
Semantic Adaptation
using CCSL Clock Constraints

Frédéric Boulanger, Ayman Dogui, Cécile Hardebolle,
Christophe Jacquet, Dominique Marcadet, and Iuliana Prodan

Supelec Systems Sciences (E3S)
Computer Science Department

Gif-sur-Yvette, France
<firstname>.<lastname>@supelec.fr

Abstract. When different parts of a system depend on different technical
domains, the best suitable paradigm for modeling each part may differ.
In this paper, we focus on the semantic adaptation between parts of a
model which use different modeling paradigms in the context of model
composition. We show how CCSL, a language for defining constraints
and relations on clocks, can be used to define this semantic adaptation in
a formal and modular way.

Keywords: Multi-Paradigm Modeling, Clock Calculus

1 Introduction

Models are the primary way of handling complexity by providing abstract rep-
resentations of a system, in which only the details that are useful for a given
task are kept. When different parts of a system depend on different technical
domains (e.g. signal processing, automatic control, power management, etc.), the
best suitable modeling paradigm may differ for each part. A global model of such
a system is a heterogeneous model. Heterogeneous modeling, or multi-paradigm
modeling, is the research domain which aims at handling heterogeneous models.

This paper focuses on model composition, one of the existing multi-paradigm
techniques [8]. The main principle of model composition is the “gluing” of model
parts which are described using different modeling languages. In model composi-
tion, the main difficulty is to define accurately the semantic adaptation, i.e. the
mechanism to “glue” together model parts that may have very different semantics,
in order to obtain a global heterogeneous model which is meaningful and can
therefore be used for early verification and validation in the design process.

We have developed a framework called ModHel’X for heterogeneous model
composition. ModHel’X is mainly aimed at model execution, i.e. techniques such
as simulation or code generation. We compose models in a hierarchical way. In [4],
we have presented in detail how hierarchical semantic adaptation between two
models is handled in ModHel’X. One drawback of our current approach is the lack
of conciseness and the rather low level of abstraction of the semantic adaptation



2 F. Boulanger et al.

descriptions. Inspired by the work by André et al. [9] on the description of the
semantics of dataflow models using MARTE’s Clock Constraint Specification
Language (CCSL), we propose an approach in which CCSL is used to model
semantic adaptation.

The paper is organized as follows. We first present the concept of model of
computation in Sect. 2, together with an example that we use throughout the
paper to illustrate the underlying concepts of our approach. After presenting
ModHel’X in Sect. 3, we focus on semantic adaptation in Sect. 4. Then, Section 5
briefly introduces the basic concepts of CCSL needed in Sect. 6 to describe the
semantic adaptation between heterogeneous models. We discuss the results in
Sect. 7 and, after a comparison of our approach with related work in Sect. 8, we
conclude in Sect. 9.

2 Models of Computation

There are two main tasks to achieve in order to obtain a meaningful heterogeneous
model using model composition: (1) the precise definition of the semantics of each
modeling paradigm; (2) the precise definition of the semantic adaptation between
parts of a model which use different modeling paradigms. One method for defining
the semantics of different modeling paradigms is to use a common syntax or
meta-model to describe the structure of models, and to attach semantics to this
structure using so-called models of computation (MoC). A model of computation
is a set of rules which define the nature of the components of a model and how
their behaviors are combined to produce the behavior of the model. It can be
seen as a way to interpret the structure of a model. For instance, Figure 1 shows
that two models can share the same structure (two components linked by two
arrows) with different semantics, depending on the model of computation: here a
finite state machine or two communicating sequential processes.

We use this concept of model of computation to achieve hierarchical model
composition. To illustrate our approach, let us introduce the example of a power
window system that we will use throughout the paper. The system, shown
on Fig. 2, is composed of a control switch, a controller board and an electro-
mechanical subsystem. These components communicate through a bus.

Since the communications on the bus can be modeled by events which carry
some data and occur at a given time, a “Discrete Events” (DE) [5] model of
computation is suitable for the top level of the hierarchical model of this system.
The control switch is considered as an atomic component which produces an
event each time its position (neutral, up or down) changes.

The controller board is in charge of interpreting both the actions of the user
on the switch and the information from the electro-mechanical subsystem in order
to drive the motor which makes the window move. It also implements advanced
features such as the “one touch” mode, i.e. the automatic raising or lowering of
the window after a brief pull or push of the control switch. The behavior of this
controller can be described naturally using a finite state machine. However, the
one touch mode feature implies timed behavior : it is activated only when the



Semantic Adaptation using CCSL Clock Constraints 3

A B

A B

MoC = FSM

A B

MoC = CSP

Fig. 1. Models of computation.

bus

DE

TFSM
SDF

?
?

Fig. 2. Structure of the power window model.

control switch has been pulled or pushed during less than a given delay, 10ms for
instance. Therefore the state machine describing the behavior of the controller
board includes timed transitions, so the “Timed Finite State Machine” (TFSM)
model of computation is used.

Finally, the electro-mechanical part is described as a periodically sampled
system, represented by a “Synchronous Data Flow” (SDF) [5] MoC. In this model
of computation, blocks are data flow operators which consume and produce a
fixed number of data samples on their pins each time they are activated.

Once these choices are made, it is necessary to define how these three models,
involving three different models of computation, can be composed. In the following,
we present how the power window system is modeled in ModHel’X.

3 ModHel’X, a Framework for Heterogeneous Modeling

ModHel’X [4] is an experimental framework developed at Supélec. It allows one to
describe the structure of heterogeneous models, to define models of computation
for interpreting such structures, and to define the semantic adaptation between
heterogeneous parts of a model. For this, ModHel’X relies on a meta-model which
is the common syntax for all models, whatever their semantics.

Figure 3 shows how the power window system is modeled using ModHel’X.
ModHel’X uses Blocks as the basic unit of behavior. For instance, the Switch,
Position and EndStop elements on the figure are blocks. Blocks are considered as
black boxes, meaning that their behavior can only be observed at their interface
which is composed of Pins (black circles on the figure). The structure of a model
is defined by setting relations between pins, shown as solid arrows on the example.

A structure (set of blocks and relations) has a meaning only when it is
associated with a model of computation that allows its interpretation. Therefore,
a ModHel’X model is a 〈structure, MoC〉 pair. MoCs are depicted by diamonds
on Fig. 3. In ModHel’X, interpreting a model means executing the behavior
described by that model according to the semantics of the MoC. An execution is
a series of observations of the model, each observation being computed through
the sequential observation of the blocks of the model using a fixed-point algorithm.
The observation of one block is called an update. Each MoC dictates the rules for



4 F. Boulanger et al.

Fig. 3. Simplified ModHel’X model of the power window system.

scheduling the update of the blocks of a model, for propagating values between
blocks, and for determining when the computation of the observation of the
model is complete.

Note that like all other models, the TFSM model is a set of interconnected
blocks. However, a more traditional depiction is used on Fig. 3. Also for simplicity’s
sake, only the upward movement of the window is taken into account, including
the one touch mode. The other part of its behavior is symmetric.

In ModHel’X, heterogeneity is handled through hierarchy: the behavior of some
blocks can be defined by another model. Such blocks are called InterfaceBlocks.
The model of computation used in the model of the block (the inner MoC) can
differ from the model of computation of the model in which the interface block
is used (the outer MoC). The Controller and Window elements on Fig. 3 are
examples of InterfaceBlocks. The dashed arrows between the pins of an interface
block and the pins of its internal model represent the semantic adaptation between
the two MoCs, which is performed by the interface block. As we have shown
in [4], semantic adaptation must consider three aspects: the adaptation of data
(data may not have the same form in the inner and outer models), the adaptation
of time (the notions of time and the time scales may differ in the inner and outer
models) and the adaptation of control (control meaning the instants at which it
is possible or necessary to communicate with a block through its interface). In
the next section, we illustrate these three aspects on the power window example.

4 Semantic Adaptation

The most obvious form of adaptation between models of computation is adapta-
tion of data. For instance, in the DE model of computation, blocks communicate
by posting events which are composed of a value and a timestamp. In the finite
state machine, data appears as symbols which can trigger transitions. In the data
flow model of the electro-mechanical part, data appears as periodic samples. The
adaptation of data between DE and TFSM can be performed by mapping symbols



Semantic Adaptation using CCSL Clock Constraints 5

TFSM

DE

SDF

T T

(2) (2) (2)

(1)

δ

(1′)
(1)

(2′)

Fig. 4. Adaptation of control.

A

B

C

Union(A, B)

Intersection(A, B)

sustainUpTo(A, B, C)

1 2 3

1 2 3

1

1 2 3 4

1 2

1

Fig. 5. Example of clock expressions.

(processed by the TFSM) to event values. The adaptation of data between DE
and SDF is more complex because SDF expects periodic samples while DE has
only sporadic events. A usual way to handle this it to interpret a DE event as a
new value for the next samples of a SDF signal, until a further event is received.
Similarly, a change in a sequence of SDF samples is converted into a DE event.
The value carried by this event is easy to determine: it is the new value of the
SDF signal. However, it is also necessary to choose a timestamp for this event
because there is no explicit notion of time in SDF: time needs to be adapted too.

When we generate a DE event to reflect a change of an SDF signal, a possible
timestamp for this event is the value of the current time in the DE model when
the SDF signal changes (the DE MoC maintains a current time at each instant of
the model execution [5]). Adaptation of time must also be performed between
the DE model and the timed finite state machine. We can assume that the
state machine reacts instantaneously to input symbols, and also uses the current
time in DE as a timestamp for the events it produces. However, time can also
trigger transitions in the TFSM model. Such a transition is based on a duration
expressed on a time scale that is local to the TFSM model. The transition may
produce an event that will have to be adapted to the DE model, so the duration
must have a correspondence in DE time. The adaptation of time between DE and
TFSM consists in reseting a timer each time a new state is entered, and therefore
measuring the time elapsed in DE since entering the state in the automaton.

Control is the set of instants at which a block should be able to take inputs
into account and to produce outputs. Figure 4 illustrates the adaptation of
control between DE, TFSM and SDF. On this figure, the “ticks” on each timeline
represent the instants at which each model is given control. The arrows represent
the adaptation of control performed between the models by the interface blocks.
Let us have a look at a few examples.

Between DE and TFSM. When the DE model produces an input for the state
machine, control should be given to the TFSM model so that it can process the
symbol and take a transition. This is illustrated by arrows labelled (1) on the
figure. Conversely, control is created in DE when the state machine produces an
output (arrow (1′)). If the state machine enters a state with an outgoing timed



6 F. Boulanger et al.

transition, the state machine should receive control when the delay δ expires so
that the transition fires (arrow labelled δ on the figure).

Between DE and SDF. The sampled nature of SDF signals induces periodic
control for the model of the electro-mechanical part of the system (arrows labelled
T at the bottom of the figure). Since this model is embedded in the DE model,
control in DE has a periodic part induced by SDF. This is shown by arrows
labelled (2) on Fig. 4. When data is made available by DE to the SDF model,
this data must not create control directly in SDF but must be processed at the
next periodic control point, as shown by the wavy arrow labelled (2′) on Fig. 4.

As we see in this example, adaption of control not only depends on data and
time, but it must also obey rules that depend on the models of computation.
It is therefore cumbersome to define this adaptation in an operational way as
we did until now in ModHel’X. In this paper, we present an approach in which
we declare all the constraints that apply on the control points of the different
parts of a model. This work has been inspired by the work by André et al. [9] in
which the Clock Constraints Specification Language (CCSL) is used to define
the SDF model of computation. Our goal is to use CCSL to model the semantic
adaptation between models involving different models of computation. Section 5
introduces the basics of the CCSL language, as a prerequisite to Sect. 6 that
describes our methodology for semantic adaptation using CCSL.

5 The Clock Constraint Specification Language (CCSL)

CCSL (Clock Constraint Specification Language) is a declarative language an-
nexed to the specification of the MARTE UML Profile (Modeling and Analysis
of Real Time and Embedded systems). CCSL is based on the notion of clock
which represents a set of discrete event occurrences, called instants. A clock can
be either chronometric or logical. Chronometric clocks are a means to model
“physical time” and to measure durations between two instants. Logical clocks
represent discrete time composed of abstract instants called ticks. The number
of ticks between two instants may have no relation to any “physical duration”.

The concrete syntax of CCSL is quite verbose and requires to prefix ac-
tual parameters with the name of the formal parameter in operator calls. For
the sake of simplicity and conciseness, we will omit such prefixes and use gen-
eralized n-ary versions of the binary operators. For instance, we will write
Expression E = Union(C1, C2, ..., Cn) instead of:

Expression U1 = Union(Clock1->C1, Clock2->C2)
Expression U2 = Union(Clock1->U1, Clock2->C3)

...
Expression E = Union(Clock1->Un-1, Clock2->Cn)

CCSL has a series of operators to define new clocks. The operators Union and
Intersection build clocks which consist of respectively the union and the inter-
section of the ticks of two clocks (see Fig. 5). We also use sustainUpTo(A, B, C),
which defines a clock that starts ticking each time A ticks at the first tick of



Semantic Adaptation using CCSL Clock Constraints 7

B, and stops ticking at the first tick of C. Discretize defines a chronomet-
ric clock from physicalTime, a dense clock defined by MARTE. For instance,
Discretize(physicalTime, 0.001) specifies a discrete chronometric clock
with a period of 0.001 second = 1ms. DelayFor(A, B, n) specifies a clock
which ticks at the nth instant of B that follows an instant of A.

CCSL also offers means to specify constraints between clocks, namely sub-
clocking and coincidence. Relation[SubClock](A, B) means that the set of
ticks of A is a subset of the set of ticks of B. Relation[Coincides](A, B)

means that A and B share the same set of ticks.
The TimeSquare environment, an Eclipse plug-in, may be used to solve a set

of CCSL constraints. A graphical interface displays waveforms for the solution
clocks and shows the constraints between their instants.

6 Semantic Adaptation using CCSL

This section presents our general methodology for describing semantic adaptation
between models involving different MoCs using CCSL. The methodology is
illustrated on the power window example introduced in Sect. 2.

The switch (see Fig. 3) is an elementary DE block that models the user’s
actions. The user pulling and releasing the button is represented by DE events
on the switch’s userCmd pin with values “1” and “0” respectively. These events
are provided to the controller, which, in turn, sends ctrlWCmd DE events to the
window to turn the motor on (value “1”) or off (value “0”). The controller knows
when the window is fully closed when it receives an event with value “1” from
the window on its ctrlWEnd pin.

The controller is described using a timed finite state machine, with initial
state Stop. When the automaton receives the evtUUp event indicating that the
user wants to raise the window, it produces the evtWUp event to start the window
motor and goes to the Up state. If the automaton receives the evtUNeutral event
before 10 units of time, thereby indicating that the user has released the button
to activate the one touch mode, it goes to the UpAuto state. Else, and after 10
units of time, it goes to the UpManu state. The controller produces the evtWStop
when the user releases the button in manual mode, when the user pulls the
button in one touch mode, or when the window is fully closed (evtWEnd events
represent end-stops). As introduced in Sect. 4, the notions of data, control and
time have to be adapted between the DE top level model and the internal TFSM
model of the controller. In particular, a correspondence has to be defined between
DE events carrying given values and TFSM events.

The window is described using a synchronous data-flow model. In this simpli-
fied example, we suppose that the window has 5 vertical positions, where 0 is the
lowest and 4 is the highest. The Position block is a modulo-5 accumulator which
computes the position of the window from the input command signal. The role
of the EndStop block is to detect when the window reaches its highest possible
position. It produces a signal with value “1” when the window is at its highest
position and “0” otherwise. Again, the notions of data, control and time have to



8 F. Boulanger et al.

be adapted between the DE top-level model and the internal SDF model of the
window. In particular, a correspondence has to be defined between DE events
(carrying values) and SDF samples (carrying values).

In order to be able to describe the semantic adaptation between models
using CCSL and to simulate the global heterogeneous model using ModHel’X,
we have to integrate TimeSquare, the CCSL solver, with ModHel’X. However,
given the fundamental differences between the tools, we have preferred to first
experiment our approach using CCSL only, as a proof of concept. For this reason,
the following sections explain how models governed by the TFSM, SDF and DE
MoCs may be described using CCSL, before focusing on semantic adaptation
between them. Then we present the simulations obtained with TimeSquare.

6.1 Describing TFSM using CCSL

This section describes our methodology for translating a TFSM model into a
CCSL specification. In CCSL, all clocks must be subclocks of a root clock. We
choose to explicitly define a chronometric clock called chronoTFSM. This clock
serves several purposes: it measures the durations of the timed transitions, the
input events occur at instants of this clock (they are subclocks of it), and therefore
the state machine reacts at instants of this clock.

For simulating the behavior of a state machine, we need to memorize its
current state. For each state S, we use an enterS clock which ticks when a
transition leading to S fires, and an inS clock which ticks at each instant when S
is the current state. enterS is the condition for entering S, and inS is a memory
of the current state.

To define the enterS family of clocks, let us describe first when transitions
are followed. A non-timed transition T that leaves S upon receipt of E is fired
when the current state is S, and E occurs. Therefore, the clock which ticks each
time T fires can be defined as:
Expression T = Intersection(E, inS)

For a timed transition T that leaves state S after d units of time, the firing event
is derived from enterS :
Expression T = Intersection(DelayFor(enterS,chronoTFSM,d), inS)

We are now able to define the enterS clock of a state S with incoming
transitions T1, . . . ,Tn. If S is not the initial state, S is entered when one of the
transition fires, thus:
Expression enterS = Union(T1, T2, ... , Tn)

For any state S, the state machine is in state S the instant just after the
firing of a transition leading to S, so:

Expression enteredS = DelayFor(enterS, chronoTFSM, one)
Expression inS = sustainUpTo(chronoTFSM, enteredS,

Union(inS’, inS’’, ...))

where S’, S”, ... is the list of successor states of S.
If S is the initial state, then the state machine S is also in S at the first instant.
For this, we define a clock that ticks only once, on the first tick of chronoTFSM :



Semantic Adaptation using CCSL Clock Constraints 9

Expression initial = FilterBy(chronoTFSM, 1(0))

and we add initial to the conditions for being in S :
Expression enteredS = Union(initial, DelayFor(enterS, ...))

The events produced by the state machine are modeled by clocks too. A given
output event E is emitted when one of the transitions that may produce it is
fired. Let us call T1, . . . ,Tn the family of such transitions. Then we can define a
clock E which ticks each time E is present as:
Expression E = Union(T1, T2, ..., Tn)

Based on those generic patterns, we have created a script that generates
automatically the constraints needed for any instance of a TFSM model. For
the TFSM model of the power window system example described previously, we
obtain the following constraints (using the simplified CCSL syntax):

Clock physicalTime:Dense
Expression chronoTFSM = Discretize(physicalTime, 0.001)
Expression initial = FilterBy(chronoTFSM, 1(0))
// state S [Stop] and incoming transitions
Expression transition1 = Intersection(Union(evtUNeutral, evtWEnd), inM)
Expression transition2 = Intersection(Union(evtUUp, evtWEnd), inA)
Expression enterS = Union(transition1, transition2)
Expression enteredS = Union(initial, DelayFor(enterS, chronoTFSM, one))
Relation[SubClock](enterS, chronoTFSM)
Expression inS = sustainUpTo(chronoTFSM, enterS, inU)
Relation[SubClock](inS , chronoTFSM)
// state M [Up Manu] and incoming transitions
Expression transition3 = Intersection(DelayFor(enterU, chronoTFSM, 10), inU)
Expression enterM = transition3
Expression enteredM = DelayFor(enterM, chronoTFSM, one)
Expression inM = sustainUpTo(chronoTFSM, enteredM, inS)
Relation[SubClock](inM, chronoTFSM)
[...] // same thing for states U [Up] and A [Up Auto]
// output events
Expression evtWStop=Union(transition1, transition2)
[...]

Figure 6 shows the causal relationships between the ticks upon which the
automaton changes its state.

6.2 Describing DE using CCSL

We now describe our methodology for translating a DE model into a set of CCSL
constraints. As for TFSM, we define a chronometric clock chronoDE to measure
time. All the other clocks are subclocks of chronoDE. Each block B is associated
with a clock updateB that ticks at each update of B. As the updates themselves
depend on events sent and received by the blocks, we need to associate a clock
to each pin (with the same name), which ticks each time an event is sent or
received. DE semantics imply the following constraints on these clocks: (a) the
clock of an output pin must coincide with all the clocks of the connected input
pins and (b) the update clock of a block is the union of all the clocks of its input
and output pins. Again, based on these rules, a script can generate automatically
the constraints needed for any specific DE model. On the power window system
example, we obtain the following constraints:



10 F. Boulanger et al.

Clock physicalTime:Dense
Expression chronoDE=Discretize(physicalTime, 0.001)
// "Switch" block
Clock updateSwitch
Clock userCmd
Relation[Coincides](updateSwitch, userCmd)
Relation[SubClock](updateSwitch, chronoDE)
// "Controller" block
Clock updateController
Clock ctrlUCmd
Clock ctrlWEnd
Clock ctrlWCmd
Relation[Coincides](updateController, Union(ctrlUCmd, ctrlWEnd, ctrlWCmd))
Relation[SubClock](updateController, chronoDE)
// Relations between blocks
Relation[Coincides](userCmd, ctrlUCmd)
[...]

To fully simulate our model in TimeSquare, we have to take into account the
values of the DE events. However, CCSL has no mechanism for representing data.
Therefore, we represent data values by clocks. For instance, since the Switch block
produces DE events with values “0” or “1” on its userCmd pin, we use a userCmd0
(resp. userCmd1 ) clock which ticks each time the value of the produced event is
0 (resp. 1). This mechanism is applied to all the clocks representing the emission
or reception of events in the DE model. Figure 6 shows traces obtained when a
userCmd event is sent by the switch (upon update) with value “1”. It is received
by the controller as a ctrlUCmd event with value “1”, which sends out a ctrlWCmd
event to the window with value “1” to start the window motor.

6.3 Describing SDF using CCSL

This section explains how an SDF model can be translated into a CCSL spec-
ification. First, we define a superSDF clock to represent the instants at which
blocks are updated in the SDF model. For each block B we associate a clock
updateB that ticks at each update of B. The updateB clock is necessarily a
subclock of superSDF. For each input/output pin of a block B, we define a
clock sInBi/sOutBj that ticks each time it receives/produces a token. Block B is
updated when each of its input pins has received at least one token. Therefore,
the updateB clock must coincide with the slowest clock among all the sInBi
clocks in order to tick upon the receipt of the last required token. This gives:
Relation[Coincides](updateB, Sup(sInB1, ..., sInBn))

When B is updated, each of its output pins produces a token. Therefore, the
updateB clock coincides with all the sOutBj clocks. This gives, for each j:
Relation[Coincides](updateB, sOutBj)

The semantics of SDF implies that, for two blocks A and B connected through
relations, each token produced by each output pin sOutAj of block A is received
instantaneously by the input pin sInBi of block B connected at the other end of
a relation. Therefore the clocks sOutAj and sInBi must coincide:
Relation[Coincides](sOutAj, sInBi)

Based on these rules, a script generates automatically the constraints needed
for any SDF model. On the window system, we obtain the following constraints:



Semantic Adaptation using CCSL Clock Constraints 11

Clock physicalTime:Dense
Clock superSDF
// "Position" block
Clock updatePosition
Relation[SubClock](updatePosition, superSDF)
Clock sInPos
Clock sOutPos
Relation[Coincides](updatePosition, Sup(sInPos))
Relation[Coincides](updatePosition, sOutPos)
[...] // same thing for the "EndStop" block
// Relation: sOutPos ==> sInEnd
Relation[Coincides](sOutPos, sInEnd)

As for DE, we also need to represent data in SDF to be able to simulate the
behavior of the model. In the window system example, two clocks are associated
with the two possible values of tokens produced by the sInPos input pin: sInPos0
for value “0” and sInPos1 for value “1”. We do the same for the possible values
at the sOutPos, sInEnd and the sOutEnd pins.

Figure 6 shows the evolution of sOutPos and sOutEnd with respect to sInPos.

6.4 Semantic Adaptation between DE and TFSM

Semantic adaptation between the DE and TFSM models boils down to a set of
relations between clocks of the outer and inner models. More specifically: (a) an
equality is written for each pair of related input and output pins of the inner/outer
models, and (b) there must be a relation between the two chronometric clocks
chronoTFSM and chronoDE.

// Adaptation of inputs
Relation[Coincides](ctrlUCmd1, evtUUp)
Relation[Coincides](ctrlUCmd0, evtUNeutral)
Relation[Coincides](ctrlWEnd, evtWEnd)
// Adaptation of outputs
Relation[Coincides](evtWUp, ctrlWCmd1)
Relation[Coincides](evtWStop, ctrlWCmd0)
// chronoDE is periodic on chronoTFSM with period 2 and offset 0
Expression chronoDE = Periodic(chronoTFSM, 2, 0)

Figure 6 shows an example of adaptation between the DE signal ctrlUCmd
with value “1” and the TFSM event evtUUp (dashed arrow).

6.5 Semantic Adaptation between DE and SDF

Since the SDF model of the window is periodic, the semantic adaptation between
DE and SDF must enforce the fact that the SDF model is updated every T ticks
of chronoDE, and not at other instants. This also implies that if an event is
present on the winCmd pin at an instant when the model should not be updated,
the event must be memorized until the next update of the SDF model.

The first relation in the listing below states that superSDF is periodic on
chronoDE with period 2. The next two lines specify that the sCmd pin receives
a new value (sCmd0 or sCmd1 ) only on ticks of superSDF, and keeps the last
value until a different one is produced. The initial value of sCmd is set to 0.



12 F. Boulanger et al.

superSDF

sInPos0

ctrlUCmd0

updateWindow

updateEndStop

sOutPos3

sOutPos0

evtWStop

updateSwitch

evtUUp

ctrlWEnd0

winEnd1

enterUp

winEnd0

chronoTFSM

userCmd0

ctrlWCmd1

sOutEnd0

ctrlWEnd1

sOutPos2

sOutEnd1

chronoDE

ctrlUCmd1

inUp

sOutPos4

sOutPos1

ctrlWCmd0

evtUNeutral

sInPos1

userCmd1

evtWEnd

updateController

updatePosition

inUpManu

inUpAuto

inStop

evtWUp

∆T

Fig. 6. Simulation of the overall model. Solid lines represent causal relationships within
a given model; dashed lines represent adaptation between MoCs. Some clocks are
omitted to make the figure clearer.



Semantic Adaptation using CCSL Clock Constraints 13

The adaptation of the output is described by the last two lines. In order to
detect when sOutEnd goes from 0 to 1, and to generate an “on” winEnd DE event,
we compute the intersection of sOutEnd1 with sOutEnd0 delayed by one sample.
A similar calculus on sOutEnd1 allows us to generate “off” winEnd events each
time the window leaves the end stop position. Notice the delay on the output
events to avoid an instantaneous dependency loop in the DE model.

// The activation of the SDF model is periodic
Relation[Coincides](superSDF, Periodic(chronoDE, 2, 0))
// The value of the input signal is the value of the last DE event
Relation[Coincides](sCmd0, sustainUpTo(superSDF, Union(initial, winCmd0), winCmd1))
Relation[Coincides(sCmd1, sustainUpTo(superSDF, winCmd1, winCmd0))
// A DE event is generated only when the output of the model changes
Relation[Coincides](winEnd0, DelayFor(Intersection(sOutEnd0,

DelayFor(sOutEnd1, superSDF, 1)), chronoDE, 1))
Relation[Coincides](winEnd1, DelayFor(Intersection(sOutEnd1,

DelayFor(sOutEnd0, superSDF, 1)), chronoDE, 1))

Figure 6 shows how the ctrlWCmd event induces a change of the value of
sInPos, only on the next tick of superSDF. The dotted square shows how a change
in the value of sOutEnd translates into a winEnd event. Globally, Figure 6 shows
that the overall model is correctly simulated using CCSL: we see the controller
change state, and command the window to go up, as well as the window model
calculate the successive positions of the window until the end stop is reached,
causing the controller to finally rest in the Stop state. Some clocks have been
omitted for clarity.

7 Discussion

The above results show some benefits and drawbacks of our approach. We were
able to obtain concise CCSL specifications for MoCs, which is an improvement
over the lengthy descriptions of MoCs in ModHel’X. However, we consider as a
drawback the fact that the CCSL specifications are model instances instead of
independent descriptions of MoCs. To enforce genericity, we had to write scripts
that generate model instances according to the semantics of the MoC.

Another positive point is that semantic adaptation of control and time is quite
easy to define using CCSL. In addition, we were able to check the consistency of
the CCSL specifications of the whole heterogeneous model of the power window.
For instance, if the adaptation constraints specify that the DE clock is of higher
frequency than the TFSM clock, the global specification is inconsistent: the delay
of timed transitions in TFSM cannot be mapped on DE time. The solver actually
detects a deadlock. Analysis features are of utmost interest for an approach
dedicated to the specification of MoCs (and of semantic adaptation), which by
nature are very difficult to verify and validate.

One limitation of this clock-based approach is that CCSL lacks primitives
for manipulating data. Therefore, we had to define an ad-hoc methodology for
it, which is not satisfactory. Another issue is the integration of this approach in
ModHel’X. TimeSquare’s solver is a static solver, which computes solutions over
the whole timespan. It is not possible to compute the ticks at runtime. Therefore,



14 F. Boulanger et al.

we cannot use TimeSquare directly in ModHel’X. For the time being we cannot
use the mechanisms that exist in ModHel’X to handle the adaptation of data
together with CCSL specifications for the adaptation of control and time.

The following section compares this paper’s proposal with existing approaches.

8 Related Work

As stated earlier, this paper is inspired by the work by André et al. [9]. First
we have adapted their approach to the ModHel’X framework. We use CCSL
clocks to model the control points of the execution algorithm of ModHel’X on the
different elements of a model (conforming to the meta-model of ModHel’X). Then
we have applied this approach to additional MoCs. But our main contribution
is the use of CCSL specifications not only to model MoCs but also to model
the semantic adaptation between two models involving different MoCs. We have
shown on an example that this approach is particularly suitable for describing the
semantic adaptation of control and of time, and that using CCSL specifications is
significantly simpler than using an imperative method. Although not integrated
in ModHel’X yet (as exposed in Sect. 7), this preliminary work seems promising
since it allowed us to detect inconsistencies in the specifications.

To our knowledge, no other approach uses clocks and clock constraints to model
semantic adaptation in the context of model composition. However, the issue of
handling different notions of time and multiple control clocks has been extensively
studied, in particular in the domain of hardware synthesis. Synchronous languages
(see [2,1]) like Lustre, Esterel and Signal use abstract logical time and introduce
the notion of multiform time. Other approaches, like Lucid Synchrone [3], have
explicit support for specifying multi-clock systems.

Regarding model composition itself, ModHel’X can be compared to other
approaches such as Ptolemy II or Simulink/Stateflow. Ptolemy II [7] is one of the
first approaches to model composition. It supports a wide range of MoCs that
may be combined with each other to form heterogeneous models. In ModHel’X,
we propose an extension and a generalization of the solutions introduced by
Ptolemy. Adaptation rules at the boundary between two heterogeneous models
is one of our main contributions. In Ptolemy, those rules are hardcoded in the
kernel. The modeler has either to rely on default adaption and design his system
accordingly, or to add adaptation blocks explicitly into the models themselves,
which makes models less reusable and more difficult to understand. In ModHel’X,
adaptation is explicit, insulated from the models and encapsulated into interface
blocks. This work on the modeling of semantic adaptation using CCSL is another
step towards an easier way to “glue” together heterogeneous parts of a model.

A case study about a similar power window, available on The MathWorks’
website1, illustrates heterogeneous model composition for Simulink (SDF-like)
and Stateflow (TFSM-like). Semantic adaptation between Simulink and Stateflow
is specified explicitly using functions and truth tables. However, all MoCs cannot

1 http://www.mathworks.com/products/demos/simulink/PowerWindow/html/PowerWindow1.html.



Semantic Adaptation using CCSL Clock Constraints 15

be composed like this. For instance, using a Simulink (SDF-like) model into a
SimEvents (DE-like) model requires different adaptation artifacts such as event
translation blocks [6]. Not only are the interactions of SimEvents with Simulink
hardcoded: SimEvents is actually executed on top of Simulink, thus constraining
their interactions. The abstract syntax and semantics at the core of ModHel’X
allow MoCs to be described independently from each other, and interface blocks
allow the description of adaptation patterns for any pair of MoCs.

9 Conclusion

In this paper, we propose to use CCSL, a language for defining clocks and
clock constraints, to specify the semantic adaptation at the border between
two heterogeneous models composed in a hierarchical way. We have adapted to
ModHel’X, our framework for model composition, an approach proposed in [9].
This paper contains three examples of models of computation described using
CCSL and we show how semantic adaptation of control and of time can be
specified between two models using these MoCs. Although preliminary, this work
shows interesting results regarding the conciseness and the readability of the
descriptions of both MoCs and adapters. Moreover, the TimeSquare solver allowed
us to check the consistency of the semantic adaptation between pairs of models.
This work will be integrated into ModHel’X so that CCSL-like specifications for
the semantic adaptation of control and of time can be used. In parallel, we are
working on a methodology for modeling the semantic adaptation of data.

References

1. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proc. of the IEEE 91(1), 64–83 (2003)

2. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design,
semantics, implementation. Science Of Computer Programming 19(2), 87–152 (1992)

3. Biernacki, D., Colaco, J.L., Hamon, G., Pouzet, M.: Clock-directed Modular Code
Generation of Synchronous Data-flow Languages. In: Proceedings of LCTES (2008)

4. Boulanger, F., Hardebolle, C., Jacquet, C., Marcadet, D.: Semantic Adaptation for
Models of Computation. In: Proceedings of ACSD 2011. pp. 153–162 (2011)

5. Brooks, C., Lee, E.A., Liu, X., Neuendorffer, S., Zhao, Y., Zheng, H.: Heterogeneous
Concurrent Modeling and Design in Java (Volume 3: Ptolemy II Domains). Tech.
Rep. UCB/EECS-2008-30, University of California, Berkeley (2008)

6. Cassandras, C.G., Clune, M.I., Mosterman, P.J.: Hybrid system simulation with
SimEvents. In: Proceedings of ADHS. pp. 267–269 (2006)

7. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity – the Ptolemy approach. Proc. of the
IEEE 91(1), 127–144 (2003)

8. Hardebolle, C., Boulanger, F.: Exploring multi-paradigm modeling techniques. SIM-
ULATION 85, 688–708 (2009)

9. Mallet, F., DeAntoni, J., André, C., de Simone, R.: The clock constraint specification
language for building timed causality models. Innovations in Systems and Software
Engineering 6, 99–106 (2010)


