
Multi-Paradigm Semantics for Simulating SysML
Models using SystemC-AMS

Daniel Chaves Café *†, Frédéric Boulanger*, Filipe Vinci dos Santos†, Christophe Jacquet*, Cécile Hardebolle*

*Supelec E3S – Computer Science Departement
†Thales Chair on Advanced Analog System Design

Supélec, Gif-sur-Yvette, France
Email: {firstname.lastname}@supelec.fr

Abstract—SysML is an industrial standard for the modeling of
systems, providing a graphical way to model structure and behav-
ior. Despite its flexibility, SysML lacks semantics to give language
elements a precise meaning. Current implementations of the
standard allow multiple interpretations of syntactical elements
and can cause misunderstandings when porting a model among
tools. Our work focuses on the definition of concrete semantics for
SysML to enable correct interpretation of heterogeneous models.
We also add semantic adaptation elements to guarantee that
interactions among different formalisms are unambiguous. We
demonstrate our approach by generating SystemC-AMS code
automatically from SysML diagrams for a case study with two
distinct formalisms. This kind of translation allows the validation
of system behavior through simulation.

Index Terms—Model Transformation, Semantic Adaptation,
System Modeling, System Simulation, SysML, SystemC-AMS.

I. INTRODUCTION

For years we have managed the complexity of large systems
by a component-based approach, breaking down the system
in a set of objects composed hierarchically with interactions
restricted to tightly defined interfaces. Heterogeneous systems
require extra modeling effort because the interactions must
be well defined when crossing the boundaries of different
domains. Even if the interfaces are completely specified, a
problem remains: the execution semantics of components of
different domains may differ and without a formal definition
of how these components should interact, it is most likely that
the overall system, once integrated, behaves unpredictably or
in an implementation-dependent way.

During the design phase of a system, it is rather common
to use simulations of models as a support to validate correct
functionality of a component before deploying it to fabrication.
Those models can be either described in textual or graphical
languages. The latter is generaly accepted to be easier to use
and more comprehensible.

SysML is now an industry standard for a graphical system-
level specification language. It is used to manage complexity
while improving communication among different teams. The
use of SysML diagrams facilitates the documentation and
specification regarding system requirements and constraints on
property values [1].

SysML does not provide built-in simulation capabilities
but offers great flexibility for modeling large heterogeneous
systems. For our purposes, heterogeneous systems are sys-

tems that present components of different nature which are
modeled using distinct formalisms. A heterogeneous model
thus involves at least two different modeling formalisms with
bound interfaces, i.e. exchanging data, control or sharing the
same time scale. The challenge that we face is to give SysML
diagrams explicit and executable semantics so that hetero-
geneous models can have coherent behavior for simulations
across different tools.

The meaning of SysML structural elements is not given
by the standard itself. Users of SysML commonly give their
own (often implicit) interpretations of how each language
element behaves. Block definition diagrams and internal block
diagrams are examples of purely structural diagrams with no
behavioral semantics. A SysML connector, for example, can
represent a wire, a physical chain or even a function call.
The problem of the lack of clear semantics is more severe in
heterogeneous models. The interaction of a finite state machine
monitoring inputs from a continuous time model is a classical
example. From the SysML perspective, there is nothing that
defines explicitly when a guard should be evaluated or with
what precision continuous time data should be monitored.

One way to describe the behavior of a model is by defining
its Model of Computation (MoC) [2]. The MoC details how
components of a given system interact, how they exchange
data, control and notions of time. Examples of commonly used
MoCs are: Discrete Event (DE), Continuous Time (CT) and
Finite State Machine (FSM). These and have been detailed in
[3]. The challenge is how to combine them seamlessly so as to
run simulations of the whole system with predictable results.

The present work tackles the problem of simulating het-
erogeneous systems described in SysML by adding concrete
semantics to SysML diagrams throught the use of MoCs.
We define explicit rules that we call semantic adaptations for
the interactions between these MoCs and we automatically
generate SystemC-AMS code using model transformations
based on our semantics definitions. We thereby take ad-
vantage of the SysML language as our front-end modeling
environment and simultaneously benefit from SystemC-AMS
powerful simulation engine to validate heterogeneous systems
by simulation.

This article is organized as follows. Section II introduces
previous approaches and the state of the art concerning hetero-
geneous modeling languages, the use of multiple MoCs with

1

SystemC and the generation of SystemC code from SysML
and UML diagrams. Section III introduces our approach and
show implementation details of our model transformations.
Section IV details the semantics of the two MoCs explored in
the example shown in Section V. Then sections VI discusses
the advantages and drawbacks of our approach and section VII
concludes.

II. RELATED WORK

A. Heterogeneous modeling languages

Modeling heterogeneous systems is not an easy task.
The obstacles and issues arising when trying to implement
such models have been the focus of considerable research.
Ptolemy II [4] handles heterogeneity by hierarchy. Compo-
nents are nested in black boxes (also called Actors) for which
the semantics of execution and communication are defined
by an entity called Director. A director defines how a model
should behave and how its components communicate, in other
words, it defines the model of computation (MoC) Actors can
be transparent or opaque regarding its parent: if the child
actor does not have its own director it is considered to be
transparent and will inherit its parent director, if it has its own
director, it is considered to be opaque (like a black box). In
Ptolemy, computation and communication semantics are well
defined for a large set of MoCs. Unfortunately, there is no
explicit way to define the adaptation between models that use
different MoCs. This can cause some confusion if the user
is not aware of the default adaptation performed by Ptolemy.
Extra modeling effort may be required if a specific behavior
is expected.

Ptolemy’s focus on heterogeneous systems inspired other
works such as ModHel’X [5]. ModHel’X proposes a flexible
framework for the development of heterogeneous systems
separating the model’s definition from the MoC’s definition. In
ModHel’X, a generic execution environment was created to al-
low the definition of several models of computation. Following
the same principle of actor-based modeling, ModHel’X defines
blocks whose behavior is determined by a MoC (equivalent to
Ptolemy’s Director) and introduces an interface entity capable
of making the necessary adaptations among different MoCs
(i.e. data, control and time). To do so, ModHel’X improves
upon the execution algorithm of Ptolemy by the introduction
of an adaptation phase right before and after the “fire” phase.
This yields an effective way to define the semantics of the
interactions between different models of computation.

B. Multiple MoCs with SystemC

SystemC [6] has clearly established itself as an important
system-level specification language providing simulation capa-
bilities in an early phase of development. One important appli-
cation of SystemC is the description and automatic synthesis
of digital hardware [7] from a subset of the language. Sys-
temC is based on a dedicated discrete event (DE) simulation
kernel capable of modeling concurrent processes. However,
using only a DE MoC can be cumbersome if one needs to
model several application domains. Several researchers have

extended the DE kernel with libraries in order to implement
different MoCs. This strategy often results in performance
degradation, as discussed in [8]. H.D. Patel and S.K. Shukla
have shown that better implementations could be achieved if
dedicated simulation kernels are used for MoCs such as FSM,
Communication Sequential Processes (CSP) and Synchronous
DataFlow (SDF).

In any case, dedicated simulation kernels do not solve
entirely the problem of the heterogeneity. The interactions
among different MoCs are hard to model and may result
in semantic conflicts. One interesting solution is shown in
the HetSC library [9]. HetSC is an extension library for
SystemC to support the modeling of several MoCs. HetSC
deals with heterogeneity by the use of configurable converter
channels where time and data adaptations are clearly specified.
HetSC allows the user to choose if there will be data loss,
interpolation or even an exception thrown [10]. These choices
are necessary to resolve semantic conflicts among different
MoCs.

SystemC-AMS [11] follows a different path, it provides
pre-built MoCs allowing co-simulation of continuous and
discrete components. SystemC-AMS is the Analog Mixed
Signal (AMS) extension for SystemC. As an answer to the
heterogeneity problem, SystemC-AMS provides support for
MoCs closer to the continuous-time domain such as Linear
Signal Flow (LSF) and Electrical Linear Networks (ELN).
These are two different ways of representing differential
equations on the continuous-time domain, both built on top
of a linear differential algebraic equation solver synchronized
to the discrete event simulation kernel of SystemC.

SystemC-AMS could be used together with HetSC if one
needs to support a wide range of MoCs [12]. In the present
work thought we have chosen to target only SystemC-AMS
as a first proof-of-concept of our approach which could be
easily extended to more MoCs if necessary as discussed in
section VI.

C. From SysML/UML to SystemC

Many publications have been devoted to the translation from
modeling languages to executable code. Raslan et al. [13]
have defined a mapping between SysML and discrete event
SystemC in order to raise the abstraction level of electronics
designs and speed up the design process. Prevostini et al. [14]
proposed a SysML profile to model SoCs and provided an
engine to automatically generate SystemC code. By using
parametric diagrams they were capable of defining equation
constraints, and by using allocations in activity diagrams
they managed to co-simulate hardware and software together.
Mischkalla et al. [15] came up with a methodology based
on an emulated processor using SystemC Transaction Level
Modeling (TLM) and reported being capable to automatically
synthesize combined hardware and software through a series
of code generations and tools synchronizations. They support
only the synthesizable subset of SystemC to guarantee that the
hardware modeled with SysML is synthesizable.

2

Fig. 1. Transformation chain

All of these approaches have addressed the integration
of SysML with the SystemC discrete event simulator or a
synthesizable subset of SystemC, but have not considered
the intrinsic multi-domain characteristic of heterogeneous sys-
tems. We intend to raise the abstraction level of heterogeneous
systems designs using SysML diagrams together with a set
of semantics definitions for each MoC. That will not only
improve systems design comprehensibility with high-level
graphical descriptions but also provide executable semantics
to SysML diagrams, allowing us to run simulations from the
specification models. In the following section we detail our
approach by showing an automated way to generate SystemC-
AMS code from annotated SysML diagrams.

III. THE APPROACH

Our approach consists in two separated phases. Starting
from the SysML model, we first do a model-to-model (M2M)
transformation in order to have an equivalent model in the
SystemC-AMS language. We then generate SystemC-AMS
code through a model-to-text (M2T) transformation using
templates of SystemC-AMS.

The M2M transformation takes into consideration the con-
structions of the input and output languages, thus their meta-
models. Since models conform to their meta-models, the
transformation can be applied to any instance of the input
meta-model. This step is responsible for the translation of
every SysML element into its equivalent SystemC-AMS. For
example, applying the transformation T1 to a SysML Block
composed of several parts results in the creation of a SystemC-
AMS module with its corresponding sub-modules.

We have used the Atlas Transformation Language (ATL)
[16] to define the M2M transformation. ATL is a language to
define model transformations by a set of transformation rules.
Being a model itself, the transformation has its own meta-
model as well. ATL is based on pattern recognition of from/to
rules. Every element of the source model that matches any
from rule triggers the creation of the corresponding to element.

Therefore, for every SysML element, we have an equivalent
SystemC-AMS element.

The example in figure 2 shows a simple rule that will
generate a SystemC port (sc_port) for every SysML flow-
port (sml_port). This rule will read all attributes from
the SysML element, such as name, type and direction, and
associate to the equivalent element on the SystemC side.

r u l e P o r t s {
from

s m l p o r t : SYSML! FlowPor t
t o

s c p o r t : SC ! P o r t (
name <− s m l p o r t . b a s e P o r t . name ,
t y p e <− s m l p o r t . b a s e P o r t . t y p e . name ,
d i r e c t i o n <− s m l p o r t . d i r e c t i o n)

. . .
}

Fig. 2. ATL rule for the creation of sc ports from SysML flowports

In order to define the M2M transformation both input
and output meta-models should be available. SysML meta-
model has been defined by the Object Management Group
(OMG) and it is now an established standard [17] providing a
structured definition of the languages elements. Every model
written in SysML must conform to its meta-model. SystemC-
AMS, on the other hand, has no comparable meta-model
reported. Nevertheless, since it is also a language with specific
constructions we can define its own meta-model.

SystemC meta-models have been studied in [18] and [19]
but were limited to the DE MoC. Based on these previous
works, we have added AMS specific constructions and facili-
ties to support multi-formalisms and semantic adaptations. A
simplified version with most important elements is shown in
figure 3.

Differently from [18], we have separated the definition
of an atomic module from a composed module allowing
us to diferentiate a user-defined component from a library
stardard component e.g. integrators from the LSF formalism

3

Fig. 3. SystemC-AMS simplified metamodel

or resistances from the ELN formalism. A composed module
may contain ports, variables signals and other sub-modules.
The later models hierarchical compositions. Some other con-
structions were inherited from basic C/C++ language, such as
the case-switch, necessary to implement a state machine in
SystemC.

A module may be modeled using one of the four possible
formalisms, either using standard SystemC DE MoC or with
any of the specific AMS MoCs, i.e. LSF, ELN or Timed
DataFlow (TDF). We take that into account through the use
of the formalism attribute in the Module abstract element.
In order to consider the semantic adaptation when crossing
the boundaries of different MoCs, we have added an Adaptor
element that binds to a port.

Adaptors are elements responsable for translating signals
from one domain to another. The behavior of an adaptor
depends on the combination of input/output MoC and whether
it is a producer or consumer of data. We capture those
properties in the meta-model by the three attributes to, from
and direction. The generated SystemC-AMS code corresponds
to the standard adaptor channels available from the SystemC-
AMS 1.0 proof-of-concept released by the Fraunhofer Fraun-
hofer Institute for Integrated Circuits IIS.

Code generation is the second step of our approach. We gen-
erate equivalent C++ code from SystemC-AMS model using
the ACCELEO engine [20]. ACCELEO is an implementation
of the MOF model-to-text language defined by the OMG [21].
ACCELEO is also a transfomation language but the target is
text instead of another model. By defining templates for each
component of the input meta-model, ACCELEO generates a
set of files conforming to the target grammar.

In our approach, ACCELEO scans the input SystemC-AMS
model and generates two files for every block, one header with
the module definition (equivalent to the black box), and one
source file with the implementation of every process.

[t empla te p u b l i c genHeader (m : ComposedModule)]
[f i l e (m. name . c o n c a t (’ . hpp ’) , f a l s e , ’UTF−8 ’)]
. . .

SC MODULE([m. name /])
{

. . .
[f o r (p : P o r t | m. p o r t)]

sc [p . d i r e c t i o n /] < [p . t y p e /]> [p . name /] ;
[/ f o r]

. . .
[/ f i l e]
[/ t emplate]

Fig. 4. ACCELEO: Header generation

In the example of figure 4 we show the creation of each
header file when a ComposedModule is found. We define a
ComposedModule as a hierarchical element containing other
modules. In this example, we want to generate equivalent code
of the Module’s black box, thus we shall declare every port
inside a SC_MODULE macro. We do that with a for loop that
iterates over the sequence of ports of the Module ‘m’ and
writes equivalent SystemC code. Note that ACCELEO will
replace only the code inside the brackets except for internal
commands such as template, file, or for loops.

Although code generation is necessary for running simula-
tions, we focus our work on defining concrete semantics to
SysML models. We achieve that by using semantic definitions
with the help of SysML constraint blocks. The stereotype
”constraintBlock” or simply “constraint” describes constraints
on system structures [22]. SysML does not define one lan-
guage to express constraints. Most will use regular arithmetic
expressions to describe relations that can be automatically
evaluated. We have chosen to use specific keywords (as we
shall demonstrate latter in a case study) to indicate directly in
the diagram which MoC is used for each SysML Block.

Our approach for filling the semantics gap in SysML is

4

to define concrete semantics of each MoC along the three
dimensions of concurrency, communication and time. We also
consider the heterogeneity of multi-paradigm systems and the
necessary semantic adaptations at the frontier of different
domains. These semantics definitions are implemented by our
transformations together with the necessary adaptations. In the
following section, we introduce the semantics of two MoCs,
i.e. CT and FSM so that simulation of SysML diagrams are
free from ambiguous definitions. We also describe briefly the
simulation engine on wich the MoCs are based.

IV. A MULTI-PARADIGM SEMANTICS

A. The simulation engine

The execution model is based on the delta-cycle simulation
algorithm defined by SystemC’s discrete event engine [23]. At
the very heart of its engine, the main algorithm is composed of
three steps. Evaluate, Update and Time Advancing (also called
delta notification). In the evaluation phase, SystemC will run
every process but will not propagate data to corresponding
signals or ports until every process is executed. The update
phase will then synchronize all process by updating signal
and ports with previously calculated values on the evaluation
phase. This may trigger the engine to re-evaluate some of
the process (case of feedback loops) without advancing the
simulation time. Finally, when the system’s state is stable, time
advances until the next scheduled event. This ensures that ev-
ery node is evaluated before data can propagate and guarantees
concurrency of elementary blocks. Concrete semantics is given
individually for each MoC.

B. Continuous Time Semantics

Continuous-time models are best expressed using block
diagrams. The use of the internal block diagram of SysML
is suitable to represent hierarchical composition of elements
of a system. The CT formalism requires the use of pre-
defined building blocks, such as subtractors, integrators and
gain blocks. These primitive blocks are defined in a separated
library, shown in figure 5 and are used by the designer to model
dedicated transfer functions. The use of the CT formalism is
expressed by a SysML constraint block CT Block as shown
in the example of figure 7.

Concurrency: Every CT block is defined by an equation
describing how outputs react to its inputs variations. A CT
block shall apply a mathematical function to its input variables
every time there is a new sample available on one of its inputs.
Mathematical functions can be defined by SysML constraints,
as shown for CT building blocks library in figure 5 (for
simplicity reasons, only a subset is shown).

Communication is defined by the interpretation of what
connectors do. In the case of a CT block, connectors are
interpreted as variables of a differential equation. They act as
the system memory, saving the state of that system for every
snapshot in time.

Time is the independent variable on which some CT blocks
rely to apply their mathematical relations. For instance, the
gain block has no state and does not depend on time, but the

Fig. 5. Continuous Time Building Blocks

integrator block requires time variations to apply its transfer
function.

C. Finite State Machine Semantics

Finite State Machines have a dedicated diagram in SysML.
States are represented by rounded corner rectangles and tran-
sitions by arrows. The transition guard is a condition or an
event required to change from one state to another. The state
invariant represents the control. It takes the form of an equation
placed inside the states and produces an output whenever that
state is reached.

In our approach we consider FSMs to be untimed, free
from implementation details. Indeed, FSMs could have time
notations typically synchronous implementations of FSMs on
hardware which require a clock input to dictate when guards
should be evaluated or outputs produced. We have choosen
thought to use a more abstract model of the system thus
avoiding implementation-specific constructs.

Concurrency is defined by regions where independent
states run concurrently. The most common kind of construction
is the or-state, where no concurrency is defined and the system
state is defined by the current state itself. A less regular
construction is the and-state set. In this case, the system state
is defined by a subset of states of independent regions.

Communication is non existent. There is no data flow in
a state machine. This kind of diagram is used exclusively to
model control.

Time: The notion of time does not exists in a finite state
machine. This formalism is driven only by events which do
not require a time scale. Semantic adaptation is needed when
continuous-time variables are connected to a state machine. In

5

this case, a monitor shall be created for each guard condition
to detect threshold crossing and trigger events which are
responsible for state changes.

D. Semantic Adaptation

In order to have precise simulations, one has to define not
only the semantics of each formalism but also the necessary
actions and adaptations if different formalisms are used in the
same diagram. This can be achieved by the definition of an
adaptor element.

The adaptor is an entity that is bound to a port in or-
der to explicitly adapt data, control and/or time for differ-
ent formalisms. Our transformation chain chooses apropriate
adaptors from the standard SystemC-AMS library depending
on the frontier that the port is. For example, if using LSF
formalism inside a continuous-time block and the outside
environement is of discrete event nature, then a LSF to
DE source or sink (sca_lsf::sca_de::sca_source
or sca_lsf::sca_de::sca_sink) should be chosen,
depending on the direction of the port.

Some adaptors require the definition of specific attributes.
Input ports from DE to CT require the definition of a sampling
time-step to guarantee that analog data will be available peri-
odicaly. We ilustrate the use of multi formalims and adaptors
in the following case study.

V. CASE STUDY

A. The model

Consider the following example: a vehicle with speed
control. This system can be modeled by two blocks: One
to model the dynamics of the vehicle and another to model
the speed control. We represent the dynamics of the vehicle
using an internal block diagram that models the differential
equations of the state variables of the system, such as force,
acceleration and distance. The control block, on the other
hand can be best modeled using state machines. Those are
two different formalisms with different semantics. In figure 6
we show the vehicle composed of one part i dynamics typed
by the Dynamics block and one part i control typed by the
Control block.

The dynamics block is composed of two integrators and one
gain block. They appear as parts of the dynamics block. Note
that some blocks have parts that should be initialized with
a proper value. In the diagram of figure 6, init gain is one
instance of type gain with initialized parameters. Other parts
will assume default values as defined by their types.

Figure 7 shows the vehicle’s dynamics modeled by an
internal block diagram with the gain block applying the
equation F = ma and two integrators that will compute the
speed and distance from the acceleration.

To solve the semantic gap of the internal block diagram, we
have added the contraint block CT Block with the keyword
useCT. This implies that semantics defined in section IV
should be applied to this diagram. Thus the gain block and
both integrators shall apply the mathematical relation defined
in figure 5.

Fig. 6. Vehicle composition

Fig. 7. Vehicle dynamics

The control block is responsible for applying a certain
amount of force to the dynamics block, depending on the
state of the vehicle. We have modeled it with a State Machine
Diagram as we can see in figure 8. The goal is to make the
vehicle reach a certain speed, maintain it for a given distance
and then stop.

Note that inputs are continuous variables, but inside the
control block, we only have events or conditions declared. In
this case the semantics of the FSM MoC, as defined in section
IV, is used since we have the constraint FSM Block with the
keyword useFSM.

The adaptation is shown in the top-level block, i.e. the
internal block diagram of the block Vehicle. In order to define
how the state machine interprets analog data and with what
precision the inputs are monitored we explicitly annotate in the
diagrams that ports are bounded to adaptors using the keyword
isAdaptor as shown in figure 9.

The declaration of an adaptor is made in the following
form: isAdaptor(adaptor type), where adaptor type is a code

6

Fig. 8. Vehicle control

for the multi-domain frontier to which the port belongs. In
our example, we consider the vehicle to be embedded in the
discrete event simulation environment of SystemC. Input port
‘F’ is in the frontier of a DE environment and a CT block. It
shall then apply the adaptor type de2ct.

Fig. 9. Vehicle Composed of the dynamics and control

This special case of adaptor will adjust time scale for the CT
block because in the DE environment, data won’t be present at
all time. In the example, we chose to use periodic sampling by
setting the corresponding attribute timestep to 1ms. This will
create a sample every 1ms at the input port ‘F’ required by the
CT block to calculate the outputs ‘v’ and ‘d’, corresponding
to speed and distance respectively.

Outputs ‘v’ and ‘d’ apply the inverse adaptor ct2de. Con-
trary to de2ct this adaptor will convert data instead of ajusting
time. It shall generate an event interpretable by the DE
simulator every time a sample is available allowing the FSM to

detect with a determined precision (in this case the simulation
time step) when events shall trigger its internal guards. The
adaptation is a design choice, and the use of adaptors makes
it explicit so that different tools can interpret the model in the
same way.

B. Results

From our transformations engine, we obtain plain exe-
cutable SystemC-AMS code. The Continuous Time block
was successfully translated to its equivalent LSF model in
SystemC-AMS, using base blocks with the same transfer
function as defined by the constraints of figure 5. The Finite
State Machine was automatically mapped into a two process
module with variables current_state and next_state
implementing the classical representation of state machines in
SystemC.

Fig. 10. Results obtained from an automatic code generation

In figure 10, we show the output of the simulation obtained
by compiling and running the generated SystemC-AMS code.
We can see the force applied to the dynamics model in the
first row. It is a signal of discrete nature correctly adapted
to work with the continuous time signals ‘v’ and ‘d’. The
vehicle accelerates until it reaches a constant speed of 20m/s
as specified in the control block of figure 8. After that, control
will switch to hold state keeping the speed constant until the
vehicle reaches 60m slightly after 4 seconds. It finally switches
to break state until the end of simulation.

The remarkable fact in this simulation is that using only
the SysML diagrams we were able to generate the complete
executable SystemC-AMS model. Semantics were defined
individually for each MoC. Interactions in multi-domain fron-
tiers were strictly described by the adaptors. This approach
could be extended to other languages if the meta-model of the
target language is available. Identical simulation results would
be obtained since the behavior is strictly determined.

VI. DISCUSSIONS AND CONCLUSIONS

This two-step technique is a first approach toward a generic
intermediary meta-model from wich we could automatically
generate code for other languages, e.g. VHDL-AMS or Sys-
temVerilog. With some minor changes, our approach could

7

be extended to support other MoCs. In this case, the user
would have to complete the framework with templates of
constructions proper to the MoC of interest. If necessary, other
languages could be used as well. For example, if the user
intents to use Communication Sequential Processes (CSP),
HetSC could be a possible candidate. This case results in more
changes in the framework such as incrementing the SystemC-
AMS meta-model with specific HetSC elements and adding
corresponding templates to match HetSC grammar.

The approach has its drawbacks as we try to be as generic as
possible. One could claim that since SystemC-AMS provides
facilities to model continuous time systems we could benefit of
the specific MoCs by defining the use of LSF or ELN directly
in the SysML diagrams instead of using a generic MoC CT.
This could facilitate the approach by having only one step:
the M2T transformation. Again, the choice of the two-step
technique allow us to build a generic framework to target the
generation of code for other languages.

VII. CONCLUSION

In this paper we introduce a new approach for simulating
multi-domain systems modeled in SysML. We validate the
behavior through simulation and we target SystemC-AMS as
our execution engine. We address the ambiguity problem of
SysML diagrams by assigning concrete semantics (MoCs) to
SysML diagrams. In order to solve the semantic adaptation
problem, we added the notion of adaptors to SysML based on
the existing SystemC-AMS converter channels.

Based on model driven engineering, our transformation
framework is capable of generating executable SystemC-
AMS code from multi-paradigm SysML diagrams. Our main
contribution in this paper was to extend SysML to SystemC
code generators by adding (a) concrete semantics to SysML
syntactical elements, (b) support for the AMS extension and
(c) simulation capabilities to SysML models.

We will continue our work by defining the semantics of
other formalisms in SysML diagrams and by improving the
specification of testbenches and use cases. We also would like
to use semantic verification techniques in our transformation
engine in order to verify that SysML models are not only
syntactically correct, but also have coherent semantics.

In the future, we wish to apply our strategy to other lan-
guages beyond SystemC-AMS. In order to do so, we have con-
sidered generalizing our engine with an intermediary abstract
semantics to facilitate transformations to other languages. The
development of a generic model of computation is an on-going
field of research of the GeMoC initiative [24].

REFERENCES

[1] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML:
the systems modeling language. Morgan Kaufmann, 2011.

[2] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing
models of computation,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 17, no. 12, pp. 1217–1229,
1998.

[3] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng,
“Heterogeneous concurrent modeling and design in java (volume 3:
Ptolemy ii domains),” EECS Department, University of California,
Berkeley, UCB/EECS-2008-37, 2008.

[4] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity-the ptolemy
approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[5] C. Hardebolle and F. Boulanger, “Modhelx: A component-oriented
approach to multi-formalism modeling,” in Models in Software Engi-
neering. Springer, 2008, pp. 247–258.

[6] IEEE, “Systemc language reference manual,” IEEE Std 1666-2011
(Revision of IEEE Std 1666-2005), pp. 1–614, 2012.

[7] H.-J. Schlebusch, “Systemc based hardware synthesis becomes reality,”
in Euromicro Conference, 2000. Proceedings of the 26th, vol. 1, 2000,
pp. 434 vol.1–.

[8] H. Patel and S. K. Shukla, SystemC kernel extensions for heterogeneous
system modeling: a framework for Multi-MoC modeling & simulation.
Kluwer Academic Pub, 2004.

[9] F. Herrera and E. Villar, “A framework for heterogeneous specification
and design of electronic embedded systems in systemc,” ACM Transac-
tions on Design Automation of Electronic Systems (TODAES), vol. 12,
no. 3, p. 22, 2007.

[10] M. Damm, J. Haase, C. Grimm, F. Herrera, and E. Villar, “Bridging
mocs in systemc specifications of heterogeneous systems,” EURASIP
Journal on Embedded Systems, vol. 2008, p. 7, 2008.

[11] C. Grimm, M. Barnasconi, A. Vachoux, and K. Einwich, “An introduc-
tion to modeling embedded analog/mixed-signal systems using systemc
ams extensions,” in DAC2008 International Conference, 2008.

[12] F. Herrera, E. Villar, C. Grimm, M. Damm, and J. Haase, “Heteroge-
neous specification with hetsc and systemc-ams: Widening the support
of mocs in systemc,” in Embedded Systems Specification and Design
Languages. Springer, 2008, pp. 107–121.

[13] W. Raslan and A. Sameh, “System-level modeling and design using
sysml and systemc,” in Integrated Circuits, 2007. ISIC’07. International
Symposium on. IEEE, 2007, pp. 504–507.

[14] M. Prevostini and E. Zamsa, “Sysml profile for soc design and systemc
transformation,” ALaRI, Faculty of Informatics University of Lugano via
G. Buffi, vol. 13, no. 5, 2007.

[15] F. Mischkalla, D. He, and W. Mueller, “Closing the gap between uml-
based modeling, simulation and synthesis of combined hw/sw systems,”
in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2010. IEEE, 2010, pp. 1201–1206.

[16] F. Jouault and I. Kurtev, “Transforming models with atl,” Satellite Events
at the MoDELS 2005 Conference, pp. 128–138, 2006.

[17] OMG, “Systems modeling language (sysml) specification,” OMG stan-
dards, formal/2012-06-01, 2012.

[18] E. Riccobene, A. Rosti, and P. Scandurra, “Improving soc design flow
by means of mda and uml profiles,” in 3rd Workshop in Software Model
Engineering (WiSME 2004), 2004.

[19] L. Bondé, C. Dumoulin, and J.-L. Dekeyser, “Metamodels and mda
transformations for embedded systems,” in Advances in design and
specification languages for SoCs. Springer, 2005, pp. 89–105.

[20] J. Musset, E. Juliot, S. Lacrampe, W. PIERS, C. BRUN, L. GOUBET,
Y. LUSSAUD, and F. ALLILAIRE, “Acceleo user guide,” 2006.
[Online]. Available: acceleo.org

[21] OMG, “Mof model to text transformation language (mofm2t), 1.0,”
OMG standards, formal/08-01-16, 2008.

[22] T. Weilkiens, Systems engineering with SysML/UML: modeling, analy-
sis, design. Morgan Kaufmann, 2011.

[23] W. Mueller, J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, and W. Rosen-
stiehl, “The simulation semantics of systemc,” in Design, Automation
and Test in Europe, 2001. Conference and Exhibition 2001. Proceedings.
IEEE, 2001, pp. 64–70.

[24] GEMOC, “On the globalization of modeling languages,” May 2011.
[Online]. Available: gemoc.org

8

