeling with Statecharts”,
Technical Report CS94-20, Weizmann Institute of Science, September 1994 (rev. August
1995).

[JAG 95]JAGADEESAN L.J., PUCHOL C., and von OLNHAUSEN J., “Safety Property
Verification of ESTEREL Programs and Applications to Telecommunication Software”,
Conference on Computer Aided Verification (CAV’95), Liège (Belgium), July 1995.

[MAR 91] MARANINCHI F., “The ARGOS language: Graphical Representation of Automata
and Description of Reactive Systems”, Proc. IEEE Intl. Conf. on Visual Languages, 1991,
Kobe (Japan)..

– 16 –

[OUS 94]OUSTERHOUT J.K.., Tcl and the Tk Toolkit, Professional Computing Series.
Addison-Wesley, 1994.

[RUM 91] RUMBAUGH J., BLAHA M., PREMERLANI W., EDDY F., andLORENSEN W.,
Object-Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs, 1991.

[SEL 94]SELIC B., GULLEKSON G., andWARD P.T., Real-Time Object-Oriented Modeling,
John Wiley Publ., 1994.

[STR 86]STROUSTRUP B., The C++ Programming Language, 2nd Edition, Addison-Wesley
Publishing Company, 1991.

– 17 –

About the Authors

Charles J. ANDRÉ received his “Doctorat d’État” in Electrical Engineering
from the University of Nice (France) in 1981. Since 1983, he has been a profes-
sor of Automatic Control and Computer Science, and since 1989, the Head of
the Electrical Engineering Department of the University of Nice. He also heads
theSPORTS research team in the I3S laboratory. The topic of his thesis was the
theory of Petri nets. His application domain has evolved to real-time systems
and especially to their synchronous programming.

Frédéric BOULANGER received his Engineering degree from SUPÉLEC

(1989) and his doctorate degree from the University of Paris XI Orsay (1993).
He is presently a member of the scientific staff in the Computer Science
Department of the “École Supérieure d’Électricité” in Gif-sur-Yvette, and a
member of the Computer Science Laboratory at the University of Paris XI
Orsay. His scientific interests include the use of the object-oriented approach

for the integration of several formalisms (among which the synchronous approach), and the use
of thePTOLEMY environment together with the synchronous model.

Marie-Agnès PÉRALDI received her doctoral degree from the University of
Nice Sophia Antipolis (France) in 1993. The topic of her thesis was the syn-
chronous approach to the design of real-time systems. From December 1994 to
September 1995, she was on a post-doctoral position at the Swiss Federal Insti-
tute of Technology (Lausanne), in the Industrial Engineering Laboratory (LIT).
On September 1995, she joined the I3S laboratory where she is currently

“Maître de conférences” in theSPORTS team. Her current research interests are in the field of
real-time local area networks and distributed control systems.

Jean-Paul RIGA ULT is an alumnus of the “École des Mines de Paris”, from
which he received his engineering degree in 1972. After holding several teach-
ing and research positions at the “École des Mines”, he is currently a professor
at the University of Nice Sophia Antipolis and director of ESSI, an engineering
school in Computer Science. He was among the very first members of the team
who designed and developed theESTEREL synchronous language. His inter-
ests are in the field of object-oriented software engineering, the C++ language,

and real-time reactive systems.

Guy V IDAL -NAQUET received his “Doctorat d’État” in 1981 from the Uni-
versity of Paris VI. He is currently a professor at the University of Paris XI and
at the “École Supérieure d’Électricité”. He is a member of the Computer Sci-
ence Laboratory at the University of Paris XI Orsay. His scientific interests
include real-time and distributed systems and formal methods for specification
and analysis.

