
INTEGRATION OF DEPENDABILITY MODULES
IN A REACTIVE APPLICATION

Frédéric Boulanger, Guy Vidal-Naquet

Supélec – Service Informatique
Plateau de Moulon
Gif-sur-Yvette, France

and
Laboratoire de Recherche en Informatique
Université de Paris Sud
Orsay, France



ABSTRACT
The design of control-command applications can lead

to clusters of reactive modules that communicate syn-
chronously. They can be considered as a graph whose
nodes are the modules and whose arcs are the communi-
cation paths.

Moreover, if each module is an object with encapsulated
data and methods for self duplication and connection to
other modules, it becomes possible to modify the applica-
tion by “pruning” and “grafting” modules in the graph.

The synchronous nature of communications in the graph
ensures that a given data sent to several modules through
different paths will get to all its destinations at the same
time.

We have developed a language that allows us to modify
the graph of such applications. Sets of modifications can
be grouped in parameterizable macro-definitions. It is pos-
sible to use this language to apply operations that enhance
dependability, such as the replication of modules, the in-
sertion of voters or property checkers. These operations
are applied at the level of the description of the application,
and it is possible to generate different applications from the
same original design according to different dependability
constraints.

INTRODUCTION
Developing applications with dependability constraints

generally requires that the developers are specialists of
both the application domain and dependability techniques.
Moreover, a global approach makes it difficult to distin-
guish what stems from the application from what has been
added to make it reliable. A small change in the depend-
ability constraints can therefore lead to a complete rewrit-
ing of the application, and a small change in the application
can bring a complete change in the dependability mecha-
nisms.

This leads us toward an approach of design where the
application and the dependability mechanisms are not com-
pletely coupled, with four main advantages:

• application developers can concentrate on their do-
main, leaving dependability issues to other specialists,

• changes in the application and change in the depend-
ability mechanisms can be considered separately, and
will influence each other only in the integration phase,

• dependability mechanisms can be stored as libraries
and reused in several applications,

• several applications can be obtained from the same
original design by applying different set of depend-
ability macros. This can also be used to handle several
configurations for the same application.

In order not to loose the time saved during the develop-
ment when we integrate the dependability mechanisms into
the application, the integration process must be automated.
This requires some properties of the description of the ap-
plication:

• the integration must be independent from the seman-
tics of the application, which will therefore be de-
scribed as a set of interconnected black boxes.

• the semantics of communications between these boxes
must be very simple. Since the integration of the de-
pendability mechanisms will add layers of modules in
the application, the value of data going along a path
must be independent from the number of layers this
path goes through.

The last property is true in the synchronous reactive
model of communication since it assumes instantaneous
broadcast of values in the application.



Our model of an application will be a graph of intercon-
nected black boxes that communicate and compute instan-
taneously. In an effective implementation this will not be
true, but this hypothesis can be made at the model level
and will be verified in logical time. The integration of the
dependability modules will consist in a modification of the
original graph with the warranty that data coherence will
not be broken by the insertion of the new modules.

The following simple example shows the steps that lead
from an initial application to its dependable version:

1. from the description of an application built from inter-
connected synchronous modules, we built the inter-
connection graph of the application as shown in fig-
ure1;

2. following dependability policies determined from a
specific analysis, we modify the original graph to ob-
tain the graph of the dependable application as shown
in figure2. Here, we assume that the followed policy
is "make three copies of M2 and vote on the outputs
of the copies";

3. from this new graph, we generate the code of the de-
pendable application.

This approach may be used to obtain other types of prop-
erties from an application. For instance, it is possible to
develop macros that add confidentiality properties to an ap-
plication, as shown in figure3. In this small example, each
message is scattered on three communication channels so
that the knowledge of what goes through one channel can-
not lead to the original message contents.

NATURE AND PROPERTIES OF THE MODULES
The modules used to build the application can be written

in any programming language, but they must have certain
properties to allow the integration tool to rearrange them
into a new application.

Building the graph that represents the application re-
quires the knowledge of the interface of the modules, how
they are connected, and the type of the data they exchange.

We recommend the use of synchronous languages (like
Esterel, Lustre and Signal) because the mathematical se-
mantics of these languages makes it possible to check crit-
ical properties of the modules. The synchronous hypoth-
esis (assuming that computation and communication take
no time) eliminates the issue of keeping data coherence be-
tween the original and the final application. Let us consider
the example of figure2: we must be sure that modules M21,
M22 and M23 work on the same data, and that the voter
compares outputs corresponding to the same inputs of the
modules. This is true when the synchronous hypothesis
holds.

The synchronous model is well suited to the hierarchical
design of a system since a group of interconnected syn-
chronous modules can be considered itself as a single syn-
chronous module. We can therefore describe an application
at several levels of abstraction, just as we can do in the ob-
ject oriented model that we use in the implementation.

The operations that must be supported by the modules
are easy to provide in an object oriented model: reuse of
components, interface declaration, copy of objects. The
modules will be written in an object-oriented language, or
an object-oriented language will be used to embed their
code and give them the required "object properties".

OVERVIEW OF THE TOOLS: AN EXAMPLE
To validate our approach, we have designed a language,

ADML (Application Description and Modification Lan-
guage) which is used both to describe an application and
to express the operations on this description.

A compiler, ADMLC, reads the description of an appli-
cation and a set of operations to execute, and produces the
description of the new application. It also produces theC++

code of the new application.
The description of a module contains five parts:

• theC++ class that implements the module,

• the definitions used by this class,

• the parameters of the module,

• the type equivalences, to map types from one language
to another,

• the interface of the module: name, type and depen-
dency properties of the inputs and outputs.

We will not give here the complete description of
ADML, but rather show its main features through an ex-
ample.

We consider a very simple module that controls a valve
that regulates pressure: if the pressure is higher than a given
threshold during a given amount of time, it should open the
safety valve.

#c++ ValveControl.h
#param {

float threshold;
int duration;

}
ValveControl {

input: float pressure;
output: valve;

}

The module takes the threshold and the amount of time
as parameters, receives the pressure as a floating point
value, and drives the valve through a boolean output.



Let us build a small application with a captor, a valve
and our control module: all we have to do is connect the
output of the captor to the input of the control module, and
connect the output of the control module to the input of the
valve.
We assume that we have the following declarations:

PCaptor {
output: float pressure;

}

Valve {
input: command;

}

We can then write the description of our application as fol-
lows:

#use Valve
#use PCaptor
#use ValveControl

Application : {
PCaptor captor;
Valve valve;
// Pressure threshold is 10e6 Pascal
// Duration is 2 seconds max.
ValveControl control(10e6,2);

// Now, we make the two connections
control.pressure << captor.pressure;
valve.command << control.valve;

}

Notice that no information is given on what the differ-
ent modules really do. We just specify which modules we
use, how they are connected, and the type of the data they
exchange.

Suppose now, that the dependability expert determines
we must have three copies of the control module, and the
third copy must take its input from a new captor. The valve
will be driven by a voter that will look at the output of the
three control modules.

As a first step, we will create the three control modules
and add the voter. Then, we will connect the third control
module to a new captor. We can define a generic replication
macro in ADML:

#def replication(module, number) {
#iterate(i, number) {

module.type() module_##i;

#iterate(j, module.nbInputs()) {
module_##i.inputs(j)

<< module.inputs(j).source();
}

}
#iterate(i, module.nbOutputs()) {

Voter<module.outputs(i).type()><number>
module_##vote_##i;

#iterate(j, number) {
module_##vote_##i.input

<< module_##j.outputs(i);
}
module.outputs(i)

= module_##vote_##i.output;
}

Basically, this macro createsnumber objects of same
type as objectmodule and names them by appending
(with operator##) the number of the object to the original
module name. So if we apply this macro to our valve con-
trol module to build three copies of it, they will be named
control_1 , control_2 andcontrol_3 .

Then, each input of each new module is connected (oper-
ator<<) to the output that drove the corresponding input of
the original module (operatorsource() ). We have now
to add a voter for each output. Voters are generic modules:
aVoter<T><N> votes onN inputs of typeT. We connect
each input of the voter to the corresponding output of the
duplicated modules, and we replace the outputs of the orig-
inal module by the outputs of the voters.

Applying replication(control,3) to our orig-
inal application yields a new application as shown in fig-
ure4.

The definition of this macro shows some important as-
pects of ADML that we are going to discuss briefly.

Since ADML is used to both describe and modify ap-
plication, it has primitives to declare and connect modules,
but also to get information about the current state of the
application.

It is possible to get the type of a module or signal, to get
the number of inputs and outputs of a module, or to know
from where a module gets its inputs.

New names can be constructed with the## concatena-
tion operator and primitives such as#iterate or #if
makes it possible to write generic macro-definitions whose
behavior depends, for instance, on the type of a module or
on the number of its inputs.

Another important feature of ADML is genericity: it is
possible to describe generic modules such as voters or de-
lays which implement the same behavior for different types
or number of inputs/outputs. Code generation for such
modules relies on genericity mechanisms in the target lan-
guage. ForC++, we use template classes.

The next step in our example is to add a new captor that
will drive the input of the third control module with the
following ADML code:

PCaptor captor2;
control_##3.pressure << captor2.pressure;

This yields the application shown in figure5.



Note that if the environment of the application changes,
and that five copies are needed instead of three to reach
a more stringent set of dependability constraints, the
new application can be obtained very easily by applying
replication(control,5) to the original applica-
tion.

We cannot describe all the features and syntax of ADML
in this paper, but we hope that this example will give an
idea of what is possible to do with it.

EXECUTION MODEL
The execution model that gives the semantics of our ap-

plication graphs is synchronous reactive data-flow, which
means that:

1. communication between modules is done by flows of
events,

2. there is a global notion of instant, and events have the
same meaning for all modules at a given instant and
no meaning outside an instant,

3. a module produces its outputs at the same instant
it receives its inputs. This hypothesis that reaction
takes no time (in logical time) is known as the "Syn-
chronous Hypothesis".

Choosing a synchronous execution model eliminates
data coherence issues between several sources of informa-
tion. For instance, if we want to write a time display mod-
ule that receives hours, minutes and seconds from different
sources, we have to be very careful to avoid the display of
8:59:59 just after7:59:59 in an asynchronous execu-
tion model. With a synchronous execution model, the three
inputs change at the same instant, and the display module
cannot see the hour changing just before the minutes or the
seconds, even if it is what really happens in the implemen-
tation: the three inputs will be available only when they
will have the right value for this instant.

The main application domain of the reactive syn-
chronous model is exactly the one addressed by ADML:
critical control software, where dependability issues are of
paramount importance, and determinism a key issue.

However, there is a drawback to this approach: any loop
in the data-flow graph is instantaneous. An instantaneous
loop is causal if at each instant, there is a unique value of
the data flows that respects the semantics of the modules.
An application that contains causal instantaneous loops has
a perfectly defined semantics. However, since we consider
modules as black boxes, and cannot access there semantics,
we must reject all instantaneous loops, assuming they are
not causal.

If causal instantaneous loops cannot be eliminated from
an application, they must be handled by tools such as syn-
chronous language compilers that have access to the se-

mantics of the modules and can generate correct code for
such loops.

ADML allows non instantaneous loops, i.e. loops that
contain a delay. Delays, or more generally, the fact that an
output does not depend on the current reaction of a module,
are indicated by the#nodep keyword. This allows the
programmer to give the information needed by ADML to
determine that a loop is not instantaneous, without going
into the details of its semantics.

CONCLUSION
The tool presented here offers help at the design and

code generation levels. It is not a tool for the analysis of
dependability properties of an application, but it enables
the automatic realization of dependability policies.

The automatic code generation it provides reduces the
cost of changes in the dependability policy, and allows a
same application to be easily adapted to several environ-
ments.

It is also interesting to note that from a given simple ap-
plication, the integration of dependability modules can lead
to very complex topologies, and that our tool ensures the
correctness of the links between modules and of the types
of the data they exchange.

Our tool is based on two abstractions:

• abstraction of the modules which are considered only
through their interface. This abstraction is provided
by the object-oriented approach,

• abstraction of the communications between modules
which are considered to be instantaneous. This ab-
straction is provided by the reactive synchronous ap-
proach.

The integration of these two approaches in one model is the
key feature of ADML and can be applied to many aspects
of the development of complex systems.

We are studying its use for the separate development
of the control and data processing parts of an application.
Control is generally the most complex and the fastest evolv-
ing part of an application. Making it as little dependent as
possible from the data processing part would ease the use
of libraries of reusable components.

REFERENCES
Harel, D. and Pnuelli, A., 1985, “On the Development
of Reactive Systems”, Weizmann Institute of Science, Re-
hovot, Israel.

Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D.,
1991, “The Synchronous Data Flow Programming Lan-
guage LUSTRE”, Proceedings of the IEEE, 79(9), Septem-
ber 1991.



Benveniste, A., and Le Guernic, P., 1990, “Hybrid Dynam-
ical Systems Theory and the SIGNAL Language”,IEEE
Transactions on Automatic Control, 35(5), May 1990.

Berry, G., and Gonthier, G., 1992, “The ESTEREL

synchronous programming language: Design, seman-
tics, implementation”,Science of Computer Programming,
19(2):87-152, November 1992.

Berry, G., Ramesh, S., and Shyamasundar, R.K., 1993,
“Communicating Reactive Processes”,Proceedings of the
20th ACM Conference on Principles of Programming Lan-
guages, Charleston, Virginia.

André, C., Boulanger, F., Péraldi, M.-A., Rigault, J.-P.,
Vidal-Naquet, G., 1997, “Objects and synchronous pro-
gramming”,European Journal of Automation, 31(3):417-
432, 1997.

FIGURES

Fig. 1: Initial graph of the application

Fig. 2: Graph of the dependable application

Fig. 3: Application to confidentiality

Fig. 4: Effect of the replication macro

Fig. 5: Final application with 2 captors


