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Abstract

The contribution of this paper is twofold: first, it defines a unified framework for modeling abstract components,
as well as a formalization of integration rules to combine their behaviour. This is based on a coalgebraic definition
of components, which is a categorical representation allowing the unification of a large family of formalisms for
specifying state-based systems. Second, it studies compositional conformance testing i.e. checking whether an imple-
mentation made of correct interacting components combined with integration operators conforms to its specification.
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Introduction

A powerful approach to developing complex1 software systems is to describe them in a recursive way as intercon-
nections of subsystems. These subsystems are then integrated through integration operators (so-called architectural
connectors) that are powerful tools to describe systems in terms of components and their interactions. Each subsys-
tem can be then either a complex system itself or simple and elementary enough to be handled entirely. However, we
observe that components may be designed using different formalisms, most of them being state-based ones. To deal
with these heterogeneous components from a global point view, we propose in this paper to model them as concrete
coalgebras for an endofunctor on the category of sets following Barbosa’s component definition [3, 4]. The interest
of such models is twofold: first, defining a component as a coalgebra over the endofunctor H = T (Out× )In where T
is a monad2, and In and Out are two sets of elements which denote respectively inputs and outputs of the component,
will allow us to abstract away computation situations such as determinism or non-determinism. Indeed, monads have
been introduced in [5] to consider in a generic way a wide range of computation structures such as partiality, non-
determinism, etc. Hence, Barbosa’s definition of components allows us to define components independently of any

IThis work is a revised and extended version of [1]. This extension consists in systematically adding proofs of each theorem and proposition
given in this paper as well as adding examples to illustrate all the notions introduced in this paper. Moreover, new results about compositional
testing are introduced.

Email addresses: marc.aiguier@ecp.fr (Marc Aiguier), frederic.boulanger@supelec.fr (Frédéric Boulanger),
bilal.kanso@ecp.fr,bilal.kanso@supelec.fr (Bilal Kanso)

1Complex systems are commonly characterized by a holistic behaviour. That means their behaviours cannot be resulted from the combination
of isolated behaviours of some of their components, but have to be obtained as whole. This holistic behaviour is classically expressed by the
emergence of global properties which are very difficult, even sometimes impossible, to be anticipated just from a complete knowledge of component
behaviours [2]. In this paper, the term complex is contrarily used to express component-based systems. We only address here the complexity in
terms of heterogeneity of state-based formalisms. Hence, we intend to say by complex systems, the systems described in a recursive way as a set
of state-based components, organized and integrated together using integration operators.

2All the definitions and notations of coalgebras and monads are recalled in Section 1 of this paper.
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computation structure. Moreover, this definition will allow us to unify in a same framework a large family of state-
based formalisms such as Mealy automata [6, 7], Labeled Transition Systems [8], Input-Output Symbolic Transition
Systems [9, 10, 11], etc. Second, following Rutten’s works [12], defining component behaviours as extensions of
Mealy automata to any computation structure by using monads, will allow us to define a trace model over components
by causal transfer functions, that is functions of the form: y = F (x, q, t) where x, y and q are respectively the input,
output and state of the component under consideration, and t is discrete time.

Hence, by extending Rutten’s results in [12] on the existence of a final coalgebra in the category of coalgebras
over H = T (Out × )In, we will show how to define causal functions which underly any system, or equivalently, that
the system under consideration implements. This constitutes our first contribution in this paper. Another contribution
in this paper is the definition of two basic integration operators, product and feedback, which are used to build larger
systems by composition of subsystems. Indeed, we defend the idea that most standard integration operators can
be obtained by composition of product and feedback, and we will show this for them. This will lead us to define
inductively more complex integration operators, the semantics of which will be partial functors over categories of
components. Hence, a system will be built by a recursive hierarchical process through these integration operators
from elementary systems or basic components.

Finally, as a last contribution in this paper, we propose to define a conformance testing theory for components.
From the generality of the formalism developed in this paper, the testing theory developed here will be de facto
applicable to all state-based formalisms, instances of our framework such as these presented in Section 2.2. There are
several conformance testing theory in the literature [9, 10, 13, 14, 15, 16] that differ by the considered conformance
relation and algorithms used to generate test cases. Although most of these theories could be adapted to our formalism,
we propose here to extend the approach defined in [10] in the context of IOS TS formalism. The advantage of the
testing theory proposed in [10] is that it is based on the conformance relation ioco that received much attention
by the community of formal testing because it has shown its suitability for conformance testing and automatic test
derivation. Furthermore, test generation algorithms proposed in [10] are simple in their implementation and efficient
in their execution. Hence, test purposes will be defined as some particular subtrees of the execution tree built from our
trace model for components. We will then define an algorithm which will generate test cases from test purposes. As
in [10], this algorithm will be given by a set of inference rules. Each rule is dedicated to handle an observation from
the system under test (S UT ) or a stimulation sent by the test case to the S UT . This testing process leads to a verdict.

This conformance testing theory is a step toward the testing of complex software systems made of interacting com-
ponents. In the present paper, we further propose to define a compositional testing theory that aims to check whether
the correctness of a whole system C = op(C1, . . . ,Cn) is established using the correctness of each component Ci,
where op is any integration operator. Hence, the problem of compositional testing can be seen as follows: given im-
plementation models I1, . . . , In, their specifications C1, . . . ,Cn, an integration operator op and a conformance relation
rel such as for every i, 1 ≤ i ≤ n, Ii has been tested to be rel-correct according to its specification Ci, can we conclude
that their composition op(I1, . . . , In) is also rel-correct with respect to the integrated specification op(C1, . . . ,Cn)? A
positive answer to this question cannot be obtained without any assumption on both specifications and implemen-
tations. We will show in this paper that under some conditions, the conformance relation is preserved along any
integration operator. These last results extend Tretman’s results exposed in [17] to our framework.

The paper is structured as follows: Section 1 recalls the basic notions of coalgebras and monads that will be
useful in this paper. Section 2 recalls Barbosa’s definition of components and defines a trace model from causal
transfer functions over it. The formalization of components as coalgebras allows us to extend some standard results
connected to the definition of a final component in Section 3. Section 4 presents the basic integration operators:
cartesian product and both relaxed and synchronous feedback as well as how to combine them to build more complex
integration operators. In Section 5, we define the notion of system that will be the result of the composition of
basic components using complex integration operators. Section 6 presents our generic conformance testing theory for
components. Section 7 gives the algorithm for generating test cases as a set of inference rules. Section 8 studies the
preservation of the conformance relation by the proposed basic integration operators.

1. Preliminaries

This paper relies on many terms and notations from the categorical theory of coalgebras and monads. The notions
introduced here make use of basic notions of category theory (category, functors, natural transformations, etc.) We
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do not present these notions in this preliminaries, but interested readers may refer to textbooks such as [18, 19, 20].
Similarly, readers wanting to go into details in coalgebras and monads may refer to [20, 21]

1.1. Algebras and coalgebras

Given an endofunctor F : C → C on a category C, an F-algebra is defined by a carrier object X ∈ C and a
mapping α : F(X) → X. In this categorical definition, F gives the signature of the algebra. For instance, with 1
denoting class of isomorphism of the singleton set {?}, by considering the functor F = 1 + which maps X 7→ 1 + X,
the F-algebra (N, [0, succ]) is Peano’s algebra of natural numbers, with the usual constant 0 : 1→ N and constructor
succ : N→ N.

Similarly, an F-coalgebra is defined by a carrier object X ∈ C and a mapping α : X → F(X). In the common case
where C is Set, the category of sets, the signature functor of an algebra describes operations for building elements of
the carrier object. On the contrary, in a coalgebra, the signature functor describes operations for observing elements
of the carrier object. For instance, a Mealy machine with state set S and input and output alphabets In and Out, can
be described as an F-coalgebra (S , 〈out, next〉) of the functor F = (Out × )In. The out : S → OutIn operation is the
curried form of the output function out : S × In→ Out which associates an output to an input when the machine is in
a given state. Similarly next is the curried form of the transition function next : S × In → S which associates a new
state to an input when the machine is in a given state.

An homomorphism of (co)algebras is a morphism from the carrier object of a (co)algebra to the carrier object of
another (co)algebra which preserves the structure of (co)algebras. On the following commutative diagrams, f is an
homomorphism of algebras and g is an homomorphism of coalgebras:

F(X) F(Y)

X Y

F( f )

f

δ γ

Z U

F(Z) F(U)

g

F(g)

α β

F-algebras and homomorphisms of algebras constitute a category Alg(F). Similarly, F-coalgebras and homomor-
phisms of coalgebras constitute a category CoAlg(F). If an initial algebra (Ω, δ) exists in Alg(F), it is unique, and
its structure map is an isomorphism. The uniqueness of the homomorphism from an initial object to the other objects
of a category is the key for defining morphisms by induction: giving an F-algebra (X, γ) defines in a unique way the
homomorphism !γ : Ω→ X from the initial F-algebra (Ω, δ) to this algebra.

Conversely, if a final coalgebra (Γ, π) exists in CoAlg(F), it is unique, and its structure map is an isomorphism.
The uniqueness of the homomorphism from any object to a final object of a category is the key for defining morphisms
by coinduction: giving an F-coalgebra (Y, α) defines in a unique way the morphism !α : Y → Γ from this coalgebra to
the final F-coalgebra (Γ, π).

An interesting property is that if F is a finite Kripke polynomial functor, Alg(F) has an initial algebra and
CoAlg(F) has a final coalgebra [22]. Finite Kripke polynomial functors are endofunctors of the category Set which
include the identity functor, the constant functors, and are closed by product, coproduct, exponent (or function space),
and finite powerset.

1.2. Monads

Monads are a powerful abstraction for adding structure to objects and arrows. Given a category C, a monad
consists of an endofunctor T : C→ C equipped with two natural transformations η : idC ⇒ T and µ : T 2 ⇒ T which
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satisfy the conditions µ ◦ Tη = µ ◦ ηT = idC and µ ◦ Tµ = µ ◦ µT :

T 2 T T 2

T

Tη ηT

idC
µ µ

T 3 T 2

T 2 T

Tµ

µT

µ

µ

η is called the unit of the monad. Its components map objects in C to their structured counterpart. µ is the product of
the monad. Its components map objects with two levels of structure to objects with only one level of structure. The
first condition states that a doubly structured object ηT (X)(t) built by η from a structured object t is flattened by µ as a
structured object T (ηX)(x) made of the structured objects built by η. The second condition states that when flattening
two levels of structure, we get the same result by flattening the outer structure first (with µT (X)) or the inner structure
first (with T (µX)).

As an example, let us consider a monad built on the powerset functor P : Set → Set. It can be used to model
non-deterministic state machines by replacing the target state of a transition by a set of possible target states. The
component ηS : S → P(S ) of the unit of this monad for S has to build a set of states from a state. We obviously
choose ηS : σ 7→ {σ}. The component µS : P(P(S )) → P(S ) of the product of the monad for S has to flatten a set of
state sets into a set of states. For a series of sets of states (si), ∀i, si ∈ P(S ), we can choose µS : {s1 . . . si . . .} 7→ ∪si. It
is easy to check that η and µ are natural transformations, such as for any morphism f : X → Y , P( f ) : P(X) → P(Y)
is the morphism which maps each part of X to its image by f .
In computer science, monads have mainly been used to present many computation situations such as partiality, side-
effects, exceptions, etc. For instance, partiality can be represented by the monad T : id + 1 over Set equipped with
both obvious natural transformations η and µ, which for any set S are defined by:

ηS : s 7→ s and µS :
{
⊥ 7→ ⊥

s 7→ s

Many other examples can be found in [5].

2. Transfer functions and components

2.1. Transfer function
In the following, we note ω the least infinite ordinal, identified with the corresponding hereditarily transitive set.

Definition 2.1 (Dataflow). A dataflow over a set of values A is a mapping x : ω→ A. The set of all dataflows over A
is noted Aω.

Transfer functions will be used to describe the observable behaviour of components. They can be seen as dataflow
transformers satisfying the causality condition as this is classically done in control theory and physics to modeling
dynamic systems [23], that is the output data at index n only depends on input data at indexes 0, . . . , n.

Definition 2.2 (Transfer function). Let In and Out be two sets denoting, respectively, the input and output domains.
A function F : Inω −→ Outω is a transfer function if, and only if it is causal, that is:

∀n ∈ ω,∀x, y ∈ Inω, (∀m, 0 ≤ m ≤ n, x(m) = y(m)) =⇒ F (x)(n) = F (y)(n)

Example 2.1. The function F : {0, 1}ω −→ {0, 1}ω defined for every σ ∈ {0, 1}ω and every k ∈ ω by

F (σ)(k) =
( k∑

i=0

σ(i)
)

mod 2

is the transfer function that takes a sequence of bits σ ∈ {0, 1}ω and checks at each step k whether it has received an
odd number of ones. It then returns 0 if the one’s number is even, and 1 otherwise. In Example 3.1, we will define the
component that implements it.
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2.2. Components
Definition 2.3 (Components). Let In and Out be two sets denoting, respectively, the input and output domains. Let
T be a monad. A component C is a coalgebra (S , α) for the signature H = T (Out × )In : Set −→ Set with a
distinguished element init ∈ S denoting the initial state of the component C.
When the initial state init is removed, C is called a pre-component.

Example 2.2. We illustrate the notions previously mentioned with the simple example of a coffee machineMmodeled
by the transition diagram shown on Figure 1. The behaviour of M is the following: from its initial state STDBY,
when it receives a coin from the user, it goes into the READY state. Then, when the user presses the “coffee”
button, M either serves a coffee to the user and goes back to the STDBY state, or it fails to do so, refunds the
user and goes to the FAILED state. The only escape from the FAILED state is to have a repair. In our framework,
this machine is considered as a component M = (S , s0, α) over the signature3 Pfin(Out × )In. The state space is
S = {STDBY,READY,FAILED} and s0 = STDBY. The sets of inputs and outputs are In = {coin, coffee, repair} and
Out = {abs, served, refund}. Finally, the transition function:

α : S −→ Pfin

(
{abs, served, refund} × S

){coin,coffee,repair}

is defined as follows: 
α(STDBY)(coin) =

{
(abs,READY)

}
α(READY)(coffee) =

{
(served,STDBY), (refund,FAILED)

}
α(FAILED)(repair) =

{
(abs,STDBY)

}

STDBY READY FAILED

coin|abs

coffee|served

coffee|refund

repair|abs

Figure 1: Coffee machine

Using Definition 2.3 for components, we can unify in a single framework a large family of formalisms classically
used to specify state-based systems such as Mealy machines, LTS and IOLTS. Hence, when T is the identity functor
Id, the resulting component corresponds to a Mealy machine. Choosing Out = {abs} and In = Act, a set of symbols
standing for actions names, and with the powerset monad P for T , the resulting component corresponds to a Labeled
Transition System. Finally, taking as the powerset monad P for T , In = ({?} × Σ?) ∪ {abs?}, Out = ({!} × Σ!) ∪ {abs!}

and imposing4 the supplementary property on the transition function α : S −→ P(Out × S )In:

∀i ∈ In,∀s ∈ S , (o, s′) ∈ α(s)(i) =⇒ either i = abs? or o = abs!

leads to IOLTS.

Definition 2.4 (Category of components). Let C and C′ be two components over H = T (Out × )In. A component
morphism h : C → C′ is a coalgebra homomorphism h : (S , α)→ (S ′, α′) such that h(init) = init′.
We note Comp(H) (resp. PComp(H)) the category of components (resp. pre-components) over H.

The category of pre-components PComp(H) will be useful for us to ensure, in the next section, the existence of a
final model.

3Pfin(X) = {U ⊆ X|U is finite} is the finite powerset of X.
4abs?, abs! < Σ! ∪ Σ! are particular fresh input and output actions denoting the lack of input (abs?) and output (abs!).
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2.3. Component Traces

To associate behaviours to components by transfer functions, we have to require the existence of two natural
transformations η′ : T =⇒ P and η′−1 : P =⇒ T such that η′−1 ◦ η′ = idT where P is the powerset functor. Indeed,
from a component (S , α), we need to “compute” for a sequence x ∈ Inω all the outputs o after going through any
sequence of states (s0, . . . , sk) such that s j is obtained from s j−1 by x( j − 1). However, we do not know how to
characterize s j with respect to α(s j−1)(x( j− 1)) because nothing ensures that elements in α(s j−1)(x( j− 1)) are (output,
state) couples. Indeed, the monad T may yield a set with a structure which differs from Out × S . The mapping η′Out×S
maps back to this structure. η′−1

Out×S is useful for going back to T when defining final models.
Most monads used to represent computation situations satisfy the above condition. For instance, for the monad

T : P, both η′S and η′−1
S are the identity on sets. For the functor T : id + 1, η′S associates the singleton {s} to any s ∈ S

and the empty set to ⊥, and η′−1
S associates the state s to the singleton {s} and ⊥ to any other subset of S which is

not a singleton. Let us observe that given a monad T , the couple (η′, η′−1) when it exists, is not necessarily unique.
Indeed, for the monad T = id, η′S can still be defined as s 7→ {s}. However, η′−1

S is not unique. Indeed, any mapping
η′−1

S that associates the singleton {s} to s, and every subset of S which is not a singleton to a given s′ ∈ S , satisfies
η′−1

S ◦ η′S = idS . Hence, in the following, for any signature T (Out × )In, we will assume that a couple (η′, η′−1) such
that η′−1 ◦ η′ = id is given.

In the following, we note η′Out×S (α(s)(i))|1 (resp. η′Out×S (α(s)(i))|2 ) the set composed of all first arguments (resp.
second arguments) of couples in α(s)(i).

Let us now associate behaviours to components by their transfer functions. Let us consider a state s ∈ S of such a
component C = (S , α) over T (Out × )In. Applying α to s after receiving an input i1 ∈ In yields a set η′Out×S (α(s)(i1))
of couples (output|successor state). Similarly, after receiving a new input i2 ∈ In, we can repeat this step for each state
s′ ∈ η′Out×S (α(s)(i1))|2 and form another set of couples (output|successor state). Thus, we get for each infinite sequence
of inputs 〈i1, i2, . . .〉 ∈ Inω, a set of infinite sequences of outputs 〈o1, o2, . . .〉 ∈ Outω. All we can possibly observe
about a state s ∈ S is obtained in this way. More formally, this leads to:

Definition 2.5 (Component behaviour). Let C be a component over T (Out × )In. The behaviour of a state s of C,
denoted by behC(s) is the set of transfer functions F : Inω −→ Outω that associate to every x ∈ Inω any dataflow
y ∈ Outω such that there exists an infinite sequence of couples (o1, s1), . . . , (ok, sk), . . . ∈ Out × S satisfying:

∀ j ≥ 1, (o j, s j) ∈ η′Out×S (α(s j−1)(x( j − 1)))

with s0 = s, and for every k < ω, y(k) = ok+1.
Hence, C’s behaviour is the set behC(init).

Example 2.3. The behaviour behM(s0) of the coffee machineM presented in Example 2.2 is defined by all the func-
tions Fσ : {coin, coffee, repair}ω −→ {abs, served, refund}ω where σ = n1.n′1.n2.n′2 . . . ni.n′i . . . ∈ N

ω defined by

Fσ : (coin.coffee)n1 .(coin.coffee.repair)n′1 . . . (coin.coffee)ni .(coin.coffee.repair)n′i . . .
7→

(abs.served)n1 .(abs.refund.abs)n′1 . . . (abs.served)ni .(abs.refund.abs)n′i . . .

where

(coin.coffee)0 = (coin.coffee.repair)0 = (abs.served)0 = (abs.refund.abs)0 = ε (the empty word).

Hence, the transfer function that would remain in the loop between the states STDBY and READY would be able to
be defined by any function Fσ with σ = n1.0.n2.0 . . . ni.0 . . .

Thus, the behaviour mapping beh associates to every state s ∈ S a set of causal functions behC(s). We will show in
Section 3 that the set of all causal function sets can be equipped with the structure of a pre-component via the notion
of derivative function. Moreover, this pre-component will be shown to be final in the category PComp(H).
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3. Final model of a component

We show here that under some conditions on the cardinality of the set yielded by the mapping behC for every
component C = (S , α) ∈ PComp(H), the coalgebra of all causal function sets is final.

3.1. Final model

If we suppose that for every pre-component C = (S , α) over a signature H = T (Out × )In, and for every s ∈ S the
cardinality of behC(s) is less than a cardinal κ, then we can define a coalgebra (Γ, π) over H and show that it is final in
PComp(H). But before, let us introduce some notions that will be useful for this purpose.

Definition 3.1 (Derivative dataflow). Let x be a dataflow over a set A. The dataflow x′ derivative of x is defined by:
∀n ∈ ω, x′(n) = x(n + 1).
For every a ∈ A, let us denote by a.x the dataflow y defined by:

y(0) = a and ∀n ∈ ω \ {0}, y(n) = x(n − 1)

Hence, x = x(0).x′.

Definition 3.2 (Derivative function). Let F : Inω −→ Outω be a transfer function. For every input i ∈ In, we define
the derivative function Fi : Inω −→ Outω for every x ∈ Inω by Fi(x) = F (i.x)′.

Hence, given a cardinality κ, let us now define the coalgebra (Γ, π) as follows: 5

• Γ = P≤κ({F : Inω −→ Outω | F is causal})

• for every F ∈ Γ and for every i ∈ In, π(F)(i) = η′−1
Out×Γ

(Π) where:

Π =

{
(o,F′o) | o ∈

⋃
F ∈F

(F (i.x)(0)) and,

F′o = {F (i.x)′ | F (i.x)(0) = o and F ∈ F},
for x ∈ Inω chosen arbitrarily

}
Let us note here that using F′o = {F (i.x)′ | F (i.x)(0) = o and F ∈ F} instead of F′ = {F (i.x)′ | F ∈ F} in the definition
of (Γ, π) allows us to keep the computational effects carried by the monad T . This is done by linking the output o
to the derivative function set F′ i.e. the derivative function set is not only linked to the input i but also to the output
associated to i. This construction of the set F′ is useful to prove that (Γ, π) is final in PComp(H).

Theorem 3.1. Let H = T (Out × )In be a signature such that for every pre-component C = (S , α) over H, and for
every s ∈ S , |behC(s)| ≤ κ. Then, the coalgebra (Γ, π) is final in PComp(H).

Proof . Let (Γ, π) be as stated, and let C = (S , α) ∈ PComp(H) be an arbitrary component. We have to show that there
exists a unique homomorphism of components S → Γ. For this, let us take the behaviour mapping behC : S → Γ (see
Definition 2.5) which for every s ∈ S associates a finite set of transfer functions F = {F : Inω −→ Outω | F is causal} ∈
Γ. We have to prove that it is the unique homomorphism which makes the following diagram commute.

S × In Γ × In

T (Out × Γ)T (Out × S )

behC × idIn

α π

T (idOut × behC)

5P≤κ(X) = {U | U ⊆ X and |U | ≤ κ}
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We first prove that the diagram commutes.
First of all, it is easy to see that the three following properties are satisfied:

∀ f : S −→ S ′,∀X ∈ T (S ) : T ( f )(X) = η′−1
S ′ ◦ P( f ) ◦ η′S (X) (1)

∀s ∈ S , i ∈ In and ∀(o, s′) ∈ η′Out×S (α(s)(i)) behC(s′) = behC(s)′o = {F (i.x)′ | F (i.x)(0) = o and F ∈ behC(s)} (2)

∀i ∈ In, s ∈ S and behC(s) ∈ Γ, η′Out×S (α(s)(i))|1 = {F (i.x)(0) | F ∈ behC(s)} (3)

Hence, let s ∈ S , i ∈ In and x ∈ Inω be arbitrary. We have to prove that:

(T (idOut × behC) ◦ α)(s)(i) = (π ◦ (behC × idIn))(s)(i)

(T (idOut × behC) ◦ α)(s)(i) = T (idOut × behC)(α(s)(i))

= η′−1
Out×Γ

(P(idOut × behC)(η′Out×S (α(s)(i)))) Property 1

= η′−1
Out×Γ

({(o, behC(s′)) | (o, s′) ∈ η′Out×S (α(s)(i))}) Property 2

= η′−1
Out×Γ

{
(o, behC(s)′o) | o ∈ η′Out×S (α(s)(i))|1 and,

behC(s)′o = {F (i.x)′ | F (i.x)(0) = o and F ∈ beh(s)}
}

Property 3

= η′−1
Out×Γ

{
(o, behC(s)′o) | o ∈ F ∈ behC(s)(F (i.x)(0)) and,

behC(s)′o = {F (i.x)′ | F (i.x)(0) = o and F ∈ behC(s)}
}

Def. of π

= π((behC(s), i))

= π(behC × idIn)(s, i)

= (π ◦ (behC × idIn))(s, i)

Next we have to prove uniqueness. In order to prove this last point, we need to prove the following lemma:

Lemma 1. For every component homomorphism f : S → Γ, for every x ∈ Inω and for every s ∈ S we have:

( f (s)(x))′ = { f (s′)(x′) | s′ ∈ η′Out×S (α(s)(x(0)))|2 }

where x′ is the derivative of x.
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Proof .

( f (s)(x))′ =

{
(o1, o2, . . . , ok, . . .)′ | ∃s0, s1, . . . , sk, . . . ∈ S

such that s = s0, 〈o1, s1〉 ∈ η
′
Out×S (α(s0)(x(0)))

and ∀2 ≤ j ≤ k − 1, (o j, s j) ∈ η′Out×S ((s j−1)(x( j − 1))),

and ok ∈ η
′
Out×S (α((sk)(x(k)))|1 )

}
=

{
(o2, . . . , ok, . . .) | ∃s1, . . . , sk, . . . ∈ S

such that s1 ∈ η
′
Out×S (α(s0)(x(0)))|2

and ∀2 ≤ j ≤ k − 1, s j ∈ η
′
Out×S (α((s j−1)(x( j − 1))))|2 ,

and ok ∈ η
′
Out×S (α(sk)(x(k)))|1

}
= { f (s1)(x′) |s1 ∈ η

′
Out×S (α(s0)(x(0))|2 }

= { f (s′)(x′) |s′ ∈ η′Out×S (α(s)(x(0))|2 }

End

Now, let us assume that g : S → Γ is also a homomorphism of components. Let us show that the relation R ⊆
Pκ(Outω) × Pκ(Outω) defined as:

R = {〈g(s)(x), beh(s)(x)〉 | s ∈ S , x ∈ Inω, g(s)(x) = beh(s)(x)}

is a bisimulation.
It can be shown by coinduction on x ∈ Inω, that for all s ∈ S we have:

g(s)(x) = beh(s)(x)

The initial set outputs of g(s)(x) and beh(s)(x) agree, since at the initial input x(0) of x, we have:

g(s)(x)(0) = η′Out×S (α(s)(x(0))|1 = beh(s)(x)(0)

(g(s)(x))′ = (g(s)(x(0).x′))′ = {g(s′)(x′) | s′ ∈ η′Out×S (α(s)(x(0)))|2 } Lemma 2

(beh(s)(x))′ = (beh(s)(x(0).x′))′ = {beh(s′)(x′) | s′ ∈ η′Out×S (α(s)(x(0)))|2 } Lemma 2

Hence the function derivatives sets are also R-related, and we conclude that R is a bisimulation.
End

3.2. Minimal component

A final model of the functor F = T (Out × )In provides an abstract model of all possible behaviours of its F-
coalgebras. Hence, in practice, it cannot be handled as a whole, but we can construct the minimal part of it (minimality
refers to the cardinality of the state set) for every state s ∈ S of a F-coalgebra C = (S , α). This is done by computing
the smallest subcoalgebra in (Γ, π) containing behC(s). More generally, given a subset F ∈ Γ of causal functions,
we can compute the smallest subcoalgebra in (Γ, π), noted 〈F〉, containing F. This coalgebra is called the coalgebra
generated by F in (Γ, π).

Definition 3.3 (Component generated by F). Let (Γ, π) be the final model over the signature H = T (Out × )In. Let
F ∈ Γ. The component 〈F〉 generated by F in (Γ, π) is the component (〈F〉,F, α〈F〉) defined as follows:

9



• F is the initial state,

• 〈F〉 is the set of transfer functions sets inductively defined as follows:

– 〈F〉0 = {F}

– 〈F〉 j=

{
G′ | ∃G ∈ 〈F〉 j−1,∃i ∈ In,∃o ∈ Out, o ∈

⋃
F ∈G
F (i.x)(0)

and G′ = {F (i.x)′ | F (i.x)(0) = o and F ∈ G},
for x ∈ Inω chosen arbitrarily

}
Hence, 〈F〉 =

⋃
j<ω
〈F〉 j

• α〈F〉 : 〈F〉 × In → T (Out × 〈F〉) is the mapping which for every G ∈ 〈F〉, and for every input i ∈ In associates
η′−1

Out×〈F〉(Π
′) where Π′ is the set:

Π′ =

{
(o,G′o) | o ∈

⋃
F ∈G

(F (i.x)(0)) and,

G′o = {F (i.x)′ | F (i.x)(0) = o and F ∈ G},
for x ∈ Inω chosen arbitrarily

}

It is easy to notice that both components C = (S , init, α) and 〈behC(init)〉 share the same trace semantics i.e.
Trace(C) = Trace(〈behC(init)〉) = behC(init). (see Definition 2.5).

s

s1 sn

. . .

s in the component C

i1 |o1 in |on
=⇒

behC(s)

behC(s)′o1
= behC(s1) behC(s)′on = behC(sn)

i1 |o1 in |on

. . .

behC(s) in the component Γ

Example 3.1. For a better understanding of the definition of a minimal component, we consider as an example the
binary Mealy machineM modeled by the transition diagram shown on Figure 2. This machineM is considered as a
componentM = ({s0, s1, s2}, s0, α) over the signature ({0, 1} × ){0,1} where the transition function:

α : {s0, s1, s2} −→ ({0, 1} × {s0, s1, s2}){0,1}

is defined as follows: {
α(s0)(0) = (0, s2)
α(s0)(1) = (1, s1)

{
α(s1)(0) = (1, s1)
α(s1)(1) = (0, s2)

{
α(s2)(0) = (0, s2)
α(s2)(1) = (1, s1)

It is not difficult to see that applying Definition 2.5 to the initial state s0 leads to the minimal set of transfer functions
behM(s0) = {F1} where F1 : {0, 1}ω −→ {0, 1}ω is the transfer function of Example 2.1, i.e. the one defined for every
σ ∈ {0, 1}ω and for every k ∈ ω by:

F1(σ(k)) =

( k∑
i=0

σ(i)
)

mod 2

Now to compute the minimal component 〈behM(s0)〉, we need to compute all derivative sets of transfer functions
starting from behM(s0). With a simple computing, we can conclude that the state of 〈behM(s0)〉 consists of two states:

10



s0

s1

s2

0|1

0|0

1|1

0|0

1|0

1|1

Figure 2: Binary Mealy automaton

{F1} and {F2} where F2 : {0, 1}ω −→ {0, 1}ω is the transfer function defined for every σ ∈ {0, 1}ω and for every k ∈ ω
by:

F2(σ(k)) = 1 −
( k∑

i=0

σ(i)
)

mod 2

Computing further derivative sets will not yield any new transfer functions sets. Thus, 〈behM(s0)〉 is the component
({F1,F2}, {F1}, αbehM(s0)) where:

αbehM(s0) : {{F1}, {F2}} −→ ({0, 1} × {{F1}, {F2}}){0,1}

is the transition function defined as follows:
αbehM(s0)({F1})(0) = (0, {F1})

αbehM(s0)({F1})(1) = (1, {F2})

αbehM(s0)({F2})(0) = (1, {F2})

αbehM(s0)({F2})(1) = (0, {F1})

and then can be depicted as:

s1 s2

0|0 0|11|1

1|0

4. Integration of components

4.1. Basic integration operators

4.1.1. Cartesian product
The cartesian product is a composition where both components are executed simultaneously when triggered by a

pair of input values.

Definition 4.1 (Cartesian product ⊗). Let H1 = T (Out1 × )In1 and H2 = T (Out2 × )In2 be two signatures. Let
H = T ((Out1 × Out2) × )(In1×In2) be the signature resulting of the product of H1 and H2. Let us define the cartesian
integration functor:

11



⊗ : Comp(H1) × Comp(H2) −→ Comp(H)

(
(S 1, α1)In1

−→
Out1
−→ ,

(S 2, α2)In2
−→

Out2
−→ ) 7→

(S , α)In1×In2
−→

Out1×Out2
−→

as follows: for every component C1 = (S 1, init1, α1) ∈ Comp(H1) and every component C2 = (S 2, init2, α2) ∈

Comp(H2), ⊗((C1,C2)) = (S , init, α) where:

• S = S 1 × S 2 is the set of states,

• init = (init1, init2) is the initial state,

• α : S × (In1 × In2) −→ T ((Out1 × Out2) × S ) is the mapping defined as follows: ∀i = (i1, i2) ∈ In1 × In2 and
(s1, s2) ∈ S :

α((s1, s2))(i) = η′−1
(Out1×Out2)×S

{
((o1, o2), (s′1, s

′
2)) | (o1, s′1) ∈ η′Out1×S 1

(α1(s1)(i1)) and (o2, s′2) ∈ η′Out2×S 2
(α2(s2)(i2))

}
4.1.2. Feedback

The feedback operator is a composition where some outputs of a component are linked to its inputs. This means
that some outputs can be fed back as inputs. In order to obtain a model which fits our component definition, we need
to take into account the computational effects of the monad T . This monad impacts both the evolution of the state of
the component and the observation of its outputs. Therefore, the feedback link between outputs and inputs carries to
the inputs part of the structure imposed by T to the outputs. For instance, with the monad built on P for modeling
non-determinism, the feedback may bring non-determinism to the inputs of the component.

We introduce feedback interfaces for defining correspondences between outputs and inputs of components. A
feedback interface also allows us to keep only the inputs and the outputs that are not involved in feedback thanks to
component-wise projections πi and πo:

Definition 4.2 (Feedback interface). Let H = T (Out × )In be a signature. A feedback interface over H is a triplet
I = ( f , πi, πo) where:

• f : In × Out −→ In is a function such that:

∀(i, o) ∈ In × Out, f ( f (i, o), o) = f (i, o)

• πi : In −→ In′ and πo : Out→ Out′ are surjective mappings6 such that:

∀(i, o) ∈ In × Out, πi(i) = πi( f ((i, o)))

The mapping f allows to specify how components are linked and which parts of their interfaces are involved in the
composition process. Both mappings πi and πo can be thought as extensions of the hiding connective found in process
calculi [24]. Thereby, the feedback interface enables encapsulation by making invisible the internal interactions made
in the scope of the component. This encapsulation helps to separate both the internal behaviour and local interactions
from the external interactions with the global system, and thus to treat interactions between components independently
of the behaviour of individual components.

Two kinds of feedback operators are distinguished in this paper: relaxed feedback and synchronous feedback. The
first kind means that in a reaction, the output is not simultaneous with the input. This relaxed feedback composition
depends on the previous output and the current input. The second kind means that the reaction of a system takes no
observable time [25]. Systems produce their outputs synchronously with their inputs. More precisely, at some reaction
r, the output of system S in r must be available to its inputs in the same reaction r.

6i.e component-wise projections
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Definition 4.3 (Relaxed feedback←↩). Let H = T (Out × )In be a signature and I = ( f , πi, πo) be a feedback in-
terface over H. Let us note H′ = T (Out′ × )In′ . Let C = (S , s0, α) be a component over H. Let us define for every
x ∈ Inω, the set Θx whose elements are couples (x̄, yx̄) ∈ Inω × Outω inductively defined from an infinite sequence of
states (s0, s1, . . . , sk, . . .) of S as follows:

• x̄(0) = x(0) and yx̄(0) ∈ η′Out×S (α(s0)(x(0)))|1

• ∀n, 0 < n < ω, x̄(n) = f (x(n), yx̄(n − 1)), yx̄(n) ∈ η′Out×S (α(sn)(x̄(n)))|1 and sn ∈ η
′
Out×S (α(sn−1)(x̄(n − 1)))|2

Then, the operation of relaxed feedback over I, ←↩I: Comp(H) −→ Comp(H′) associates to every component
C = (S , s0, α) over H, the component (〈F〉,F, α〈F〉) over H′ where F is the set of transfer functions F : In′ω −→ Out′ω,
each one defined by F (x′) = y′ where there exists x ∈ Inω such that there exists (x̄, yx̄) ∈ Θx satisfying ∀i < ω, x′(i) =

πi(x̄(i)) and y′(i) = πo(yx̄(i)).

Let us now explain the last definition. We want to build a component that hides the feedback of a component C.
As one can see on Figure 3, the feedback component←↩ (C) is given as a set of transfer functions, each one mapping
an infinite sequence of inputs x′ ∈ In′ω to an infinite sequence of outputs y′ ∈ Out′ω. The outputs are then hidden
from any state s that are fed back as inputs to the successor of s. The result is a component with input and output
sets In′ and Out′ respectively. This is done by means of the feedback interface I = ( f , πi, πo). Let us suppose that
the current state of C at the nth reaction is sn ∈ S and the current external input is x(n) ∈ In. Then, let us compute
both new input x′(n) ∈ In′ and output y′(n) ∈ Out′ when C is triggered by x(n). First, by f , we compute the input
x̄(n) = f (x(n), yx̄(n−1)). Then, x̄(n) becomes the new input of C. Indeed, component C reacts by updating its state to
sn+1 and producing an output yx̄(n). In this way, the output of C at the nth reaction is given by relying on the previous
output yx̄(n−1) and the current input x(n). Second, by means of πi and πo, we hide both input and output involved in
the feedback, and then produce the input x′(n) = πi(x̄(n)) and the output y′(n) = πo(ȳ(n)) of the relaxed feedback
component←↩I(C).

CIn′ f Out′

yx̄(n−1)

πo

In

πi

Out

Figure 3: Relaxed feedback composite: ←↩ (C)

Proposition 4.1. ←↩I: Comp(H) −→ Comp(H′) is a functor.

Proof . We have to make a correspondence between homomorphisms in Comp(H) and in Comp(H′).
Let f : C1 −→ C2 be an homomorphism in Comp(H). Then, let us define ←↩I( f ) :←↩I(C1) −→←↩I(C2) where

←↩I(Ci) = (〈Fi〉,Fi, α〈Fi〉) for i = 1, 2 as follows:

• ←↩I( f )(F1) = F2

• for every j, 0 < j < ω, for every G′ ∈ 〈F1〉
j, we know by definition that there exists G ∈ 〈F1〉

j−1, i ∈ In and
o ∈ Out such that:

– o ∈
⋃
F ∈G

(F (i.x)(0))
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– G′ = {F (i.x)′ | F (i.x)(0) = o and F ∈ G}

for x ∈ Inω chosen arbitrarily. It is sufficient to write down

←↩I( f )(G′) =

{
F ′(i.x)′ | F ′(i.x)(0) = o and F ′ ∈←↩I( f )(G)

}
f being a morphism on coalgebras, we can easily show that←↩I( f )(G′) is nonempty.

Let us finish by showing that ←↩I ( f ) preserves identities and compositions. For identities, let C ∈ Comp(H), ←↩I
(C) = 〈F〉, and let us prove by induction on the structure of F that←↩I(idC) = id←↩I(C).

• Basic Step: By definition of←↩I(idC), one has←↩I(idC)(F) = F = id←↩I(C)(F)

• Induction Step: let G′ ∈ 〈F〉 j+1. We know by definition of G′ that there exists G ∈ 〈F〉 j, i ∈ In and o ∈ Out such
that o ∈

⋃
F ∈G

(F (i.x)(0)) and G′ = {F (i.x)′ | F (i.x)(0) = o and F ∈ G} for x ∈ Inω chosen arbitrarily. Then, by

definition of←↩I(idC) one has:

←↩I(idC)(G′) =

{
F ′(i.x)′ | F ′(i.x)(0) = o and F ′ ∈←↩I(idC)(G)

}
by induction hypothesis

=

{
F ′(i.x)′ | F ′(i.x)(0) = o and F ′ ∈ id←↩I(C)(G)

}
by definition of id←↩I(C)

=

{
F ′(i.x)′ | F ′(i.x)(0) = o and F ′ ∈ G

}
by hypothesis

= G′

= id←↩I(C)(G′)

For preservation of composition. Let f1 : C1 −→ C2 and f2 : C2 −→ C3 be two homomorphisms in Comp(H).
Let ←↩I ( f1) : 〈F1〉 −→ 〈F2〉 and ←↩I ( f2) : 〈F2〉 −→ 〈F3〉 their associated homomorphisms in Comp(H′) where
←↩I(C1) = 〈F1〉,←↩I(C2) = 〈F2〉 and←↩I(C3) = 〈F3〉.
Let us then prove by induction on the structure of F that←↩I( f2 ◦ f1) =←↩I( f2)◦ ←↩I( f1).

• Basic Step: By definition of←↩I( f2 ◦ f1), one has

←↩I( f2 ◦ f1)(F1) = F3 by definition of ←↩I( f2)

= ←↩I( f2)(F2) by definition of ←↩I( f1)

= ←↩I( f2)(←↩I( f1)(F1))

= ←↩I( f2)◦ ←↩I( f1)(F1)

• Induction Step: let G′1 ∈ 〈F1〉
j+1. We know by definition of G′1 that there exists G1 ∈ 〈F1〉

j, i ∈ In and o ∈ Out
such that o ∈

⋃
F1∈G1

(F1(i.x)(0)) and G′1 = {F1(i.x)′ | F1(i.x)(0) = o and F1 ∈ G1} for x ∈ Inω chosen arbitrarily.

By definition of←↩I( f1), we also know that←↩I( f1)(G′1) =
{
F ′1 (i.x)′ | F ′1 (i.x)(0) = o and F ′1 ∈←↩I( f1)(G1)

}
.

Let us denote by the set
{
F ′1 (i1.x1)′ | F ′1 (i1.x1)(0) = o1 and F ′1 ∈←↩I( f1)(G1)

}
by G′2. This set belongs to 〈F2〉.

Then, we know by definition of G′2 that there exists G2 ∈ 〈F2〉 such that G2 =←↩I( f1)(G1), o ∈
⋃
F2∈G2

(F2(i.x)(0))

and G′2 = {F2(i.x)′ | F1(i.x)(0) = o and F2 ∈ G2}. By definition of ←↩I ( f2), we know that ←↩I ( f2)(G′2) ={
F ′2 (i.x)′ | F ′2 (i.x)(0) = o and F ′2 ∈←↩I( f2)(G2)

}
.
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Now, we have that

←↩I( f2)◦ ←↩I( f1)(G′1) = ←↩I( f2)(←↩I( f1)(G′1))

= ←↩I( f2)(G′2)

=
{
F ′2 (i.x)′ | F ′2 (i.x)(0) = o and F ′2 ∈←↩I( f2)(G2)

}
=

{
F ′2 (i.x)′ | F ′2 (i.x)(0) = o and F ′2 ∈←↩I( f2)(←↩I( f1)(G1))

}
=

{
F ′2 (i.x)′ | F ′2 (i.x)(0) = o and F ′2 ∈←↩I( f2)◦ ←↩I( f1)(G1)

}
induction hypothesis

=
{
F ′2 (i.x)′ | F ′2 (i.x)(0) = o and F ′2 ∈←↩I( f2 ◦ f1)(G1)

}
= ←↩I( f2 ◦ f1)(G′1)

End

The synchronous feedback is more difficult to define because it requires the existence of an instantaneous fixpoint
(i.e. defined at the same time and not deferred of one unit). This gives rise to the notion of well-formed feedback
composition.

Definition 4.4 (Well-formed feedback composition). Let H = T (Out × )In be a signature. Let C be a component
over H and I = ( f , πi, πo) be a feedback interface over H. We say that the synchronous feedback composition of C
over I is well-formed if, and only if for every state s ∈ S and every x ∈ Inω, there exists y ∈ Outω such that for every
n < ω, y(n) ∈ η′Out×S (α(s)( f (x(n), y(n))))|1 .

Hence, systems with feedbacks not well-formed will be rejected. They are considered as instable or not well defined
systems.

Definition 4.5 (Synchronous feedback 	). Let H = T (Out × )In be a signature and I = ( f , πi, πo) be a feedback
interface over H. Let us note H′ = T (Out′ × )In′ . Let us define for every x ∈ Inω, the set Θx of output sequences
y ∈ Outω defined from an infinite sequence of states (s0, s1, . . . , sk, . . .) of S as follows:
∀n, 0 ≤ n < ω, (y(n), sn+1) ∈ η′Out×S (α(sn)( f (x(n), y(n)))) (by hypothesis, C’s feedback composition being well-formed
over I, such y exists)
Then, the operation of synchronous feedback over I is the partial mapping 	I: Comp(H) −→ Comp(H′) that
associates to every component C = (S , s0, α) over H whose the feedback composition over I is well-formed, the
component (〈F〉,F, α〈F〉) over H′ where F is the set of transfer functions F : In′ω −→ Out′ω, each one defined by
F (x′) = y′ where there exists x ∈ Inω s.t. there exists y ∈ Θx satisfying ∀i < ω, x′(i) = πi(x(i)) and y′(i) = πo(yx(i)).

Example 4.1. Consider a component C with state space S = {s1, s2} and transition function α : S × {T, F} −→
{T, F} × S defined by the following figure:

s1 s2

T|F

F|F

F|T

T|T

Let us build the composite component that hides the feedback, as suggested by the above definition. For the feedback
interface, we choose f : In × Out −→ In as the ”and” operator, and πi and πo as the identities on In and Out
respectively. First of all, let us show that the composition is well-formed:{

F ∈ η′(α(s1)( f (F, F)))|1
F ∈ η′(α(s1)( f (T, F)))|1

{
T ∈ η′(α(s2)( f (F,T )))|1
T ∈ η′(α(s2)( f (T,T )))|1
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The function F : {T, F}ω −→ {F,T }ω defined for every x ∈ {T, F}ω and for every k, 0 ≤ k < ω, by:

F (x)(k) =

{
F i f k is even
T otherwise

is the unique transfer function that can be defined using our synchronous feedback definition. Indeed, both associated
outputs to each input x ∈ {T, F} from s1 are F, and both associated outputs to each x ∈ {T, F} from s2 are T . Then
the feedback composite 	I(C) over the interface I is the component (〈{F }〉, {F }, α〈{F }〉) where the set of states 〈{F }〉
is obtained by a repeated computation of derivative starting from {F }. The states of 〈{F }〉 then contains the set of
all derivative functions of F that are F and F ′ where F ′ : {T, F}ω −→ {F,T }ω is the function defined for every
x ∈ {T, F}ω and for every k, 0 ≤ k < ω, by:

F ′(x)(k) =

{
T i f k is even
F otherwise

This then leads to the following component 〈{F }〉:

s0 s1

T,F|F

T,F|T

Proposition 4.2. 	I: Comp(H) −→ Comp(H′) is a partial functor only defined for component C whose the syn-
chronous feedback composition over I is well-formed.

Proof . The proof is noticeably similar to the proof given for←↩I.
End

We can define as well feedback in terms of its argument as concrete coalgebras as this has been done for product
in Definition 4.1, and not on behaviours as this is done in Definitions 4.3 and 4.5. For the synchronous feedback, this
leads to:

Definition 4.6 (Synchronous feedback 	c). Let H = T (Out × )In be a signature and I = ( f , πi, πo) be a feedback
interface over H. Let us note H′ = T (Out′ × )In′ . The operation of synchronous 7 feedback over I is the partial
functor 	c

I
: Comp(H) −→ Comp(H′) that associates to every component C = (S , init, α) over H for which the

feedback composition over I is well-formed, the component C′ = (S ′, init′, α′) over H′ such that:

• S ′ = S

• init′ = init;

• α′ : S ′ −→ T (Out′ × S ′)In′ is the transition mapping defined by: ∀s′1 ∈ S ′,∀i′ ∈ In′, α′(s′1)(i′) = η′−1
Out′×S ′ (Π)

where Π is the set:

Π =
{
(o′, s′2) | ∃i ∈ In,∃o ∈ Out, (o, s′2) ∈ η′Out×S (α(s′1)( f (i, o))), πi(i) = i′ and πo(o) = o′

}
Relaxed feedback can be defined similarly. Definition 4.5 and Definition 4.6 are equivalent. Indeed, it is obvious to
check that beh	c

I
(C)(init′) = beh	I(C)(F) = F. Although 	c

I
is defined more uniformly with product ⊗ because both

are defined as concrete coalgebras, the interest of 	I (resp. ←↩I) is that the resulting component is the minimal one.
This will make compositionality proofs easier in Section 5.2 and Section 8.

7The exponent c in 	c
I

is to express that feedback is defined in terms of its argument as concrete coalgebras.
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4.2. Complex operators
As explained before, from these basic operators, we can build more complex ones by composition.

Definition 4.7 (Complex operator). The set of complex operators, is inductively defined as follows:

• is a complex operator of arity 1;

• if op1 and op2 are complex operators of arity n1 and n2 respectively, then op1 ⊗ op2 is a complex operator of
arity n1 + n2;

• if op is a complex operator of arity n and I is a feedback interface, then 	I(op) is a complex operator of arity
n;

• if op is a complex operator of arity n and I is a feedback interface, then←↩I(op) is a complex operator of arity
n.

In the following, as examples of complex operators, we show how three standard integration operators, respec-
tively sequential composition, synchronous product and concurrent composition, can be defined in our framework.

4.2.1. Sequential composition
The sequential composition of two components C1 and C2 corresponds to a composition where both components

C1 and C2 are interconnected side-by-side and the output of one is the input of the other. When C1 is triggered by
an input i from the environment, C1 processes i and the produced output is fed to C2 (see Figure 4). A requirement
for this composition to be defined is that Out1 has to be included into In2 (Out1 ⊆ In2). This ensures that any output
produced by C1 is an acceptable input to C2.
This kind of composition

B : Comp(H1) × Comp(H2) −→ Comp(H)

(
(S 1, α1)In1

−→
Out1
−→ ,

(S 2, α2)In2
−→

Out2
−→ ) 7→

(S , α)In1
−→

Out2
−→

can be naturally defined in our framework using both feedback operator and cartesian product by:

B((C1,C2)) = �I((C1 ⊗ C2))

where I = ( f , πi, πo) is the feedback interface defined for every (i, i′) ∈ In1 × In2 and (o, o′) ∈ Out1 ×Out2 as follows:

f ((i, i′), (o, o′)) = (i, o), πi((i, i′)) = i and πo((o, o′)) = o′

and � stands for←↩ or 	 depending on whether we want a relaxed or instantaneous sequential composition. For the
first sequential composition, the output o produced from the component C1 after triggering by an input i takes some
observable time to feed to the component C2. In this case, B will be denoted by Br. For the second one, the output
o produced from the component C1 after triggering by an input i is directly fed to the input of the component C2. In
this case, B will be denoted by Bs.

4.2.2. Synchronous product
The synchronous product corresponds to a composition where both components C1 and C2 are executed indepen-

dently or jointly, depending on the input. Hence, C1 and C2 are simultaneously executed when triggered by a joint
input i that belongs to both inputs set of C1 and C2.

This kind of product can also be naturally expressed in terms of the synchronous feedback operator and the
cartesian product (see Figure 5). But before, we need to impose that both input and output sets of C1 and C2 contain
a special input abs to allow components to stutter, i.e. to indicate that no progress of the component is done. The
synchronous product is then defined as follows:

~((C1,C2)) = Bs(C0, (C1 ⊗ C2))
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C1 C2

In1

Out2

Figure 4: Sequential composition

where C0 = ({init0}, init0, α0) is the component over the signature T ((In1 × In2) × )In1∪In2 where α0 is the transition
mapping defined by: ∀i ∈ In1 ∪ In2

α0(init0)(i) =


((i, i), init0) if i ∈ In1 ∩ In2

((i, abs), init0) if i ∈ (In1 \ In1 ∩ In2)

((abs, i), init0) otherwise

C0

C1

C2

In1 ∪ In2
Out1 × Out2

Figure 5: Synchronous product

4.2.3. Concurrent composition
The concurrent composition, denoted by C = ⊕((C1,C2)), of two components C1 and C2 corresponds to a compo-

sition where both components C1 and C2 are executed independently or jointly, depending on the input received from
environment. It combines both choice and parallel compositions, in the sense that C1 and C2 can be simultaneously
executed when triggered by a pair of inputs (i1, i2) (i1 belongs to inputs set of C1 and i2 belongs to inputs set of C2),
or separately when triggered by an input i: if i ∈ In1, then C1 is executed and the reaction of C is that of C1, otherwise
C2 is executed and the reaction of C is that of C2.

This kind of composition can also be naturally expressed in terms of the synchronous feedback operator and the
cartesian product (see Figure 6) as8 follows:

⊕((C1,C2)) = Bs(Bs(C0, (C1 ⊗ C2)),C′0) (4)

where C0 = ({init0}, init0, α0) is the component over the signature T ((In1 × In2) × )In1∪In2∪In1×In2 where α0 is the
transition mapping defined by: ∀i ∈ In1 ∪ In2 ∪ In1 × In2

α0(init0)(i) =


(i, init0) if i ∈ In1 × In2

((i, abs), init0) if i ∈ In1

((abs, i), init0) otherwise

8Here also we need to impose that abs ∈ In1 ∩ In2.
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and C′0 = ({init′0}, init′0, α
′
0) is the component over the signature T ((Out1 ∪Out2 ∪Out1 ×Out2) × )Out1×Out2 where α′0

is the transition mapping defined by: ∀o = (o1, o2) ∈ Out1 × Out2

α0′ (init′0)(o) =


(o1, init′0) if o ∈ Out1 × {abs}

(o2, init′0) if o ∈ {abs} × Out2

(o, init′0) otherwise

C0

C1

C2

C′0In1 ∪ In2 ∪ In1 × In2 Out1 ∪ Out2 ∪ Out1 × Out2

Figure 6: Concurrent composition: ⊕((C1,C2)) = Bs(Bs(C0, (C1 ⊗ C2)),C′0)

5. Systems and compositionality

5.1. Systems
Complex operators for basic components yield larger components that we will call systems. However, it is not

always possible to yield a component for a complex operator from any set of basic components passed as arguments.
Indeed, for a complex operator of the form 	I(op), according to the component C resulting from the evaluation of
op, the interface I has to be defined over the signature of C and the feedback over C has to be well-formed over I.
This leads up to the following definition:

Definition 5.1 (Systems). Let C be a set of components. The set of systems over C is inductively defined as follows:

• for any C ∈ C, a component over a signature H, (C) = C is a system over the signature H and is defined for
C;

• if op1 ⊗ op2 is a complex operator of arity n = n1 + n2 then for every sequence (C1,C2, . . . ,Cn1 ,Cn1+1, . . . ,Cn)
of components in C with each Ci over Hi = T (Oi × )Ii , if both op1 and op2 are defined for C1,C2, . . . ,Cn1 and
Cn1+1, . . . ,Cn respectively, then op1 ⊗ op2(C1, . . . ,Cn) = op1(C1, . . . ,Cn1 ) ⊗ op2(Cn1+1, . . . ,Cn) is a system over
H = T (

∏n
i=1 Oi× )

∏n
i=1 Ii and op1⊗op2 is defined for (C1, . . . ,Cn), else op1⊗op2 is undefined for (C1, . . . ,Cn);

• if 	I(op) is a complex operator of arity n, then for every sequence (C1, . . . ,Cn) of components in C, if op is
defined for (C1, . . . ,Cn) with S = op(C1, . . . ,Cn) is over H, I is a feedback interface over H and the feedback
composition of S is well-formed, then 	I(op)(C1, . . . ,Cn) =	I(S) is a system over H′ and9 	I(op) is defined
for (C1, . . . ,Cn), else 	I(op) is undefined for (C1, . . . ,Cn).

• if ←↩I (op) is a complex operator of arity n, then for every sequence (C1, . . . ,Cn) of components in C, if op
is defined for (C1, . . . ,Cn) with S = op(C1, . . . ,Cn) is over H and I is a feedback interface over H, then
←↩I(op)(C1, . . . ,Cn) =←↩I(S) is a system over H′ and10 ←↩I(op) is defined for (C1, . . . ,Cn), else ←↩I(op) is
undefined for (C1, . . . ,Cn).

9H′ is the signature of the synchronous feedback.
10H′ is the signature of the relaxed feedback.
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From Proposition 4.1 and Proposition 4.2, it is not difficult to see that any complex operator op of arity n defines
a partial functor from Comp(H1) × . . . × Comp(Hn) −→ Comp(H).

Example 5.1. An encoder/decoder is usually used to guarantee certain characteristics (for example, error detection)
when transmitting data across a link. A simple example of such an encoder/decoder is represented in Figure 7. It
consists of two parts:

• An encoder that takes in incoming a bit sequence and produces an encoded value which is then transmitted
on the link. This encoder is considered as a component E = ({s0, s1}, s0, α1) where the transition function
α1 : {s0, s1} −→ ({0, 1} × {s0, s1}){0,1} is graphically shown in the left of Figure 7.

• A decoder that takes the values from the link and produces the original value. This decoder is considered
as a component D = ({q0, q1}, q0, α2) where the transition function α2 : {q0, q1} −→ ({0, 1} × {q0, q1}){0,1} is
graphically shown in the right of Figure 7.

s0 s1

0|0 0|1
1|1

1|0

{0, 1}ω

{0, 1}ω

q0 q1

0|0 1|0
1|1

0|1

{0, 1}ω

{0, 1}ω

Figure 7: Encoder (on the left) and Decoder (on the right)

Let us now construct the encoder/decoder as a composition of the encoder and the decoder by means of the sequential
composition over a synchronous feedback. First of all, let us apply the sequential composition Bs(⊗(E,D)) over the
synchronous feedback interface I defined for every (i, i′) ∈ In1 × In2 and (o, o′) ∈ Out1 × Out2 by:

f ((i, i′), (o, o′)) = (i, o), πi((i, i′)) = i and πo((o, o′)) = o′

We first define the cartesian product C = ⊗((E,D)) of E and D. It is easy to see that C is well-formed feedback
composition over I. Let us check this for (s0, q0), we then have:

• (0, 0) ∈ η′(αC((s0, q0))( f ((0, 0), (0, 0))))|1

• (1, 1) ∈ η′(αC((s0, q0))( f ((1, 1), (1, 1))))|1

• (0, 0) ∈ η′(αC((s0, q0))( f ((0, 1), (0, 0))))|1

• (1, 1) ∈ η′(αC((s0, q0))( f ((1, 0), (1, 1))))|1

Then, we can apply the synchronous feedback operator 	I on C. This leads to a minimal component 〈{F }〉 where
F : {0, 1}ω −→ {0, 1}ω is the transfer function defined for every x ∈ {0, 1}ω and every k, 0 ≤ k < ω, by F (x)(k) = x(k).

Let us explain how F was obtained using a running example. For this, let us consider the bit sequence (01)ω, and try
to find a bit sequence y ∈ {0, 1}ω that satisfies:
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∃(s0, . . . , sk, . . .) ∈ S | ∀n, 0 ≤ n < ω, y(n) ∈ η′Out×S (α(sn)( f (x(n), y(n))))|1
Let us suppose that the current state and the current input are the initial state s(n) = (s0, q0) and x(n) = (0, 0)
respectively. There is a y(n) = (0, 0) such that

(0, 0) ∈ η′Out×S (αC((s0, q0))( f ((0, 0), (0, 0))))

That is to say, the component C reacts by updating its state to (s0, q0) and producing the output (0, 0). More precisely,
the output of E becomes the input ofD. So, we can conclude that the input of the encoder/decoder is πi(0, 0) = 0 and
its output is πo(0, 0) = 0.
Suppose next that the current input is (1, 1). Again, there is a y(n) = (1, 1) such that

(1, 1) ∈ η′Out×S (αC((s0, q0))( f ((1, 1), (1, 1))))

That is to say, the component C reacts by updating its state to (s1, q1) and producing the output (1, 1). So, we can
conclude that the input of the encoder/decoder is πi(1, 1) = 1 and its output is πo(1, 1) = 1.
Hence, the composite machine alternates states on each reaction and produces the output bit sequence (01)ω for the
input bit sequence (01)ω.
Finally, the minimal component 〈{F }〉 that represents F is given by:

s 0|01|1

Example 5.2. We consider a simple microwave S that is built from two basic components: a ”door component” D
and a ”engine component” E. In our framework, the door component is defined as D = ({O,C},O, αE) over the
signature

({opened, closed} × ){ε,open,close}

and the engine component asM = ({S ,R}, S , αE) over the signature

({running, stopped} × ){ε,start,stop}

αD and αE are depicted in the left and the right sides respectively.

O C

ε|opened ε|closedclose|closed

open|opened

open

close

running

stopped

S R

ε|stopped ε|runningstart|running

stop|stopped

start

stop

running

stopped

Let us now show how the microwave system can be obtained by composition the door and the engine components
using our basic integration operators. First of all, we apply the cartesian product to D and E. This leads to a new
component C = ⊗(D,E) that is illustrated in Figure 8.

We can see that:

• the microwave cannot run if the door is opened

• and opening the door implies the running stop.

Thus, there is a synchronous feedback that is the output ”opened” is returned as an input of the system (see Figure 9).
Then, we apply the synchronous feedback operator 	c

I
to C over the signature I = ( f , πi, πo) defined by:

• πi as the function that restricts the set {start, stop, ε} × {open, close, ε} of inputs of C to the set{
(ε, ε) ∪ {(i, ε) | i ∈ {close, open}} ∪ {(ε, i) | i ∈ {start, stop}

}
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D

⊗

E

{open, close, ε} × {start, stop, ε} {opened, closed} × {running, stopped}

Figure 8: Cartesian product of E andD

• πo as the identity on the set {running, stopped} × {opened, closed} of outputs of C

• f as the function defined as follows:

f :
(
{open, close, ε} × {start, stop, ε}

)
×

(
{opened, closed} × {running, stopped}

)
−→

{start ∧ ¬opened, stop ∨ opened, open, close}

D

⊗

E

open

close

start

stop

opened

closed

running

stopped

start∧¬ openedstop∨ opened

Figure 9: Illustration of the synchronous feedback

This leads to the component11 illustrated in Figure 10.

Let us explain how this component was obtained using a running example. For this, let us consider the infinite
input sequence

x = ((close, ε), (ε, start), (open, ε))ω

and try to find an infinite output sequence y that satisfies:
∃(s0, . . . , sk, . . .) ∈ S C | ∀n, 0 ≤ n < ω, y(n) ∈ η′(αC(sn)( f (x(n), y(n))))|1

Let us suppose that the current state and the current input are the initial state s(n) = (O, S ) and x(n) = (close, ε)
respectively. There is a y(n) = (closed, stopped) such that

(closed, stopped) ∈ η′(αC((O, S ))(

(close,ε)︷                                 ︸︸                                 ︷
f ((close, ε), (closed, stopped))))

11For the sake of representation simplicity, we preferred to apply the synchronous operator 	c
I

defined in terms of its argument as concrete
coalgebras (see Definition 4.6). But, we would have had to apply the synchronous operator 	I.
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That is to say, the component C reacts by updating its state to (C, S ) and producing the output (closed, stopped).
Suppose next that the current state is (C, S ). Again, for the input (ε, start), there is a y(n) = (closed, running) such that

(closed, running) ∈ η′(αC((C, S ))(

(ε,start)︷                                ︸︸                                ︷
f ((ε, start), (closed, running))))

That is to say, the component C reacts by updating its state to (C,R) and producing the output (closed, running).
Finally, suppose that the current state is (C,R). Again, for the input (open, ε), there is a y(n) = (opened, stopped) such
that

(opened, stopped) ∈ η′(αC((C,R))(

(open,opened)︷                                  ︸︸                                  ︷
f ((open, ε), (opened, stopped))))

That is to say, the output opened ofD is fed back to the component C and yields an new input (open, opened). Hence,
the component C reacts by updating its state to (O, S ) and producing the output (opened, stopped).

s0 s1

s2

ε|(opened,stopped) ε|(closed,stopped)

ε|(closed,running)

close|(closed,stopped)

open|(opened,stopped)

start |(closed,running)

stop|(closed,stopped)

close|(closed,running)

open|(opened,stopped)

Figure 10: Microwave system

5.2. Compositionality
An important question we wonder about, is compositionality, i.e. is the behaviour of a system the composition of

its components behaviours? In our framework, this will be expressed as follows: let op be a complex operator of arity
n, C1, . . . ,Cn be n components and C = op(C1, . . . ,Cn), then

behC(init) = op(behC1 (init1), . . . , behCn (initn)) (5)

where init (resp. initi, i = 1, . . . , n) is the initial state of C (resp. Ci) and op is the adaptation of op on sets of
transfer functions. Before establishing Equation 5, we first need to define complex operators op on behaviours.
Components’ behaviours being sets of transfer functions, op has to be defined on set of transfer functions. Moreover,
it has to respect the same induction structure than op. We have then first to adapt cartesian product and feedback on
components’ behaviours.

Definition 5.2 (Cartesian product on behaviours ⊗ f ). Let H1 = T (Out1 × )In1 and H2 = T (Out2 × )In2 be two
signatures. Let Γ1 and Γ2 be two sets of transfer functions over H1 and H2 respectively. Then, Γ1 ⊗ f Γ2 is the set:

Γ1 ⊗ f Γ2 = {F1 × F2 | F1 : In1
ω −→ Out1ω,F2 : In2

ω −→ Out2ω}

It is obvious to prove that the cartesian product of two transfer functions is a transfer function.
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Definition 5.3 (Relaxed feedback on transfer function). Let H = T (Out× )In be a signature and I = ( f , πi, πo) be
a feedback interface over H. Let F : Inω −→ Outω be a transfer function. Let us define for every x ∈ Inω, the couple
(x̂, yx̂) ∈ Inω × Outω by induction on ω as follows:

• x̂ = x(0) and yx̂(0) = F (x)(0)

• ∀n, 0 < n < ω, x̂(n) = f (x(n), yx̂(n − 1)), yx̂(n) = F (x)(n) where x ∈ Inω is any dataflow such that ∀ j ≤
n, x( j) = x̂( j).

Then,←↩I f (F ) : In′ω −→ Out′ω is the mapping that associates to x′ ∈ In′ω, the data flow y′ ∈ Out′ω such that there
exists x ∈ Inω satisfying: ∀i < ω, x′(i) = πi(x̂(i)) and y′(i) = πo(yx̂(i)).

Let us observe that Definition 5.3 is noticeably similar to Definition 4.3 except that the choice of yx̂(n) is unique
in Definition 5.3 because it is given directly by the transfer function F .

←↩I f (F ) needs some conditions on projections πi and πo to be a transfer function. Indeed, πi and πo are surjective but
by no means they are supposed to be injective. This can then question the causality conditions of←↩I f (F ). Imposing
to πi and πo to be injective would lead to a too strong condition (πi and πo would then be bijective) that is seldom
satisfied (e.g. the sequential composition defined in Section 4.2.1). Here, we propose a weaker condition that is
satisfied by most of integration operators based on feedback (anyway all defined in the paper).

Assumption 1: ∀x1, x2 ∈ Inω,∀ j, j ≤ n,

πi(x1( j)) = πi(x2( j)) =⇒

 πo(F (x1)(0)) = πo(F (x2)(0)) i f j = 0

πo(F ( f (x1( j),F (x̂1)( j − 1))) = πo(F ( f (x2( j),F (x̂2)( j − 1))) otherwise

Proposition 5.1. ←↩I f (F ) : In′ω −→ Out′ω is a transfer function.

Proof . Let F : Inω −→ Outω be a transfer function over H and ←↩I f (F ) : In′ω −→ Out′ω be the function defined
in Definition 5.3. Let x′1, x

′
2 ∈ In′ω be two inputs dataflows for←↩I f (F ) and let us prove that if for every n, 0 ≤ n ≤

ω, x′1(n) = x′2(n), then←↩I f (F )(x′1(n)) =←↩I f (F )(x′2(n)).
By induction over ω:

• Basic Step: n = 0

By definition, x′1, x
′
2 ∈ In′ω, then there exists x1, x2 ∈ Inω such that x′1(0) = πi(x1(0)) and x′2(0) = πi(x2(0)), and

←↩I f (F )(x′1(0)) = πo(F (x1(0))). By hypothesis, since x′1(0) = πi(x1(0)) and x′2(0) = πi(x2(0)), then πi(x1(0)) =

πi(x2(0)). Then, by Assumption 1, we have that πo(F (x1)(0)) = πo(F (x2)(0)). Hence, ←↩I f (F )(x′1(0)) =

πo(F (x2(0))) which by definition equals to←↩I f (F )(x′2(0)).

• Induction Step:

By definition of ←↩I f (F )(x′1(n + 1)), we know there exists (x̂1,F (x̂1)) ∈ Inω × Outω such that ∀k, 1 ≤ k ≤
n + 1, x′1(k) = πi(x̂1(k)) and←↩I f (F )(x′1(k)) = πo(F (x̂1)(k)) where x̂1(k) = f (x(k),F (x̂1)(k − 1)).

By definition of ←↩I f (F )(x′2(n + 1)), we know there exists (x̂2,F (x̂2)) ∈ Inω × Outω such that ∀k, 1 ≤ k ≤
n + 1, x′2(k) = πi(x̂2(k)) and←↩I f (F )(x′2(k)) = πo(F (x̂2)(k)) where x̂2(k) = f (x(k),F (x̂2)(k − 1)).

By hypothesis, we know that ∀k, 0 ≤ k ≤ n, x′1(k) = x′2(k) =⇒←↩I f (F )(x′1(k)) =←↩I f (F )(x′2(k)). It remains to
prove that if x′1(n + 1) = x′2(n + 1), then←↩I f (F )(x′1(n + 1)) =←↩I f (F )(x′2(n + 1)).

Since ∀k, 1 ≤ k ≤ n+1, x′1(k) = πi(x̂1(k)), x′2(k) = πi(x̂2(k)) and x′1(k) = x′2(k), then by Assumption 1, ∀k, 1 ≤ k ≤
n + 1. πo(F (x̂1)(n + 1)) = πo(F (x̂2)(n + 1)). This last result then yield←↩I f (F )(x′1(n + 1)) =←↩I f (F )(x′2(n + 1)).

End
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Definition 5.4 (Well-formed feedback composition for transfer function). Let I = ( f , πi, πo) be a feedback inter-
face over a signature H. Let F : Inω −→ Outω be a transfer function. The synchronous feedback composition of F
over I is well-formed if, and only if

∀x ∈ Inω, (∀n < ω, x̂(n) = f (x(n),F (x)(n))) =⇒ F (x̂) = F (x)

Definition 5.5 (Synchronous feedback for transfer functions). Let I = ( f , πi, πo) be a feedback interface over a
signature H. Let F : Inω −→ Outω be a transfer function. 	I f (F ) : In′ω −→ Out′ω is the mapping that associates to
x′ ∈ In′ω, y′ ∈ Out′ω such that there exists x ∈ Inω satisfying

∀i < ω, x′(i) = πi( f (x(i),F (x)(i))) and y′(i) = πo(F ( f (x(i),F (x)(i))))

Similarly to←↩I f (F ), 	I f (F ) is a transfer function if the following assumption is satisfied by F .

Assumption 2: ∀x1, x2 ∈ Inω,∀ j, j ≤ n,

πi(x1( j)) = πi(x2( j)) =⇒ πo(F ( f (x1( j),F (x1)( j))) = πo(F ( f (x2( j),F (x2)( j)))

Proposition 5.2. 	I f is a transfer function.

Proof . The technical proof is noticeably similar to the proof given for←↩I f .
End

Definition 5.6 (Feedback on behaviours). Let Γ be a set of transfer functions over a signature H = T (Out × )In.
Then, �Γ is the set of transfer functions:

�Γ = {�F | F : Inω −→ Outω}

where � is either←↩I f or 	I f .

Complex operators can be easily extended to behaviours by replacing in Definition 4.7, the symbols ⊗,←↩I and
	I by ⊗ f ,←↩I f and 	I f , respectively. In the following, given a complex operator on components we will note op its
equivalent on behaviours.

Similarly, Definition 5.1 can be easily extended to complex operators on behaviours by replacing each component
Ci by a set of transfer functions Γi, and ⊗,←↩I and 	I by ⊗ f ,←↩I f and 	I f , respectively.

Theorem 5.3 (Compositionality). Let op be a complex operator on components of arity n. Let C1, . . . ,Cn be n
components. If C = op(C1, . . . ,Cn), then

behC(init) = op(behC1 (init1), . . . , behCn (initn))

Proof . In order to prove this theorem, we need to prove the following lemmas:

Lemma 2. Let C1 and C2 be two components over H1 = T (Out1 × )In1 and H2 = T (Out2 × )In2 . Let C = ⊗(C1,C2)
be the product component over H = T ((Out1 × Out2) × )In1×In2 . Then we have:

behC1⊗C2 ((init1, init2)) = behC1 (init1) ⊗ f behC2 (init2)

Proof . By definition, behC1⊗C2 ((init1, init2)) contains all the transfer functions F : (In1 × In2)ω −→ (Out1 × Out2)ω

that associates to every (x1, x2) ∈ In1 × In2, a (y1, y2) ∈ Out1 × Out2 such that there exists an infinite sequence
((o11, o21), (s11, s21)), . . . ∈ (Out1 × Out2) × (S 1 × S 2) satisfying:
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∀ j ≥ 1, ((o1 j, o2 j), (s1 j, s2 j)) ∈ η′(Out1×Out2)×(S 1×S 2)(α((s1 j−1, s2 j−1))(x1( j − 1), x2( j − 1)))

with (s10, s20) = (init1, init2), and for every k < ω, yi(k) = oi for i = 1, 2.
Hence, for i = 1, 2, there exists an infinite sequence (oi1, si1), . . . ∈ Outi × S i satisfying

∀ j ≥ 1, (oi j, si j) ∈ η′Outi×S i
(αi(si j−1)(xi( j − 1)))

We can then define a transfer function Fi : xi 7→ yi. Hence F = F1 ⊗ f F2 and then F ∈ behC1 (init1) ⊗ f behC2 (init2).
By following the same reasoning, we can show that given Fi ∈ behCi (initi),F1 ⊗ f F2 ∈ behC1⊗C2 ((init1, init2)).
End

Lemma 3. Let C′ be a component over H = T (Out′ × )In′ and C =←↩I(C′) be a component over H = T (Out × )In.
Let I = ( f , πi, πo) where f : In′ ×Out′ −→ In′, πi : In′ −→ In and πo : Out′ −→ Out be a feedback interface. Then we
have:

beh←↩I(C′)(init) =←↩I f (behC′ (init′))

where init is the initial state of C =←↩I(C′).

Proof . Le F ∈ beh←↩I(C′)(init). By definition, F associates to x′ ∈ Inω, y′ ∈ Outω (when such y′ exists) such that
there exists x ∈ In′ω and (x̂, yx̂) ∈ In′ω × Out′ω satisfying

∀i < ω, x′(i) = πi(x̂(i)) and y′(i) = πo(yx̂(i))

By definition of x̂ and yx̂, there exists an infinite sequence (init′, s′1, . . . , s
′
k, . . .) ∈ S ′ such that:

• x̂ = x(0) and yx̂(0) ∈ η′Out′×S ′ (α
′(init′)(x̂(0))

• ∀n, 0 < n < ω, x̂(n) = f (x(n), yx̂(n − 1)), yx̂(n) ∈ η′Out′×S ′ (α
′(s′n)(x̂(n))).

Hence, we can extract a transfer function F ′ that associates to x̂, yx̂ such that ←↩I f (F ′) = F , and then ←↩I f

(F ′) ∈←↩I f (behC′ (init′)).
To prove the other inclusion, we can follow the same reasoning.
End

Lemma 4. Let C′ be a component over H = T (Out′ × )In′ and C =	I(C′) be a component over H = T (Out × )In.
Let I = ( f , πi, πo) where f : In′ ×Out′ −→ In′, πi : In′ −→ In and πo : Out′ −→ Out be a feedback interface. Then we
have:

beh	I(C′)(init) =	I f (behC′ (init′))

where init is the initial state of C =	I(C′).

Proof . The technical proof is similar to the proof given for←↩I.
End

Now, Theorem 5.3 is proven by induction on the structure of op as follows:

• Basic Step: op is of the form . Its equivalent for sets of transfer functions is also defined by (Γ) = Γ. The
conclusion is then obvious.

• Induction Step: Three cases have to be considered
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– op = ⊗(op1, op2) with arity of op1 is n1, arity of op2 is n2 and n1 + n2 = n

By induction hypothesis, we have:

(1) behop1(C1,...,Cn1 )(init) = op1(behC1 (init1), . . . , behCn1
(initn1 ))

where init is the initial state of op1(C1, . . . ,Cn1 ).

(2) behop2(Cn1+1,...,Cn)(init′) = op2(behCn1+1 (initn1+1), . . . , behCn (initn))
where init′ is the initial state of op2(Cn1+1, . . . ,Cn).

and by the definition of both op1 and op2, we have

(3) op2(Cn1+1, . . . ,Cn) and op2(C′n1+1, . . . ,C
′
n) are components.

Then, ((1) + (2) + (3) + Lemma 2 implies that
behop1(C1,...,Cn1 )⊗op2(Cn1+1,...,Cn)((init, init′)) =

op1(behC1 (init1), . . . , behCn1+1 (initn1 )) ⊗ f op2(behCn1+1 (initn1+1), . . . , behCn (initn))

– op is of the form←↩I(op′) and is of arity n.

Let C1, . . . ,Cn be n components such that C′ = op′(C1, . . . ,Cn). By induction hypothesis, behC′ (init′) =

op′(behC1 (init1), . . . , behCn (initn)). It remains to prove that beh←↩I(C′)(init) =←↩I f (behC′ (init′)) where init
is the initial state of C =←↩I(C′). This last point is naturally proven by Lemma 3.

– op is of the form 	I(op′) and is of arity n.

Let C1, . . . ,Cn be n components such that C′ = op′(C1, . . . ,Cn). By induction hypothesis, behC′ (init′) =

op′(behC1 (init1), . . . , behCn (initn)). It remains to prove that beh	I(C′)(init) =	I f (behC′ (init′)) where init
is the initial state of C =	I(C′). This last point is naturally proven by Lemma 4.

End

6. Testing of abstract components

6.1. Conformance Relation

In order to be able to compare the behaviours of the implementation and of its specification, we need to consider
both as components over a same signature. However, the implementation behaviour is unknown and can only be
observed through its interface. We therefore need a conformance relation between what we can observe on the imple-
mentation and what the specification allows. The specification Spec of a component is then the formal description
of its behaviour given by a coalgebra over a signature H = T (Out × )In. On the contrary, its implementation SUT
(for System under Test) is an executable component, which is considered as a black box [26, 27]. We interact with
the implementation through its interface, by providing inputs to stimulate it and observing its behaviour through its
outputs.

The theory of conformance testing defines the conformance of an implementation to a specification thanks to con-
formance relations. Several kinds of relations have been proposed. For instance, the relations of testing equivalence
and preorders [28, 29] require the inclusion of trace sets. The relation conf [30] requires that the implementation
behaves according to a specification, but allows behaviours on which the specification puts no constrain. The relation
ioco [15] is similar to conf, but distinguishes inputs from outputs. There are many other types of relations [31, 32].

As already indicated, ioco as well as con f have received much attention by the community of formal testing
community. The reason is the objective of conformance testing is mainly to check whether the implementation behaves
as required by the specification i.e. to check if the implementation does what it should do. Hence, a conformance
relation has to allow implementations not only to do what is specified, but also to do more than what is specified. This
requirement of testing conformance is well satisfied by both conf and ioco contrary to other relations [28, 29, 31, 32]
that require to test behaviours that are not in the specification i.e. the implementation does not have the freedom to
produce outputs for any input not considered in the specification.
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Since we are dealing with components with input and output, we choose ioco and extend it to fit our framework.
There are several extensions to ioco according to both the type of transition system and the aspect considered to be
tested. For instance, sioco for symbolic transition systems [9], sioco for input-output symbolic transition systems [16],
tioco for timed labeled transition systems [33], cspio for CS P process algebra [34], dioco for distributed systems [35],
uicoco for hybrid system [36].

Hence, we define the ioco relation that we will call here cioco12 in terms of components as defined in Defini-
tion 2.3. We make some modifications to the original definition of ioco to fit our component definition. That is,
instead of considering that after each trace tr of a specification Spec, the possible outputs of the corresponding im-
plementation SUT after procesing tr is a subset of the possible outputs of Spec, we consider that for all sequences of
inputs considered in Spec, SUT does not produce a sequence of outputs that is not allowed by the specification Spec.
A specification of a component as well as its implementation model are considered as coalgebras over a signature
H = T (Out × )In.

The formal definition of cioco uses the two following definitions:

Definition 6.1 (Component finite traces). Let F ∈ behC(init) be a trace of a component C. Let n ∈ N. The finite
trace of length n, noted F|n , associated to F is the whole set of the finite sequence 〈i0|o0, . . . , in|on〉 such that there
exists x ∈ Inω where for every j, 0 ≤ j ≤ n, x( j) = i j, and F (x( j)) = o j.
Hence, Trace(C) =

⋃
F ∈behC(init)

⋃
n∈N
F|n defines the whole set of finite traces over C.

Definition 6.2. Let C be a component over T (Out× )In. Let tr be a finite trace of C and i ∈ In. The set of the possible
outputs for the input i after executing tr on C is:

Out(C after (tr, i)) = {o | tr.〈i|o〉 ∈ Trace(C)}

Definition 6.3 (cioco). Let Spec be a component over the signature T (Out × )In and SUT be its implementation
defined as a component13 over T (Out′ × )In′ such that In ⊆ In′ and Out ⊆ Out′ and S UT is input-enabled. SUT is
said cioco Spec, noted SUT cioco Spec, if and only if:

∀tr ∈ Trace(Spec),∀i ∈ In,Out(SUT after (tr, i)) ⊆ Out(Spec after (tr, i))

6.2. Test Purpose
In order to guide the test derivation process, test purposes can be used. A test purpose is a description of the part

of the specification that we want to test and for which test cases are to be generated. In [13, 37] test purposes are
described independently of the model of the specification. On the contrary, following [10], we prefer to describe test
purposes by selecting the part of the specification that we want to explore. We therefore consider a test purpose as
a tagged finite computation tree FCT of the specification. The leaves of the FCT which correspond to paths that we
want to test are tagged accept. All internal nodes on such paths are tagged skip, and all other nodes are tagged �.

Definition 6.4 (C-path). Let (S , s0, α) be a component over T (Out× )In. A C-path is defined by two finite sequences
of states and inputs (s0, . . . , sn) and (i0, . . . , in−1) such that for every j, 1 ≤ j ≤ n, s j ∈ η

′
Out×S

(
α(s j−1)(i j−1)

)
|2
.

Definition 6.5 (Finite computation tree of a component). Let (S , s0, α) be a component over T (Out× )In. The finite
computation tree of depth n of C, noted FCT (C, n) is the coalgebra (S FCT , s0

FCT , αFCT ) defined by :

• S FCT is the whole set of C−paths

12c for component.
13Classically in conformance testing, it is assumed that (1) the implementation is input-enabled i.e. it accepts all inputs at all times in order to

produce, at any state, answers for all possible inputs providing by the environment. (2) the alphabet of inputs and outputs of Spec and SUT are
compatible i.e. In ⊆ In′ and Out ⊆ Out′ in order to allow the specification Spec to accept all responses of the implementation SUT.
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p0

p1

p2 p3

p4

p5 p6

coin|abs

coffee| served coffee| refund

coin|abs

coffee|served coffee|refund

skip

skip

skip �

skip

accept �

p0 = 〈STDBY, ()〉
p1 = 〈(STDBY,READY),

coin〉
p2 = 〈(STDBY,READY,STDBY),

(coin, coffee)〉
p3 = 〈(STDBY,READY,FAILED),

(coin, coffee)〉
p4 = 〈(STDBY,READY,STDBY,READY),

(coin, coffee, coin)〉
p5 = 〈(STDBY,READY,STDBY,READY,FAILED),

(coin, coffee, coin, coffee)〉
p6 = 〈(STDBY,READY,STDBY,READY,STDBY),

(coin, coffee, coin, coffee)〉

Figure 11: Test purpose of the coffee machine

• s0
FCT is the initial C−path 〈s0, ()〉

• αFCT is the mapping which for every C−path 〈(s0, . . . , sn), (i0, . . . , in−1)〉 and every input i ∈ In associates
η′−1

Out×S FCT
(Γ) where Γ is the set:

Γ =
{(

o, 〈(s0, . . . , sn, s′), (i0, . . . , in−1, i)〉
)
| (o, s′) ∈ η′Out×S

(
α(sn)(i)

)}
Definition 6.6 (Test Purpose). Let FCT (C, n) be the finite computation tree of depth n associated to a component C.
A test purpose T P for C is a mapping T P : S FCT −→ {accept, skip,�} such that:

• there exists a C−path p ∈ S FCT such that T P(p) = accept

• if T P(〈(s0, . . . , sn), (i0, . . . , in−1)〉) = accept, then:

∀ j, 1 ≤ j ≤ n − 1,T P(〈(s0, . . . , s j), (i0, . . . , i j−1)〉) = skip

• T P(〈s0, ()〉) = skip

• if T P(〈(s0, . . . , sn), (i0, . . . , in−1)〉) = �, then:

T P(〈(s0, . . . , sn, s′n+1, . . . , s
′
m), (i0, . . . , in−1, i′n, . . . , i

′
m−1)〉) = �

for all m > n and for all (s′j)n< j≤m and (i′k)n≤k<m

Example 6.1. Figure 11 gives a test purpose T P on the finite computation tree of depth 4 of the coffee machineM
whose specification is shown on Figure 1. This test purpose allows us to ignore the behaviours ofM related to failure
and repair and to concentrate on its interaction with a user. When the machine fails and the user is refunded, we
reach node p3 or p6 which are tagged with �. This indicates that we are not interested in further behaviour from these
nodes. p5 is tagged with accept because it is a leaf which corresponds to an expected behaviour. All nodes leading
from the root p0 to this node are tagged with skip because they are valid prefixes of p5.

In order to build a test purpose on a finite computation tree, we therefore choose the leaves of the tree that we
accept as correct finite behaviours and we tag them with accept. We then tag every node which represents a prefix
of an accepted behaviour with skip. The other nodes which lead to behaviours that we do not want to test, are tagged
with �.

In the following, we use the notation T P to refer to an arbitrary test purpose.
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7. Test generation guided by test purposes

Similarly to [10], we propose an approach for test cases selection according to a test purpose. In order to test the
conformance of an SUT to its specification, we start from the root of a test purpose, we choose a possible input i and
submit it to the SUT. We observe the outputs o and compare them with the possible outputs in the finite computation
tree. If the outputs do not match the specification, the verdict of the test is FAIL. Otherwise, if at least one of the
nodes which can be reached with i|o is tagged skip in the test purpose, the test goes on. If the nodes are tagged �,
then behaviour is not of interest and the test is said inconclusive (INCONC verdict). If one of the nodes is tagged
accept, then the test succeeds (PASS verdict). It may happen, due to the non-determinism of the specification, that
the implementation can reach from a given state both an accept state and a � state. That means we are not sure to
have achieved the test purpose (WeakPASS verdict).

7.1. Preliminaries
In this section, we introduce some notations and definitions that will be used in describing our algorithm for

generating conformance tests for components.
As mentioned above, a test case is a sequence generated by a test purpose T P interacting with SUT. This is denoted

by [ev0, ev1, . . . , evn|V], where for all j ∈ [0, . . . , n], ev j = i|o is an elementary input-output with i ∈ In ∪ {⊥}, o ∈
Out ∪ {⊥}, and V ∈ {FAIL, PAS S , INCONC,WeakPAS S }. We have added the special symbol ⊥ to the input and
output actions to denote a stimulation of SUT without input and the absence of output for a stimulation. We denote
by stimobs(i|o) the output o from SUT when stimulating it with input i.

In order to compute the set of reachable states that lead to accept states after a given input-output sequence, we
define a current set of states denoted by CS that contains a subset of the states of the test purpose. It is initialized
to the initial state of T P. We also introduce three functions to help exploring T P by selecting paths that lead to
accept states. Next(CS , ev) is the set of directly reachable states from the current set of states CS after executing ev.
NextS kip(CS , ev) and NextPass(CS , ev) are the set of states in Next(CS , ev) which are labelled by skip and accept
respectively.

Definition 7.1. Let T P : S FCT → {accept, skip,�} be a test purpose for a component C, ev = 〈i|o〉 an event, and S ′

a subset of S FCT :

• Next(S ′, ev) =
⋃

s′∈S ′
({s | (o, s) ∈ η′Out×S FCT

(αFCT (s′)(i))}),

• NextS kip(S ′, ev) = Next(S ′, ev)
⋂

T P(S ′)|skip ,

• NextPass(S ′, ev) = Next(S ′, ev)
⋂

T P(S ′)|accept .

with T P(S ′)|tag = {s′ ∈ S ′ | T P(s′) = tag}

7.2. Inferences rules
We define our test case generation algorithm as a set of inferences rules. Each rule states that under certain

conditions on the next observation of output action from SUT or the next stimulation of SUT by an input action, the
algorithm either performs an exploration of other states of T P, or stops by generating a verdict.

We structure these rules as CS
Results cond(ev), where CS is a set of current states, Results is either a set of current

states or a verdict, and cond(ev) is a set of conditions including stimobs(ev). Each rule must be read as follows: Given
the current set of states CS, if cond(ev) is satisfied, then the algorithm may achieve a step of execution, with ev as
input-output elementary sequence.

Our algorithm can be seen as an exploration of the finite computation tree starting from the initial state. It switches
between sending stimuli to the implementation and waiting for output of the implementation according to the inference
rules as long as a verdict is not reached. We distinguish two kinds of inference rules : exploring rules and diagnosis
rules. The first kind is applied to pursue the computation of the sequence as long as Result is a set of states. The
second kind leads to a verdict and stops the algorithm.

Rule 0. : Initialization rule14:
{s0

FCT }

14This rule is involved only once when starting the algorithm.
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Rule 1. : Exploration of other states : the emission o after a stimulation by i on the SUT is compatible with the test
purpose but no accept is reached.

CS
Next(CS , ev)

stimobs(ev), NextS kip(CS , ev) , ∅,NextPass(CS , ev) = ∅

Rule 2. : Generation of the verdict FAIL : the emission from the SUT is not expected with regards to the specification.
CS

FAIL
stimobs(ev), Next(CS , ev) = ∅

Rule 3. : Generation of the verdict INCONC : the emission from the SUT is specified but not compatible with the
test purpose.

CS
INCONC

stimobs(ev),
{

Next(CS , ev) , ∅,
NextS kip(CS , ev) = NextPass(CS , ev) = ∅

Rule 4. : Generation of the verdict PASS : all next states directly reachable from the set of current set are accept
ones.

CS
PAS S

stimobs(ev), NextPass(CS , ev) = Next(CS , ev), Next(CS , ev) , ∅

Rule 5. : Generation of the verdict WeakPASS : some of the next states are labelled by accept, but not all of them.

CS
WeakPAS S

stimobs(ev),
{

NextPass(CS , ev) ⊂ Next(CS , ev),
NextPass(CS , ev) , ∅

Example 7.1. We consider the test purpose T P defined in Figure 11, and show how test cases can be obtained by
applying the rules presented in Section 7.2. Let us first recall that the algorithm uses the following notation:

CS event
rule

CS ′

where:

• event denotes the current element of the considered trace, and is of the form input|output;

• rule stands for the rule applied to get the next set of states CS ′.

FAIL: To get the verdict FAIL, we consider the following trace:

[coin|abs, coffee|served, coin|refund
∣∣∣∣ FAIL]

The algorithm is applied as follows:

rule 0
CS 0 = {p0}

coin|abs

rule 1
CS 1 = {p1}

coffee|served

rule 1
CS 2 = {p2}

coin|refund

rule 2
FAIL

The verdict FAIL is due to the following equality:

Next(CS 2, coin|refund) = ∅

INCONC: To get the verdict INCONC, we consider the following trace:

[coin|abs, coffee|served, coin|abs, coffee|refund
∣∣∣∣ INCONC]

The algorithm is applied as follows:

rule 0
CS 0 = {p0}

coin|abs

rule 1
CS 1 = {p1}

coffee|served

rule 1
CS 2 = {p2}

coin|abs

rule 1
CS 3 = {p4}

coffee|refund

rule 3
INCONC

The verdict INCONC is due to the following two equalities:
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• Next(CS 3, coffee|refund) = {p11} , ∅

• NextPass(CS 3, coffee|refund) = NextS kip(CS 3, coffee|refund) = ∅

Pass: To get the verdict PASS, we consider the following trace:

[coin|abs, coffee|served, coin|abs, coffee|served
∣∣∣∣ PAS S ]

The algorithm is applied as follows:

rule 0
CS 0 = {p0}

coin|abs

rule 1
CS 1 = {p1}

coffee|served

rule 1
CS 2 = {p2}

coin|abs

rule 1
CS 3 = {p4}

coffee|served

rule 4
PAS S

The verdict PAS S is due to the following equality:

NextPass(CS 3, coffee|served) = Next(CS 3, coffee|served), Next(CS 3, coffee|served) , ∅

WeakPASS There is no test cases ending by the verdict WeakPAS S for T P.

Let us note here that each of these rules except rule 0 can be used in several ways according to the form of ev.
When ev = ⊥|o, o is produced spontaneously by SUT. When ev = i|⊥, the stimulation of SUT with i does not produce
any output. Finally, when ev = i|o, o is produced by SUT when it is stimulated with i. These possibilities for ev
therefore give rise to a generic algorithm that can be applied to a wide variety of state-based systems ([13, 10, 38]) by
choosing the appropriate monad T and input and output sets.

7.3. Properties
A test case informs us about the conformance of the implementation to its specifcation. This means that the

non-existence of a FAIL verdict leads to a conformance, and that any non-conformance should be detected by a test
case ending by a FAIL verdict. In order to study the coherence between the notion of conformance applied to an
implementation under test and its specifcation, and the notion of test case generated by our algorithm, we denote by
CS and EV respectively the whole set of current state sets and the whole set of input-output elementary sequences
used during the application of the set of inference rules on an implementation SUT according to a test purpose T P.
We then introduce a transition system whose states are the sets of current states and four special states labelled by the
verdicts. Two states are linked by a transition labelled by an input-output elementary sequence. This transition system
is formally defined as follows :

Definition 7.2 (Execution). Let T P be a test purpose for a specification Spec, let SUT be an implementation, let CS
be the whole set of current state sets and let EV be the whole set of input-output elementary sequences. Then, the
execution of the test generation algorithm on SUT according to T P denoted by TS (T P,SUT) (see its explanation in
Section 7.2) is the coalgebra (S TS , αTS ) over the signature ( )EVdefined by :

• S TS = CS ∪ V where V is the set whose elements are FAIL, PASS, INCONC and WeakPASS,

• αTS is the mapping which for every CS ∈ CS and for every ev ∈ EV is defined as follows :

αTS (CS )(ev) =



Next(CS , ev) if NextS kip(CS , ev) , ∅,NextPass(CS , ev) = ∅

FAIL if Next(CS , ev) = ∅

INCONC if NextS kip(CS , ev) = NextPass(CS , ev) = ∅

and Next(CS , ev) , ∅

PAS S if Next(CS , ev) = NextPass(CS , ev)

and Next(CS , ev) , ∅

WeakPAS S if NextPass(CS , ev)  Next(CS , ev)

and NextPAS S (CS , ev) , ∅
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With this definition, test cases are sets of possible traces which can be observed during an execution of TS (T P,SUT),
and lead to a verdict state.

Definition 7.3 (Test case). Let TS (T P,SUT) = (S TS , αTS ) be the execution of the test generation algorithm on SUT
according to T P. A test case for T P is a sequence [ev0, . . . , evn|V] for which there is a sequence of states s0, . . . , sn ∈

CS with ∀ j, 0 ≤ j < n, s j+1 = αTS (s j)(ev j), and there is a verdict state V ∈ V such that V = αTS (sn)(evn).
We note st(T P,SUT) the set of all possible test cases for T P.

We can now introduce the notation:

vdt(T P,SUT) = {V | ∃ev0, . . . , evn, [ev0, . . . , evn|V] ∈ st(T P,SUT)}

Theorem 7.1. (Correctness and completeness) For any specification Spec and any SUT:

• Correctness: If SUT conforms to Spec, then for any test purpose T P, FAIL < vdt(T P,SUT).

• Completeness: If SUT does not conform to Spec, then there exists a test purpose T P such that FAIL ∈
vdt(T P,SUT).

Proof .
Proof of the correctness: Let Spec = (S , s0, α) be a specification over a signature H = T (Out × )In and FCT =

(S FCT , s0
FCT , αFCT ) be its finite computation tree. Let us prove the correctness using the contraposition principle. This

means that to prove:

if SUT conforms to Spec, for any test purpose TP, FAIL < vdt(T P,SUT).

we have to prove:
if there exists a test purpose TP such that FAIL ∈ vdt(T P,SUT), then

SUT does not conform w.r.t cioco to Spec.

More precisely, according to the definition of cioco, we have to prove that:

there exists a finite trace tr ∈ Trace(FCT ), an input i ∈ In such that

OutSUT(SUT after (tr, i)) * OutFCT (FCT after (tr, i))

This is proved by the following proposition:

Proposition 7.2. If there exists a test purpose T P such that [i0|o0, . . . , in|on|FAIL] ∈ st(T P,SUT), then:

1. 〈i0|o0, i1|o1, . . . , in−1|on−1〉 ∈ Trace(FCT ).

2. in ∈ In

3. on ∈ OutSUT(SUT after (〈i0|o0, . . . , in−1|on−1〉, in)).

4. on < OutSpec(Spec after (〈i0|o0, . . . , in−1|on−1〉, in)).

First of all, let us denote 〈i0|o0 . . . in−1|on−1〉 by 〈ev0 . . . evn−1〉.

Proof of (1).
In order to show that the sequence 〈i0|o0 . . . in−1|on−1〉 ∈ Trace(FCT ), we are going to reason on the way of computa-
tion of this sequence by using the inference rules. First of all, let TS (T P,SUT) be the execution of the test generation
algorithm and st(T P,SUT) be the set of generated test cases. Since [i0|o0, . . . , in|on|FAIL] ∈ st(T P,SUT), then there
exists for every j, 0 ≤ j < n, S j ∈ CS such that S 0 = {s0

TS }, S j+1 = αTS (S j)(ev j) and FAIL = αTS (S n)(evn). Hence,
for every j, 0 ≤ j < n, S j+1 which equals to Next(S j, ev j) is not empty by Definition 7.2. Hence, by Definition 7.1, for
every j, 0 ≤ j < n, every state belonging into S j+1 is a state of FCT. This means that for every j, 0 ≤ j < n, every
state s ∈ S j is related to a state s′ ∈ S j+1 by ev j. Then, the sequence 〈ev0 . . . ev j . . . evn−1〉 ∈ Trace(FCT ).
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Proof of (2).
We have above proved that 〈i0|o0 . . . in−1|on−1〉 ∈ Trace(FCT ) and S n , ∅. We have that [i0|o0 . . . in|on|FAIL] ∈
st(T P,SUT) i.e. submitting the input in to the implementation under test will produce the output on that is not specified
in FCT (C). Then, it is clear that i ∈ In is an input of FCT (Spec).

Proof of (3).
It is obvious because [i0|o0, i1|o1, . . . , in|on|FAIL] ∈ st(T P,SUT).

Proof of (4).
We know that 〈i0|o0 . . . in−1|on−1〉 ∈ Trace(FCT ) and S n , ∅. We have that [i0|o0 . . . in|on|FAIL] ∈ st(T P,SUT) i.e.
applying in|on have to lead to a FAIL verdict. This means that αTS (S n)(in|on) = FAIL. Hence by Definition 7.2,
Next(S n, in|on) has to be empty. But we know that Next(S n, in|on) ⊆ S FCT . Hence, 〈i0|o0, . . . , in−1|on−1, in|on〉 does not
belong to Trace(FCT ).

Proof of the completeness : Let Spec = (S , s0, α) be a specification over a signature H = T (Out × )In and
FCT = (S FCT , s0

FCT , αFCT ) be its finite computation tree. Let us prove that the completeness holds. For this, let
us assume that SUT does not conform to Spec and let us prove that there exists a test purpose T P such that there
exists [ev0, . . . , evn|FAIL] ∈ st(T P,SUT).
Since SUT does not conform to Spec, according to the definition of cioco, there exists a trace tr = 〈ev0 . . . evn−1〉 ∈

Trace(FCT ) and an input i ∈ In such that

OutSUT(SUT after (tr, i)) * OutFCT (FCT after (tr, i))

i.e. there exists an output o′n of SUT such that

• o′n ∈ OutSUT(SUT after (tr, in));

• o′n < OutFCT (FCT after (tr, in)).

That means:
〈ev0, . . . , evn−1, in|o′n〉 ∈ Trace(SUT) (6)

and
〈ev0, . . . , evn−1, in|o′n〉 < Trace(FCT ) (7)

Since in ∈ In, then there also exists an output on such that on ∈ OutFCT (FCT after (tr, in)) i.e.

〈ev0, . . . , evn−1, in|on〉 ∈ Trace(FCT ) (8)

Let us denote 〈in|on〉 by evn and 〈in|o′n〉 by ev′n.

Now, let us denote by T P a test purpose of FCT such that there exists a state s ∈ S FTC such that s belongs to the set of
reachable states from the initial state of FCT after executing the trace 〈ev0 . . . evn−1evn〉 on FCT, and T P(s) = accept
i.e. 〈ev0 . . . evn−1evn〉 forms a path of T P. Let us prove that there exists [ev0 . . . evn−1ev′n|FAIL] ∈ st(T P,SUT). For
this, it is enough to show that there exists (S j)0≤ j≤n such that for every j, 0 ≤ j < n, S j+1 = αTS (S j)(ev j) ∈ CS and
FAIL = αTS (S n)(ev′n).
We have that 〈ev0 . . . evn−1〉 ∈ Trace(FCT ), then, for every j, 0 ≤ j < n, S j exists because for every j, 1 ≤ j <
n, αTS (S j)(ev j) = Next(S j, ev j) and S 0 = {s0

FCT }. Thus, what remains is to prove that there is a verdict state FAIL
such that FAIL = αTS (S n)(evn).
By Equation 7, we have 〈ev0 . . . evn−1ev′n〉 < Trace(FCT ) and by Equation 6 〈ev0 . . . evn−1evn〉 ∈ Trace(SUT), hence
Next(S n, ev′n) = ∅, and consequently αTS (S n)(evn) = FAIL.
End
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8. Compositional testing

Compositional testing provides a technique for checking the correctness of complex components built from sim-
pler correct ones. This means that the correctness of components implies the correctness of systems obtained by as-
sembling them. Several compositional testing approaches have been proposed [17, 39, 40, 41, 42]. These approaches
vary according to both formalism and integration operators. In [17], it has been proved that the conformance testing
ioco based on labeled transition systems is only compositional with respect to parallel composition when specifications
and implementations are assumed15 input-enabled. In [39], the authors extend the testing theory defined in the setting
of CS P process algebra whose conformance relation cspio is an adapted version of ioco to CS P formalism [34], to
be able to address testing compositional proposed in [17]. it has been then shown that cspio is compositional not
only for parallel composition ‖ but also for other CS P’s composition operators by assuming input completeness of
the specification in the same alphabet of the implementation. In [40, 41, 42, 43], the authors address differently the
compositional testing problem from [17, 39]. In [40], the authors indeed work with input-output symbolic transition
systems (IOS TS ) and propose to test each component of a system in isolation by generating accurate test purposes for
them from the global specification of the system and assuming that the specification of every component in the system
is available. This allowed them to test the global system by selecting behaviours of basic components that are typically
activated in the system, and then re-enforce unitary testing with respect to those behaviours. In [41, 42], the authors
study how to design a component when combined with a known part of the system, called the context, has to satisfy
a given overall specification in the context of finite state machine. Finally, in [43], the authors extend the so-called
assume-guarantee reasoning [44] used in model checking areas as a means to cope with the state explosion problem
of compositional testing. They then proposed to test each component of a system separately, while taking into account
assumptions about the context of the component. They use the input-output labeled transition systems as behavioural
models of components and the parallel composition ‖ to compose components. The conformance relation used in this
approach is the ioco relation. The underlying idea behind this approach is to check that, given a assumption A about
the environment in which the components are supposed to operate, such that iut2 ioco A and (iut1 ‖ A) ioco spec
then (iut1 ‖ iut2) ioco spec. The authors showed that this property holds if the assumption A is input-enabled. This
approach then requires the specification spec to be given as a single model rather than a set of components unlike our
approach. They do not impose input-completeness of specifications which gives them an advantage with respect to
other approaches.

In this contribution, our goal is to extend [17] to our framework, but the other approaches would have been able
to be extended in our framework. Besides, this has been done for the approach developed in [40] (cf. [45]).

The underlying idea is then to test an integrated system assuming that its underlying components have already
been tested and are correct. The operators used to compose components are supposed to be correctly implemented
and to preserve their specifications. Thus, the problem of compositional testing that we address here can be seen as
follows: if single components of a system conform to their specifications, what can be said concerning conformance
of the whole system according to its specification? This is formally expressed as: ∀i, 1 ≤ i ≤ n, Ii rel S i implies
op(I1, . . . , In) rel op(S 1, . . . , S n) where rel denotes the conformance relation of interest, I1, . . . , In are implementation
models, S 1, . . . , S n are specifications, and op is an integration operator. Thus, such a compositional testing theory pro-
vides a way to test the integrated system only by testing its sub-systems i.e. there is no need to re-test its conformance
correction.

We show here that cioco is naturally compositional for the cartesian product. However, compositionality does not
hold for cioco with respect to the feedback operators, unless the specification model is input-enabled.

Theorem 8.1. Let H1 = T (Out1× )In1 and H2 = T (Out2× )In2 be two signatures. Let H = T ((Out1×Out2)× )In1×In2

be the cartesian product interface for H1 and H2. Let I j, S j ∈ Comp(H j) for j = 1, 2 and ⊗((I1, I2)), ⊗((S 1, S 2)) ∈
Comp(H). Then, we have:

I1 cioco S 1

I2 cioco S 2

}
=⇒ ⊗((I1, I2)) cioco ⊗ ((S 1, S 2))

15input-enabled means all input actions are always enabled in any state.
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Proof . Let us assume that:
(I1 cioco S 1) and (I2 cioco S 2)

and let us then prove that:
⊗((I1, I2)) cioco ⊗ ((S 1, S 2))

Let us use the contradiction principle. For this, let us assume that ¬(⊗((I1, I2)) cioco ⊗ ((S 1, S 2))) i.e that there exists
a finite trace tr = 〈(i1, i′1)|(o1, o′1), . . . , (in, i′n)|(on, o′n)〉 ∈ Trace(⊗((S 1, S 2))) and (i, i′) ∈ In1 × In2 such that there exists
an output (o, o′) ∈ Out1 × Out2 among the outputs obtained after executing (tr, (i, i′)) on ⊗((I1, I2)) not belonging to
the ones obtained after executing (tr, (i, i′)) on ⊗((S 1, S 2)).

Now, we have tr = 〈(i1, i′1)|(o1, o′1), . . . , (in, i′n)|(on, o′n)〉 ∈ Trace(⊗((I1, I2))). According to the definition of the
cartesian product, it is easy to show that the two traces:

tr1 = 〈i1|o1, . . . , in|on〉 ∈ Trace(I1) and tr2 = 〈i′1|o
′
1, . . . , i

′
n|o
′
n〉 ∈ Trace(I2)

are respectively the traces involved in I1 and I2 to obtain tr. We also know by hypothesis that tr1 ∈ Trace(S 1) and
tr2 ∈ Trace(S 2).

Since (o, o′) ∈ Out(⊗((I1, I2)) after (tr, (i, i′))) and tr is composed of tr1 and tr2, then o ∈ Out(I1 after (tr1, i))
and o′ ∈ Out(I2 after (tr2, i′)). Similarly, o < Out(S 1 after (tr1, i)) and o′ < Out(S 2 after (tr2, i′) because (o, o′) <
Out(⊗((S 1, S 2)) after (tr, (i, i′))) and tr1 and tr2 are involved to obtain tr. Hence, there exists a trace tr1 ∈ Trace(S 1),
an input i of S 1 and an output o ∈ Out1 such that o ∈ Out(I1 after (tr1, i)) and o < Out(S 1 after (tr1, i)) (respectively
there exists a trace tr2 ∈ Trace(S 2), and input i′ of S 2 and an output o′ ∈ Out2 such that o′ ∈ Out(I2 after (tr2, i′)) and
o′ < Out(S 2 after (tr2, i′))). Indeed, this means that ¬(I1 cioco S 1) and ¬(I2 cioco S 2). Hence, we have a contradiction
with our hypothesis.
End

Compositionality for feedback operators. Before proving the compositionality of cioco for both synchronous and
relaxed feedback operators, we give an example that illustrates the assumptions required to obtain the compositionality
of cioco with respect to the feedback operators. Figure 12 shows two implementation models I1 and I2 that have
been tested to be cioco-correct according to their respective specification models S 1 and S 2. We can easily see that
(I1 cioco S 1) and (I2 cioco S 2).

q0

q1

q2

s0

s1

s2 s3

S 1I1

i1 |o1

i2 |o1 i2 |o2

i1 |o1

i2 |o1

(a) I1 cioco S 1

q′0

q′1

q′2 q′3

S 2I2

s′0

s′1

s2

o1 |o3

o2 |o4

o1 |o3

o1 |o5 o2 |o4

(b) I2 cioco S 2

Figure 12: Counterexample of compositionality

Using the cartesian product and the feedback operator over the synchronous sequential interface I = ( f , πi, πo)
defined in Section 4.2.1, the global specification S =	I(⊗(S 1, S 2)) (resp. the global implementation I =	I(⊗(I1, I2)))
can be obtained. We can easily see that I can do the trace 〈i1|o3, i2|o5〉. Thus, o5 ∈ Out(I after (〈i1|o3〉, i2)) whereas S
can do the trace 〈i1|o3〉 in such a way o5 < Out(S after(〈i1|o3〉, i2)). Hence, we can see that I does not conform to S
according to cioco.
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This counterexample shows that the feedback operators may give rise to a global implementation that does not
conform to its global specification, even if the local implementations conform to their local specifications. This
is because the conformance relation cioco does not put any constraint on the traces that are not specified in the
specification. It gives freedom to implementations to do what they want from the unspecified states. To cope with
this problem, we assume that specifications are input-enabled like in [17]. That is to say, all states of a specification S
accept all input actions of S , and for each state s of S and each input the function α is defined (α is a total function).
Then, we have the following theorem for the compositionality for the relaxed feedback operator:

Theorem 8.2. Let H = T (Out × )In be a signature. Let I = ( f , πi, πo) be a relaxed feedback interface. Let
C j = (S j, α j) ∈ Comp(H) such that C j are input-enabled for every j = 1, 2. Then, we have:

C1 cioco C2 =⇒←↩I(C1) cioco ←↩I(C2) (1)

C1 cioco C2 =⇒ 	I(C1) cioco 	I(C2) (2)

Proof . We first need to prove the following lemma:

Lemma 5. Consider two components C1 and C2, then we have:

1. Trace(C1) ⊆ Trace(C2) implies (C1 cioco C2)
2. If C2 is input-enabled, then (C1 cioco C2) implies Trace(C1) ⊆ Trace(C2).

Proof .

1. Let tr = 〈i1|o1, i2|o2, . . . , in|on〉 be a finite trace of C2, i an input of C2 and o ∈ Out(C1 after (tr, i)) and let us
prove that o ∈ Out(C1 after (tr, i)). o ∈ Out(C1 after (tr, i)) implies tr′ = tr.〈i|o〉 = 〈i1|o1, i2|o2, . . . , in|on, i|o〉 ∈
Trace(C1) (see Definition 6.3). Since Trace(C1) ⊆ Trace(C2), tr′ ∈ Trace(C2). Thus, o ∈ Out(C2 after (tr, i)),
and consequently, Out(C1 after (tr, i)) ⊆ Out(C2 after (tr, i)). The result then follows from the definition of cioco.

2. Let us prove this point by induction on the structure of a trace tr of C1, let tr = 〈i1|o1, i2|o2, . . . , in|on〉 ∈

Trace(C1).

• Basic Step: tr = 〈〉 is empty trace.
tr = 〈〉 ∈ Trace(C2) trivially holds.

• Induction Step: Let us write tr as concatenation of two finite traces: tr = 〈i1|o1, i2|o2, . . . , in−1|on−1〉 ·

〈in|on〉.
tr ∈ Trace(C1) implies on ∈ Out(C1 after (〈i1|o1, . . . , in−1|on−1〉, in)). Since C2 is input-enabled, in is
inevitably an input of C2 at any state s. By induction hypothesis, we have 〈i1|o1, . . . , in−1|on−1〉 ∈ Trace(C2)
and on ∈ Out(C1 after (〈i1|o1, . . . , in−1|on−1〉, in)) then on ∈ Out(C2 after (〈i1|o1, . . . , in−1|on−1〉, in)) because
C1 cioco C2. Thus 〈i1|o1, . . . , in−1|on−1, in|on〉 ∈ Trace(C2). Consequently, Trace(C1) ⊆ Trace(C2).

End

Let us now prove the first point of Theorem 8.2. According to Lemma 5, we have to prove:

Trace(C1) ⊆ Trace(C2) =⇒ Trace(←↩I(C1)) ⊆ Trace(←↩I(C2))

For this, let us use the proof by induction on the length of a finite trace tr of Trace(←↩I(C1)). Let tr = 〈i0|o0, . . . , in|on〉

be a finite trace of←↩I(C1)).

• Basic Step: tr = 〈〉 is empty trace.

tr = 〈〉 ∈ Trace(←↩I(C2)) trivially holds.
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• Induction Step: Let us write tr as the concatenation of two finite traces: tr = 〈i0|o0, i1|o1, . . . , in−1|on−1〉 · 〈in|on〉.

tr ∈ Trace(←↩I (C1)) implies, according to the definition of relaxed feedback (see Definition 4.3), that there
exists an input sequence x and a couple (x̄, yx̄) inductively defined from a finite sequence of states (s0, s1, . . . , sn)
of S 1 as follows:

– x̄(0) = x(0) and yx̄(0) ∈ η′Out×S 1
(α1(s0)(x(0)))|1

– ∀ j, 0 < j ≤ n, x̄( j) = f (x( j), yx̄( j−1)), yx̄( j) ∈ η′Out×S 1
(α1(s j)(x̄( j)))|1 and s j ∈ η

′
Out1×S 1

(α1(s j−1)(x̄( j−1)))|2

and, for every 0 ≤ j ≤ n, πi(x̄( j)) = i j and πo(yx̄( j)) = o j.

By induction hypothesis, 〈i0|o0, . . . , in−1|on−1〉 ∈ Trace(←↩I (C2)) because 〈i0|o0, . . . , in−1|on−1〉 ∈ Trace(←↩I
(C1)). Then, similarly as above, there exists an input sequence x′ and a couple (x̄′, yx̄′ ) inductively defined from
a finite sequence of states (s′0, s

′
1, . . . , s

′
n) of S 2 as follows:

– x̄′(0) = x′(0) and yx̄′ (0) ∈ η′Out×S 2
(α2(s′0)(x′(0)))|1

– ∀ j, 0 < j ≤ n − 1, x̄′( j) = f (x′( j), yx̄′ ( j − 1)), yx̄′ ( j) ∈ η′Out×S 2
(α2(s′j)(x̄′( j)))|1

and s′j ∈ η
′
Out×S 2

(α2(s′j−1)(x̄′( j − 1)))|2

and, for every 0 ≤ j ≤ n − 1, πi(x̄′( j)) = i j and πo(yx̄′ ( j)) = o j.

Since Trace(C1) ⊆ Trace(C2), 〈i0, . . . , in〉 is inevitably an input sequence of C2, η′Out×S 2
(α2(s′n)( f (in, yx̄′ (n−1)))|1

is well defined.

Now, we know that:

η′Out×S 1
(α1(sn)( f (x(n), yx̄(n − 1))))|1 ⊆ η

′
Out×S 2

(α2(s′n)( f (in, yx̄′ (n − 1)))|1

This is because Trace(C1) ⊆ Trace(C2). This implies that yx̄(n) ∈ η′Out×S 2
(α2(s′n)( f (in, yx̄′ (n − 1))))|1 . Hence

according to the definition of relaxed feedback, 〈i1|o1, . . . , in−1|on−1, in|on〉 ∈ Trace(←↩I (C2)). Consequently,
Trace(←↩I(C1)) ⊆ Trace(←↩I(C2)).

Similarly, we can prove the second point of Theorem 8.2: C1 cioco C2 =⇒ 	I(C1) cioco 	I(C2).

End

Theorems 8.1 and 8.2 obviously lead to the following theorem:

Theorem 8.3. Let op be a complex operator of arity n. Let C1, . . . ,Cn,C
′
1, . . . ,C

′
n be input-enabled components such

that ∀i, 1 ≤ i ≤ n, Ci cioco C′i , then one has op(C1, . . . ,Cn) cioco op(C′1, . . . ,C
′
n).

Proof . By induction on the structure of op using Theorem 8.1 and Theorem 8.2.
End

By Theorem 8.3, we directly have that sequential and concurrent compositions as well as synchronous product are
compositional for cioco.
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9. Conclusion and related works

9.1. Related works
In this section, we present a brief overview of contributions which are technically close to our approach, by dis-

cussing the difference between problematics addressed by those contributions and those addressed by our approach.
There are several coalgebraic works in the literature which regard the combination of components using some sort of
integration mechanism. The closet of our works is the set of integration operators proposed by Barbosa in [3, 4]. Four
component integration operators have been proposed to reason about component based designs: pipeline ”series” op-
erator, external choice operator, parallel composition and concurrent operator. These operators are defined as special
functors in some bicategory of components. The pipeline operator is similar to our synchronous sequential opera-
tor Br. The external choice operator corresponds to a composition where both components C1 and C2 are executed
independently, depending on the input submitted to the integrated component: when interacting with the composed
system, the environment will be allowed to choose either C1 or C2 inputs, but not both. Input then triggers the corre-
sponding component (i.e. C1 or C2), producing the associated output. This operator is then similar to our synchronous
product ~ when the intersection of input sets In1 and In2 is the empty set. The parallel composition is embodied in
the cartesian product, and finally the concurrent operator is similar to the operator defined in Section 4.2.3.

Meng in [46] redefined Barbosa’s operators to combine two components C1 and C2 over the signatures (Out1 ×
T (Out2 × )In) and (Out′1 × T ′(Out′2 × )In′ ) respectively. Hence, the difference between Meng’s works and Barbosa’s
ones is the form of the functor over which components are defined, and the possibility to combine components with
different computational models (i.e. T and T ′), rather than using a single monad.

In this paper, we have also shown how to define larger systems by composition of subsystems from two basic
integration operators: product and feedback. This led us to inductively define a set of complex operators (see Defi-
nition 4.7), the semantics of which are partial functors on categories of components. This part can then be compared
to works in [47, 48]. Indeed, from set of complex operators we can easily generate an algebraic signature that can
be seen as an FP-theory L over a basic set of sorts S ⊆ Set × Set where for (In,Out) ∈ S , In and Out denote input
and output sets, respectively, and operations are complex operators (a monad T is supposed identical for every couple
(In,Out) in the FP-theory L). Outer models can then be defined along the functor C : L −→ Cat that associates to
any couple (In,Out) the category Comp(H) with H = T (Out × )In and to any operator the partial functor defined in
Definition 4.7. Finally, inner models are defined by the natural transformation X : 1 =⇒ C where 1 is the constant
functor that associates to any S ∈ L the trivial object category 1, which to any couple (In,Out) associates the final
object in Comp(H) and to any complex operator op, the mapping on behaviours noted [[op]] in [47, 48] that contains
op semantics on both components and transfer functions.

The difference between our works and those mentioned above is to have defined integration operations by com-
position of two elementary operators, product and feedback. The interest was then to demonstrate a set of general
properties on these integration operators such as the results of compositionality, by showing that these properties are
valid for the product and feedback and are preserved by composition.

Hence, Theorem 5.3 is similar to Theorem 4.7 in [48] at least in these goals to establish a generic result of
compositionality independent of a given integration operator.

9.2. Conclusion
In this paper, we have defined a formalism based on Barbosa’s component definition [3, 4]. We have then defined

for this formalism a trace semantic from causal functions as this is usually done in control theory and dynamic systems
design. The resulting formalism is then generic enough to subsume a large family of state-based formalisms. For this
formalism, a number of theoretical results were obtained. First, in order to deal with large systems, we defined the
notion of integration operator as the composition of two basic operators, the product and feedback. We then showed
generic results of compositionality independently of a given integration operator. We also obtained results related
to the construction of a final object in the category of components. Taking advantage of our formalism genericity,
we then defined both conformance and compositional testing theories, which by definition can be applied to any
formalism instance of our framework.

Several research lines can be continued from the previous work. First, the proposed formalism is just an initial
proposal of formalism to model complex systems. For its application in concrete cases, it has to be more experienced
in the case of real size systems. We also have the ambition to give a mathematical framework for a discipline, called
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systems engineering, that has been fully tried and tested in modeling of modern industrial systems, but is very little
formalized. This will require as a preliminary to extend the formalism to take into account components heterogeneity
(software, hardware, human) which are mainly characterized how inputs are handled to provide observable outputs
(i.e. discretely or continuously). In the context of B. Golden’s thesis [49], we are defining a formalism abstract enough
to unify, by using non-standard analysis techniques, different time treatment of components. Moreover, in systems
engineering, two kinds of operators play a crucial role in defining systems:

1. Integration operators
2. Abstraction/simulation operators.

The first kind of operators has been widely discussed in this paper, but the second not at all. Both abstrac-
tion/simulation operators aim at structuring systems at many levels of description, from the most abstract one to the
most concrete till realization. These operators are classically brought together in a only one which is similar to the
operator of refinement classically used in software engineering [50, 51].
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(Eds.), ICTAC, Vol. 6255 of Lecture Notes in Computer Science, Springer, 2010, pp. 184–198.

[2] M. Aiguier, P. L. Gall, M. Mabrouki, Emergent properties in reactive systems, in: Proceedings of the 2008 15th Asia-Pacific Software
Engineering Conference, IEEE Computer Society, Washington, DC, USA, 2008, pp. 273–280. doi:10.1109/APSEC.2008.28.
URL http://dl.acm.org/citation.cfm?id=1487740.1488110

[3] L. Barbosa, Towards a calculus of state-based software components, Journal of Universal Computer Science 9(8) (2003) 891–909.
[4] S. Meng, L. Barbosa, Components as coalgebras: the refinement dimension, Theor. Comput. Sci.(TCS) 351 (2) (2006) 276–294.

doi:http://dx.doi.org/10.1016/j.tcs.2005.09.072.
[5] E. Moggi, Notions of computation and monads, Information and Computation 93 (1991) 55–92.
[6] S. Eilenberg, Automata, Languages and Machines, Vol. C, Academic Press, New York, 1978.
[7] G. H. Mealy, A method for synthesizing sequentiel circuits, Bell Systems Techn. Jour.
[8] R. Milner, A calculus of communicating systems, Springer-Verlag New York, Inc, secaucus, NG, USA.
[9] L. Frantzen, J. Tretmans, T. Willemse, A Symbolic Framework for Model-Based Testing, in: K. Havelund, M. Núñez, G. Rosu, B. Wolff
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