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Abstract

Heterogeneous systems mix different technical domains such as signal processing, analog and digital electronics,
software, telecommunication protocols, etc. Heterogeneous systems are composed of subsystems that are designed
using different models of computation (MoC). These MoCs are the laws that govern the interactions of the components
of a subsystem. The design of heterogeneous systems includes the design of each part of the system according to its
specific MoC, and the connection of the parts in order to build the model representing the system. Indeed, this model
allows the MoCs that govern different parts of system to coexist and interact.

To be able to use a component which is specified according to a given MoC, under other, different MoCs, we can
use either a hierarchical or a non hierarchical approach, or we can build domain specific components (DSC). However,
these solutions present several disadvantages. This paper presents a new model of component, called domain polymorph
component (DPC). Such a component is atomic and is able to execute its core behavior, specified under a given MoC,
under different host MoCs. This approach is not a competitor to the approaches above but is complementary.

Key words: Heterogeneous Embedded Systems, Heterogeneous Design, Software Engineering, Components, Actors.

1. Introduction

Heterogeneous systems are used in numerous
application domains and mix several technical do-
mains, what makes them complex. They are com-
posed of subsystems that are designed using models
of computation (MoCs) that suits the needs of their
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designers. The MoCs are the laws that govern the
interactions of the components in a model. Modeling
environments such as Ptolemy [9] support numerous
MoCs, for instance Synchronous Data Flow (SDF),
in which components communicate through flows of
data samples at fixed rates; Continuous Time (CT),
which is the model used in ordinary physics; Dis-
crete Events (DE) or Synchronous Reactive (SR)
in which components communicate through events
that occur at specific dates or instants.

The model of a system must allow the MoCs
that govern its components to coexist and interact.
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Therefore, components that obey different MoCs
which are compatible [3] must be able to commu-
nicate. Two main approaches are possible to make
MoCs interact: the hierarchical approach [1] or the
non-hierarchical approach [2]. The hierarchical ap-
proach structures the system into hierarchical levels
where each level contains components that obey the
same MoC. Therefore, each change of MoC implies
a change of level in the hierarchical structure of the
system. On the contrary, the non-hierarchical ap-
proach allows the use of several MoCs at the same
level of the hierarchy, and therefore requires Het-
erogeneous Interface Components — components
with ports that obey different MoCs — which are
used as bridges between MoCs.

In a modeling environment, components which
have no model in the modeling environment are said
to be atomic. Their behavior is defined using another
formalism, contrary to composite components whose
behavior is described by a sub-model in the same
modeling environment. Atomic components are de-
signed according to a MoC, and have requirements
on the environment in which they can be used. So,
in order to use an atomic component specified ac-
cording to MoCs, in a model that obeys a different
MoCi, we can either wrap it in a composite compo-
nent that uses MoCs and use hierarchy to adapt be-
tween MoCs and MoCi, or build a domain specific
component (DSC) which specifically adapts the be-
havior of the original component to MoCi. DSCs are
atomic components whose behavior is guaranteed to
be correct only in their target MoC.

However, these approaches present several dis-
advantages. The hierarchical approach creates ar-
tificial hierarchical levels that do not reflect the
real structure of the system, impairs reusability,
and makes the semantics of the interaction between
MoCs implicit. The non-hierarchical approach re-
quires that the semantics of the interactions be-
tween MoCs be specified for each pair of MoCs,
what leads to a combinatorial explosion with the
number of MoCs used. Last, DSCs are expensive
because they are specific to a MoC and must be
generated from the same specification for each MoC
under which we want to use them.

To overcome these problems, we propose a new
model of component, the “domain polymorph com-
ponent” (DPC) [6]. This model is complementary
to the above approaches. DPCs are atomic and are
able to execute their core behavior, specified us-
ing a given MoC, in the context of different host
MoCs. By decoupling the semantics of the specifica-

tion and the semantics of the execution context, our
approach improves modularity. The adaptation to
the semantics of execution is automatic, so domain-
polymorph components are easily reusable. It is pos-
sible to customize their adaptation to the host MoC
in order to get explicit control on the interactions
between MoCs, what facilitates the maintainabil-
ity and the validation of the system. We have inte-
grated the model of domain-polymorph components
in Ptolemy II [9], without modifying its kernel. Fi-
nally, to validate our approach, we designed an ex-
ample system using our model of domain-polymorph
component and the hierarchical approach.

2. Heterogeneous Design Approaches

The design of heterogeneous systems consists in
building an executable model which describes their
behavior and their pertinent properties. This model
is built from components that have a communication
interface and obey specific MoCs. This leads to a
set of interconnected components that obey different
MoCs, whence the problem of heterogeneity. There
are several approaches to solve this issue.

2.1. Heterogeneous Hierarchical Design

The hierarchical approach structures the system
into hierarchical levels where each level contains
components that obey the same MoC. Therefore,
changing the MoC implies moving to another level
in the hierarchical structure of the system. This ap-
proach is an efficient way of managing the complex-
ity of systems [8]. Actually, most design languages
and platforms use the hierarchical approach. But,
this approach presents some drawbacks :

(i) the hierarchy of the model is perturbed by the
changes of MoC;

(ii) components with outputs and/or inputs that
obey different MoCs cannot be used;

(iii) what happens to data and control at the
boundary between MoCs depends on the de-
sign environment.

2.2. Heterogeneous Non-Hierarchical Design

The non-hierarchical approach [2][4][5], allows the
use of several MoCs at the same level of the hierar-
chy, and therefore supports Heterogeneous Interface
Components (HICs). Such components have inter-
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faces that obey different MoCs and can be consid-
ered as bridges between MoCs.

At first, this approach designs each subsystem
of the original system in an independent manner.
Then, it interconnects subsystems following their
relationships of interconnection in the original sys-
tem. Homogeneous components (that obey to same
MoC) are directly interconnected and other compo-
nents (that obey other MoCs) are connected through
HICs. The result is a flat model in which different
MoCs coexist at the same level of hierarchy.

The non-hierarchical approach manages the het-
erogeneity at execution time. When the flat model
is executed, it is partitioned into homogeneous sub-
sets in order to isolate MoCs. Then, the execution
model projects HICs (following the relationships in
the flat model) onto the subsets. The components of
each homogeneous subset interact according to their
MoC. The homogeneous subsets, which are seen as
composite components, are at the same level and
communicate through the HICs. To govern the in-
teraction of the homogeneous subsets and HICs, the
hierarchical approach defines a heterogeneous MoC.

3. Problem and Goal

Its behavior is specified 
according to Synchronous

Reactive (SR) MoC

To use in
X=Y+Z
G=X/2

Component
Atomic

SDF (Synchronous Data Flow) MoC

DE (Discrete Event) MoC

CT (Continuous Time) MoC

Fig. 1. SR component to be used under DE, SDF and CT.

Some atomic components can be used in sev-
eral MoCs, but only because they have a generic
semantics (for instance, “producing a constant
value”) which can be interpreted in various MoCs
(constant function of time in CT, repetition of the
same value in SDF). Such components are said to
be domain polymorph in Ptolemy, but we prefer to
qualify them of generic. However, it is not possible
to use an atomic component specific to MoCs un-
der another MoCi, because different MoCs assume
different properties for components. Figure 1 shows
an atomic component with a behavior specified ac-
cording to SR, and which cannot be used directly
under DE, SDF or CT. To solve this problem, we

must manage the heterogeneity between the MoC
used for the specification of the component and the
MoC under which the atomic component will be
used. This can be done according to the following
approaches:

3.1. Use of the Hierarchical Approach

With the hierarchical approach, each level of the
hierarchy is seen as a composite component. So, we
encapsulate the MoCs domain specific atomic com-
ponent in a composite component that uses MoCs.
Then, we place this composite component inside
the composite component that uses MoCi (the host
MoC) under which we want execute the atomic com-
ponent(figure 2).

This allows the execution of an atomic component
specified according to MoCs under a different host
MoC. However, this approach presents the draw-
backs cited in section 2.1.

Host MoC

Atomic
Component

MoC of Specification

Component
Composite

Fig. 2. Hierarchical approach for DSCs.

HIC2

HIC
Heterogeneous MoC

of Specification
It obeys MoC

HIC
Atomic

Component

It obeys MoCi

(a)

(b)
Homogeneous subset Homogeneous subset

MoC of Specification MoCi

Atomic
Component HIC1

Fig. 3. (a) Flat model (b) Flat model transformed

according to the non-hierarchical approach.

3.2. Use of the Non-Hierarchical Approach

With the non-hierarchical approach the different
MoCs are at the same level. So, to allow an atomic
component, the behavior of which is specified ac-
cording to MoCs, to interact and communicate with
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components that obey MoCi, we must use a HIC
in order to interconnect the atomic component to
the components of MoCi, what allows us to use a
flat model (figure 3(a)). The HIC has heterogeneous
ports: input ports obey MoCs and output ports obey
MoCi. At execution time, atomic components and
the projection component of the HIC will be put
into the same homogeneous subset (figure 3(b)).

This approach allows an atomic component which
has a behavior specified according to a given MoC,
to interact and communicate with components that
obey another MoC. However, we have to specify the
semantics of the interactions between MoCs for each
pair (MoCs,MoCi) of MoCs.

3.3. Use of the Domain-Specific Components

A Domain-Specific Component (DSC) is an
atomic component which has a structure and ports
of communication that are specific to its MoC. So,
the correct behavior of the DSC is not guaranteed
under other MoCs.

DE MoC

SDF MoC

CT MoC

Component
Atomic By the use

specified according
a given MoC

Internal behavior

of the heterogeneity

Interfaces that are
responsibles on managing

of DSCs

Fig. 4. Use of domain-specific components.

With this approach, for an atomic components
specified according to MoCs, we must generate a dif-
ferent DSC for each permitted [3] MoCi under which
we want use the atomic component (see figure 4).
Each DSC has an internal behavior which obeys
MoCs and which is adapted to the structure and
ports of communication that are specific to MoCi

for which it was generated.
To manage the heterogeneity between the internal

behavior and the external MoC, we must specify an
interface for managing heterogeneity. This interface
performs the following tasks:

– transform data exchanged between other compo-
nents and the internal behavior, because different
MoCs may use different formats for data;

– adapt the semantics of the internal behavior to
the semantic of the host MoC. This is realized by
providing an execution environment for the inter-
nal behavior according to MoCs and by adapting
its semantics to the semantics of the host MoC.

The use of DSCs to execute a given behavior,
which is specified according MoCs, under different
host MoCs presents the following drawbacks:

(i) the adaptation of the semantics of the MoC of
specification to the host MoC is ad hoc;

(ii) lack of reusability: because DSCs have a spe-
cific structure and specific communication
ports, they can be used only under the MoC
they were designed for;

(iii) duplication of code: since an atomic compo-
nent specified according to MoCs, must be im-
plemented as a DSC for each MoC under which
we want to use it, its internal behavior may be
duplicated, so a change in one copy won’t get
propagated to the other copies;

(iv) no evolution: when a new MoC is added, the
designers must make a new implementation of
the atomic component for this MoC.

(v) the code is less readable since there is not a
clear separation between the internal behavior
and the domain specific aspects.

(vi) making a domain specific implementation of
an atomic component requires a good knowl-
edge of the implementation details of both
MoCs and MoCi. A designer may only master
the semantics of the MoC he uses (MoCi).

Our goal is to embed an atomic component, with
a behavior specified according to a given MoC, in
a model which obeys a different host MoC, without
using any of the above mentioned approaches. We
achieve this goal by using the model of DPC we
present in the following.

4. Domain-Polymorph Component

A domain-polymorph component (DPC) is a com-
ponent which is able to adapt its internal behavior
(we call it core) to the semantics of a host MoC. This
property has two aspects: first, such a component
must provide its core with an execution environment
that respects the semantics of the MoC of specifi-
cation of its core; second, the component must be
able to interpret data and control from its host MoC
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and to translate its outputs to the semantics of the
host MoC. Such a component can be compared to a
generic component because it can be used in several
MoCs. However, it is different because its semantics
is well defined (using its specification MoC) and is
only adapted to the host MoC, while the semantics
of a generic components is interpreted by the host
MoC (CT interprets “constant” as a constant func-
tion of continuous time).

A DPC must have the following properties:
(i) it must be able to detect the nature of its host

MoC;
(ii) after detecting the host MoC, it must be able

to adapt its structure to what the host MoC
expects (class, communication ports);

(iii) it must be able to use the communication and
control primitives of the host MoC;

(iv) it must implement the communication and
control primitives of its core behavior.

(v) it must be usable under all allowable [3] MoCs,
even under MoCs that didn’t exist at the time
of its creation;

(vi) the design of the core behavior of a DPC must
require a knowledge of the MoC used to define
it only;

(vii) when the semantics of the core and the seman-
tics of the host MoC can be adapted in several
ways, the designer must be able to choose the
one he wants because this choice is part of the
design of the heterogeneous system.

Moreover, we want to respect the following con-
straints so that the notion of DPC is not restricted
to one platform:

(i) DPCs must be portable: no change in the
implementation of the MoCs are required for
DPCs to operate correctly;

(ii) The implementation of the DPCs must be pos-
sible in any object-oriented language, so we
don’t rely on specific features like introspec-
tion or parameterized types.

5. Our Approach of Domain-Polymorph
Component Design

In [7], we proposed an initial approach for DPC
design and we complete it and improve it in this
section.

Our approach is based on the actor-based design
methodology [10] that consists in decomposing an
heterogeneous system into elementary units of func-
tionality, called actors. Actor orientation separates

the functionality (modeled as actors) from the com-
ponent interaction (modeled as frameworks), and
gives well-defined scopes for model refinement and
system realization. In the following, we present the
successive steps in the evolution from domain spe-
cific components to DPCs.

5.1. Step 1: Identification of the Concerns

We have designed an atomic component accord-
ing to the SR MoC, which is chosen as MoC of
specification. Then we have generated DSCs (called
Synchronous DSCs) from the synchronous reactive
atomic component for several MoCs such as DE, CT,
SDF, etc.

synchronous 

atomic

component

Generation of  the 

Synchronous DSCs

synchronous 

internal

behavior

Concern of management of the heterogeneity

Concern of MoC

Concern of computation 

Fig. 5. Synchronous DSCs and their transversal concerns.

By analyzing the set of DSCs, which preserve the
synchronous semantics in different MoCs, we gener-
alize to any DSC, which preserves a given semantics
in its target MoC, and identify the following con-
cerns as shown on figure 5:
– functional (basic) concern: the concern of compu-

tation that corresponds to the core behavior of
the DSC;

– non-functional concerns due to heterogeneity:
· communication: transforming data to and from

the core, synchronizing with the host;
· conservation of the internal semantics: provide

the core with the environment needed for its
execution;
· adaptation to the host MoC: the component

must implement the interface of the components
of the host MoC (be of the “right” class, and
have suitable communication ports).

5.2. Step 2: Modular Domain-Specific Component

By separating concerns and modeling each of
them by a component, and then by interconnecting
them, we obtain a new component that we call a
”modular domain-specific” component (figure 6).
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The components that model the concerns are de-
tailed as follows:

Interfqce of connection

CIS(i/e)

Container

Core

AES(e)

Fig. 6. Architecture of the Modular DSC.

– Container Component: it models the concern of
adaptation to the host MoC. It has no ports but
uses the connection interface to create them at
run-time according to the needs of the Core com-
ponent. A Container is domain-specific but can
encapsulate any permitted Core component. The
Container hides the MoC specific aspects from the
Core, what guaranties the first part of the “us-
ability” property (number ‘v’) of the DPC;

– Core Component: it models the functional con-
cern. It has a generic interface that allows it to be
encapsulated by any suitable Container. A Core
component is therefore reusable under any per-
mitted MoC. It interacts with its external envi-
ronment in a transparent way by performing the
operations provided by the CIS component;

– AES(e) Component (Adaptation to the External
Semantics): this component models the concern
of communication and it is reusable only under its
MoC and for any permitted Core and CIS com-
ponents. The AES provides the CISs with the
communication operations needed to communi-
cate under the host MoC. The AES(e) is only spe-
cific to the MoC which is used as external MoC;

– CIS(i/e) Component (Conservation of the Inter-
nal Semantics): this component models the con-
cern of conservation of the internal semantics and
is reusable only under its MoC but for any Core
component that obeys to same MOC. The CIS
provides an execution environment to the Core
and implements it using the operations of the
AES. The CIS(i/e) is only specific to the MoC
which is used as internal MoC. AES and CIS(i/e)
guarantee properties iii and iv of the DPC;

5.3. Step 3: Flexible Domain-Specific Component

The modular domain-specific component is a step
toward the reusability of a core behavior under sev-
eral MoCs, but it must be built specifically at com-
pile time. To solve this problem, i.e. to build the

modular domain-specific component dynamically at
run-time, we proceed as follows:

(i) Since a Container may accept many different
types of Cores, we use a Factory to instantiate
the Core from its name at runtime;

(ii) Since the Core may use any permitted seman-
tics, we use a policy of selection to associate
the right CIS to the Core and the AES at run-
time. The policy of selection guaranties the
first part of the property ii of the DPC.

The result is a ”flexible domain-specific com-
ponent” (see figure 7) where the solid lines show
compile-time links and the dotted lines show run-
time links.

of selection
Policy

Factory

Container

Core CIS(i/e)

AES(e)

Fig. 7. Architecture of the Flexible DSC.

5.4. Step 4: Domain-Polymorph Component

The flexible DSC allows us to plug any permitted
Core behavior in a given domain-specific container.
However, to use the same core behavior under an-
other MoC, we must first create a container which
is suitable for this MoC. Indeed, we do not have a
real DPC yet.

Container

of selection
of transformation

Core

Factory
PolicyPolicy

CIS(i/e)

AES(e)

Fig. 8. Architecture of the DPC.

To achieve real domain-polymorphism, we add a
policy of transformation to the Container (see fig-
ure 8). This policy guaranties the property i (detec-
tion) and the second part of the property ii (adap-
tation) of the DPC. It first identifies the MoC un-
der which the DPC is used and then transforms the
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Container to allow it to have the structure and all
the features required by the identified host MoC.
Second, this policy selects and instantiates the right
AES, and links it to the Container. Then, when any
DPC is used under a MoC, the policy of transfor-
mation transforms it into a flexible domain-specific
component, and the factory component and the pol-
icy of selection allow it to have the full and final
structure required by its MoC.

5.5. Step 5: Improvement of the DPC

The DPC obtained in step 4 satisfies our goals.
However, since each of its CISs components is only
specific to an internal MoC and an external MoC,
the DPC needs a polynomial number of CIS compo-
nents. Let N be the number of compatibles MoCs [3]
to consider, and suppose that any MoC can be used
as semantics of specification (internal MoC) as well
as semantics of environment (host MoC). Then, to
use a DPC under any permitted MoC with a Core
specified according to any pemitted MoC, we must
design N2 CIS components.

To reduce the number of CIS components, we ap-
ply again the separation of concerns on the abstract
architecture of the CIS. We identify the concerns
shown on figure 9: the concern of external MoC; the
concern of passage; and the concern of internal MoC.

Passage
Concern of

External MoC

Concern of

By Separation of Concerns
CIS(i/e)

+

(for which the CIS is specific)

Modified Concern
of external MoC

AES(i)
(It is specific to the same MoC)

Concern of
Internal MoC

BC

CAS

Fig. 9. Application of the separation of concerns on CIS

component.

After separation of the concerns, we model the
concern of passage by a component that we call BC
(Border Component). We keep the concern of inter-
nal MoC for which we add both the behavior of the
AES component and the concern of external MoC
that we modify, and we model them by a compo-
nent that we call CAS (Conservative and Adapter
of Semantics).

The main property of the CAS component is that
it can be used both for preserving the internal se-
mantics (it will be called internal CAS and noted

iCAS) when its MoC is used as internal MoC (se-
mantics of specification) and for adapting to the
host MoC (it will be called external CAS and noted
eCAS) when its MoC is used as external MoC. In-
deed, to use a Core component specified according
to a given MoC, we use only one iCAS specific to
this MoC instead of using N CIS components. So,
one CAS component replaces N CIS components at
the internal level and one AES component at the
external level. However, the BC component is the
part in which the designers of a system can spec-
ify the transformations (by interpretation, by sam-
pling, etc.) of data exchanged between external and
internal MoCs, and this without modifying the rest
of the DPC. The BC guaranties property vii (design
choice) of the DPC.

The optimal architecture of the DCP is obtained
by replacing the N CISs by one iCAS and each AES
by one eCAS. To interconnect iCAS, eCAS and BC
components, we introduced a CS (Connector of Se-
mantics) component, see figure 10. The CAS and CS
components guarantee the second part of the prop-
erty V of the DPC.

CS BC

Factory

Container

Core

Policy of
transformation

eCAS

iCAS

Fig. 10. Architecture of the improved DPC.

6. Behavior of the Domain-Polymorph
Component

At runtime, the first task performed by the DPC
is the assemblage phase. This phase allows the
DPC to have a structure that is specific to both
the external MoC (under which the DPC is used)
and the internal MoC (MoC of specification of
the Core component). After the assemblage phase,
the DPC has a set of variables noted DPC.V =
{DPC In, DPC Out, DPC Parameter, DPC State}
where DPC In and DPC Out are respectively in-
put ports (from which the DPC reads data) and
output ports (through which the DPC sends data).
These ports are requested by the Core and created
by the DPC.DPC Parameter and DPC State are
the parameters and current state of DPC.
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6.1. Operations

When a DPC is used under a given external
MoC, it must communicate with the components
connected to it and it must guarantee the execution
of the Core component according to the internal
MoC. For this, a DPC has four sets of opera-
tions: data flow operations, control flow operations,
synchronization flow operations and passage flow
operations, (see figure 11).

Core

Host MoC

Core.Comp

Container

iCAS.Com
CS.Synch

BC.Synch
BCCS

CS.Com

eCAS.Com
BC.Passage

Port.Read

Port.WriteContainer.Clbk

iCAS

iCAS.Clbk

eCAS.Clbk
eCAS.Synch

Core.Clbk

eCAS

iCAS.Ctrl

Container.Ctrl

Core.Ctrl

Fig. 11. Operations of the improved DPC.

6.1.1. Data flow operations
They are determined by a set of computational

operations, noted DPC.Comp, and a set of com-
munication operations, noted DPC.Com. Oper-
ations in DPC.Comp are in charge of comput-
ing the behavior of the Core component. Oper-
ations in DPC.Com tell how the DPC gets and
sends data from and toward its external environ-
ment. DPC.Comp = {computeBehaviorCore} and
DPC.Com = iCAS.Com ∪ CS.Com ∪ eCAS.Com ∪
Port.Read ∪ Port.Write = {existData, read, isFull,
write, haseCASData, geteCASData, haseCASPlace,
sendeCASData, hasData, getData, hasPlace, send-
Data, hasInputData, receiveData, hasFreePlace,
emitData}.

6.1.2. Control flow operations
Control operations specify when the DPC com-

putes and when it communicates:
– the external MoC controls the DPC by Con-

tainer.Ctrl and Container.Clbk. Container.Ctrl
are callback operations triggered by the exter-
nal MoC and implemented by the DPC. Con-
tainer.Clbk are callback operations triggered by
the DPC and implemented by the external MoC.
Container.Ctrl = {initialization, preCondition,
trigger, postCondition}, are the operations by
which the external MoC activates the DPC, and
Container.Clbk = {finish}, is the operation by

which the DPC notifies the external MoC of the
end of its activities;

– the Core component is controlled by Core.Ctrl
and Core.Clbk that are respectively callback
operations triggered by the Container and call-
back operations triggered by the Core on the
Container. Core.Ctrl = {initCore, preReaction,
reaction, postReaction} and Container.Clbk =
{finishReaction};

– the iCAS is controlled by iCAS.Ctrl and
iCAS.Clbk that are respectively callback opera-
tions triggered by the Container and callback op-
erations triggered by the iCAS on the Container.
iCAS.Ctrl = {InitCASi, BoR (Begin of Reac-
tion), EoR (End of Reaction)} and iCAS.Clbk =
{Ready, NotReady};

– eCAS.Clbk are callback operations that the eCAS
triggers on the Container.
So, the control operations of the DPC are:

DPC.Control = Container.Clbk ∪ Container.Ctrl ∪
Core.Ctrl ∪ Core.Clbk ∪ iCAS.Ctrl ∪ iCAS.Clbk ∪
eCAS.Clbk

6.1.3. Synchronization flow operations
The synchronization between the external and the

internal MoCs is managed by CS.Synch, BC.Synch
and eCAS.Synch which are sets of synchronization
operations. These operations allow the initializa-
tion and the activation of the CS, BC and eCAS
components. The initialization is performed only
once and the activation is performed before and af-
ter each reaction of the Core component. CS.Synch
= {InitCS, BoRCS, EoRCS}, and BC.Synch =
{InitBC, BoRBC, EoRBC} and eCAS.Synch =
{IniteCAS, BoReCAS, EoReCAS} where InitX
stands for “initialize component X” and BoRX and
EoRX for “activate component X”.

So, the synchronization operations of the DPC
are:
DPC.Synch = CS.Synch∪BC.Synch∪ eCAS.Synch

6.1.4. Passage flow operations
BC.Passage is a set of passage operations that

are responsible for the interpretation of data ex-
changed between the internal and external MoCs.
Also, since the data consumed and produced by the
MoCs don’t have the same format (for instance, the
format of data in DE MoC is <Date, Value> while
in SDF it is just <Value>), BC.Passage is respon-
sible for the transformation of data. BC.Passage
= {DefaultInputData, DefaultOutputData, In-
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putDataFromOutputData, OutputDataFromInput-
Data}. The behavior of the passage operations
must be specified by the designer of heterogeneous
systems because it is part of the system design.

6.1.5. Execution of a DPC
An external MoC executes a DPC by a set of ac-

tivation cycles called iterations. The steps of an it-
eration of a DPC are shown on figure 12.

XXinEF = XX in External Format. XXinIF=XX in Internal Format where XX = D, D’, DD or DD’ that are data.

Core.Comp

Container.trigger

iCAS.EoR[NotReady]

Ready / NotReady

CS

D’inIF D’inIF

BC

D

eCAS

BoRCS BoRBC

Core.BoR [Ready]

iCAS.Com

D’

Core.EoR
CS.Com(DD’inIF)[*]

eCAS.Com(DDinEF)

eCAS.Com

External MoC Container iCAS Port

Port.ReadCS.Com

Container.finish

Core

iCAS.Com(DD’)

[*]: If there are data to send.   (*): Send of so necessary default data.

BoR

EoR

BoReCAS

EoRCS

(*)EoReCAS

EoRBC
Port.Write(DD)

BC.Passage(DinEF)

DinEF

BC.Passage(DD’inIF)

DDinEF

Fig. 12. UML’s sequence diagram showing the steps of iter-

ation of the DPC.

6.2. Degrees of polymorphism

The DPC is the form of component that has
the highest degree of polymorphism. However, it
is not always possible to implement it in a com-
pletely automatic manner. Each component of a
domain polymorph component can be implemented
in any object-oriented language, but the policy of
transformation of the Container and the policy of
selection may be difficult or impossible to imple-
ment. According to the features of the programming
language (introspection, reflexivity), these policies
can be fully implemented in the language, or can
be implemented using external tools and dynamic
loading of code, or even worse, can be implemented
by generating the necessary code at compile time
only. The highest degree of polymorphism is there-
fore achieved only when the programming language
offers enough possibilities to avoid any manual or
automatic external activity to build and assemble
the components of a DPC.

7. Integration And Simulation In Ptolemy II

7.1. Integration

The model of DPC has been integrated in the
Ptolemy II [9] platform, because this platform sup-
ports many domains (a domain is the implementa-
tion of a MoC in Ptolemy), and its architecture is
open to the creation of new domains. This integra-
tion hasn’t required any change of the Ptolemy II
kernel.

Since Ptolemy II is programmed in Java and relies
on static typing, with mandatory inheritance rela-
tions for actors in a given domain, we could not use
the complete DPC model without modifying the ker-
nel of Ptolemy II, so we used the FDSC model (see
section 5.3). With our integration, it is now possi-
ble to use a Core behavior in any allowed domain by
dragging a Container from a list of domain specific
Containers as shown on figure 13(a) and dropping
it onto the system being designed. Then, by setting
parameters of the Container, a Core is associated to
it, and it performs the assembly phase to take its
integral form as shown on figure 13(c).

Fig. 13. (a) List of Domain Specific Containers
(b) Containers (c) DPCs after assembly phase

7.2. Simulation

To validate our model of DPC, we chose the pro-
duction cell [11] case study as an heterogeneous sys-
tem to design and simulate.

The path of a piece through the cell starts on a
feed belt which conveys it to an elevating rotary ta-
ble (see figure 14). If the table is in loading position,
the belt pushes the piece on the table. Afterwards it
is brought in a certain position by the table, where
a robot can pick it up. With the help of its arm1
the robot takes it into the press, where the piece is
forged. Now the arm2 of the robot transports it to a
deposit belt. At the end of the deposit belt, a crane
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picks up the piece and unloads it on the feed belt
again (so that the simulation can go on forever).

Fig. 14. Schema of the production cell.

During the production cycle, the six machines in
the cell should avoid dropping the pieces to the floor
or colliding against each other.

At the design level, we decompose each machine
into two parts: a controller part and dynamic part.
When a piece reaches the position from which it will
be forwarded to the next machine, the controller
part of the machine is responsible for the synchro-
nization with the controller part of the next ma-
chine. So, the controller parts avoid colliding. The
dynamic part represents the physical displacement
of a piece on the machine.

However, to inform the controller part on the po-
sition of a piece at any time, each machine includes
sensors. So, a controller part can see if a piece is at
the position from which it will be forwarded. Indeed,
the sensors allow the controller parts to avoid drop-
ping pieces to the floor by stopping the machines
when a piece reaches predetermined positions.

In this paper, we cannot present the complete de-
sign of the production cell. However, we present the
design of the feed belt machine (FB), the other ma-
chines being designed in a similar way.

FBController MovePieceToFeedBeltEnd

MovePieceToTable

PieceAtFeedBeltEnd

PieceMovedToTable

FB
R

eadyForL
oading

FB
R

eadyForU
nL

oading

FB
U

nloaded

FB
L

oaded

U
nL

oadFB

Synchronization Signals

Sensor Signals Actuator Signals

Fig. 15. Controller of the Feed Belt.

We specify the behavior of the controller of the
FB, noted FBController, according to the Syn-
chronous Reactive approach, which is suitable for
specifying control, by using the Esterel [12] lan-
guage. The synchronous module representing the

controller of FB (see figure 15) has three categories
of signals: synchronization signals, sensor signals
and actuator signals. We developed a translator
to build synchronous Core components usable in
Ptolemy II from synchronous modules written in
Esterel.

We represent the feed belt machine by a com-
posite component, called FBWithFBController (see
figure 16), in which we placed FBController and a
composite component, called HSFB (Hybrid System
FB), which represents the dynamic part of the Feed
Belt machine. FBController and HSFB obey the DE
MoC. So, FBController is a DPC that obeys the
DE MoC and encapsulates a Core component which
obeys the Synchronous Reactive MoC. HSFB is a
FSM (Finite States Machine) component which has
two states, one represents the displacement of the
piece on the machine and the other represents the
forwarding of a piece to another machine. Each state
is refined by a composite component, called FBDy-
namic, in which we placed components representing
the displacement of the piece, and a DPC, called
DPCSensor, representing the sensor which informs
FBController. Components of FBDynamic obey the
CT MoC. The Core component of DPCSensor is also
specified using the Esterel language, so DPCSensor
obeys the CT MoC and its Core component obeys
the SR MoC.

Fig. 16. Model of the Feed Belt.

The composite components representing the six
machines are placed at the same hierarchical level
(top level) and are connected to the cell central con-
troller, called DPCCentralController, to form the
model of the production cell. All components at this
level obey the DE MoC. DPCCentralController is
the manager of the synchronization between the con-
trollers of the machines. It obeys the DE MoC and
its Core component obeys the SR MOC.
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Fig. 17. The production cell in 3D.

To visualize the functioning of the production cell,
we designed a 3D representation using the GR do-
main of Ptolemy II (see figure 17). This represen-
tation is animated according to the dynamics of
the parts of the cell. The simulation shows that the
model of the product cell is executed correctly, the
semantic adaptation between the core and the con-
tainer of the DPC being able to conciliate heteroge-
neous views of the different parts of the system.

8. Conclusion

We presented a model of domain polymorph com-
ponent that allows the adaptation of the semantics
of a Core behavior to the semantics of an external
MoC. This model provides several advantages such
as reusability, maintainability, etc. It allows the ex-
plicit specification of the exchange of data between
the internal and the external MoC. When the adap-
tation can be done in several ways, the choice, which
is part of the design of the system, is left to the de-
signer. This model is not a competitor to the exist-
ing approaches but complements them to facilitate
the tasks of the designers.

An implementation of domain polymorph compo-
nents, limited to the flexible domain specific com-
ponent level, has been realized in Ptolemy II. To
validate our model, we designed the production cell
benchmark by combining the hierarchical approach
and DPCs.

In future works, to reduce the complexity of the
architecture of the DPC, we will improve the model
by using the aspect-oriented approach [13]. Also, in
section 2.2, we introduced the notion of HIC, a com-
ponent that works at the boundary of several do-

mains, and DPCs may be a good implementation
for HICs, with containers as the projections of the
HIC on different domains, all embedding the same
core in different semantics.
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