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Abstract 
We propose a framework that allows for modeling 

Enterprise Architectures (EA) in order to automate 
analysis, prediction, simulation, and thus to address 
the key issue of business/IT alignment. Smart Grids are 
power grids enabled with Information and 
Communication Technologies. Extensive studies try to 
foresee the impacts of Smart Grids on electric 
components, telecommunication infrastructure, and 
industrial automation and IT. Our message is that 
Smart Grids have also impacts on the overall EA of 
grids operators. Therefore, our framework enables 
stakeholders to validate and criticize their modeling 
choices for the EA in the context of Smart Grids. It is a 
multi-view framework regarding three aspects ⎯ 
information, processes, and goals ⎯ for each view. We 
add an integration view to ensure inter- and intra-view 
consistency. We rely on Model Driven Engineering 
(MDE) techniques to ease the holistic modeling and 
analysis of enterprise systems. Finally, we show the 
utility of our approach by applying it on a Smart Grid 
case study.  
 
1. Introduction 

A Smart Grid is a power grid enabled with 
information and communication technologies in order 
to optimize the production, distribution and 
consumption of electric power [25]. Smart Grids 
represent a major paradigm shift for organizations 
dealing with electric power, especially operators, and 
has a significant impact on their enterprise systems. 

On one hand, Smart Grids lead the involved 
organizations to consider their own business models 
and the underlying IT, and thus the whole EA, for a 
better control of power grids. In fact, EA consists in 
“the explicit description and documentation of the 
relationships among business and management 
processes and information technology” [12]. 

On the other hand, stakeholders may have different 
interests (business strategies, environmental issues, 
standards, technologies, etc.). Enterprise architectures 
allow them for an effective alignment of these interests. 

Simulation is a well-known method used to validate 
and criticize systems design in the early stages of 
development. Hence, we aim to enable experts involved 
in designing an EA that addresses Smart Grids to have 
direct insights into models through simulation. We 
identify three main obstacles to overcome in order to 
achieve this goal. 

First, modeling comes prior to any simulation 
activity. There are many existing EA frameworks. 
These frameworks are based on multi-view modeling 
approaches. Such approaches are essential for the 
comprehension of complex systems like the EA of 
organizations dealing with Smart Grids. However, the 
models produced are usually intended to document 
enterprise solutions and to communicate about them. 
Modern organizations have to align their strategy and 
business goals with their IT infrastructure to maximize 
their benefits. Expressing explicit links between EA 
views and automating their exploitation is a way to 
achieve effective alignment.  

Second, Smart Grids involve several experts as they 
combine electrical engineering and IT engineering. 
Therefore, a model must meet two criteria: (1) it is   
understandable to all the stakeholders involved; (2) it is 
based on sustainable standards. Smart Grids experts are 
effectively adopting standards like UML [24].  
Nonetheless, EA must effectively integrate these 
standards.  

Finally, a model’s ability to be executed is a sine 
qua non condition to simulate it. As mentioned, models 
produced to express artifacts of an EA lack formal 
semantics since these models are aimed at 
documentation and communication. So far, the 
executability of a language is closely linked to the way 
its semantics is formalized.  Hence, expressing the 
formal semantics of a modeling language remains a key 
challenge for EA. 



To address the obstacles above, we propose an 
integrative approach using several views to model and 
simulate an EA. In our approach, we consider models as 
first class citizens as they are “productive” instead of 
“contemplative” models.  This is precisely the leitmotiv 
of Model Driven Engineering (MDE) [4]. We take 
advantage of MDE principles and techniques such as 
model transformations and executable models in order 
to align an organization’s business goals with its IT 
features before going through simulation.  

The paper is structured as follows. Section 2 depicts 
the theoretical background regarding MDE concepts 
and techniques, EA frameworks and the simulation of 
an EA. Section 3 describes the industrial issues inherent 
to Smart Grids. In section 4, we detail our approach and 
its application to a Smart Grid case study.  Section 5 
deals with the related work. Section 6 concludes the 
paper and gives some perspectives to our work. 

 
2. Theoretical background  

Smart Grids and related EA are, in essence, 
complex systems [17]. MDE has proven its ability to 
tackle such systems through extensive work [9]. The 
first part of this section deals with MDE. Our purpose is 
to model and simulate the EA of Smart Grids. We 
present the main views used for EA modeling in the 
second part. Finally, we specify the objectives of EA 
simulation and the available means to achieve it. 

 
2.1. Model Driven Engineering  

MDE promotes the “everything is a model” 
paradigm [4]. Indeed, it is a model driven approach that 
covers the whole life cycle of a software system using 
“productive” models [3], i.e., machine-processable 
models (simulation, validation verification, code 
generation, etc.). Models are first-class citizens in 
MDE. Although the definition of what a model has 
raised some debate, a common definition is: “A model 
is a simplification of a system built with an intended 
goal in mind. The model should be able to answer 
questions in place of the actual system” [5]. This 
definition induces the first basic relation of MDE. 
Indeed a given system is RepresentedBy by a model, 
which only selects the relevant details from that system 
in order to answer the modeler's questions. 

Furthermore, MDE makes it possible to capture the 
business logic through metamodels. Indeed a 
metamodel describes all the handled concepts in 
addition to their relationships and constraints. All 
models used should conform to this business logic and 
so to the metamodel. This brings us to the second basic 
relation of MDE, namely ConformsTo, which connects 
a model to its metamodel [8]. 

The main interest of MDE is to allow for an 
automated manipulation of models through model 
transformations. A common definition of a model 
transformation is given by [15]: “A model 
transformation is the automatic generation of a target 
model from a source model, according to a 
transformation description”.  

As illustrated in Figure 1Erreur ! Nous n’avons 
pas trouvé la source du renvoi., the transformation 
description is given at the metamodel level. A 
transformation engine performs this transformation. 
Model transformations lie at the heart of a Model 
Driven approach. MDE promotes their use throughout 
the whole life cycle of a software system such as for 
refinement, composition, analysis, or simulation. 
Likewise, model transformations make it possible to 
quickly align IT with business needs and easily 
capitalize business knowledge in the metamodels. 

 
Figure 1. Model transformation components 

Nevertheless, the extensive range of the handled 
models should be consistent and representative of the 
final system. Therefore, maintaining consistency across 
models and their transformations is an active area of 
research in MDE. One way to achieve this purpose is to 
type entry models of transformations through Model 
Typing [22]. Model Typing offers to increase the reuse 
of transformations by highlighting the common 
characteristics of models. Figure 2Erreur ! Nous 
n’avons pas trouvé la source du renvoi. illustrates this 
principle. The model mA is typed by MTA, and a model 
transformation tAèC transforms mA into mC. If you need 
to transform another model mB into mC, you may want 
to reuse the same model transformation. If MTB is 
declared as a subtype of MTA, you will be able to 
perform tAèC to do so. In this way, Model Typing may 
be very useful for EA. We give some examples of its 
potential use in section 4. Moreover, it is a tooled 
approach. Kermeta [11] is a metamodeling language 
that implements Model Typing. 



 
Figure 2. Model Typing principle 

2.2. Enterprise Architecture 
Enterprise Architecture is an effective way to catch 

an enterprise system in its current and desired states. 
This description should reflect the concerns of business 
analysts, data architects, functional architects, 
application architects, technical experts, etc.  Adopting 
a monolithic vision of EA, especially in the Smart Grid 
context, is unsuitable to build an adaptive description 
given the complexity of these systems and the large 
number of involved stakeholders. 

For this reason, several frameworks are based on a 
multi-view approach in which a view conforms to the 
perspective of a particular stakeholder. Such an 
approach helps to handle complexity by separating the 
concerns of stakeholders in different perspectives.  

Zachman’s framework and The Open Group 
Architectural Framework (TOGAF) are among the most 
popular frameworks adopting a multi-view approach 
[1]. The Smart Grid Architecture Model (SGAM) 
framework [24] is also worth mentioning. It addresses 
the architecture of Smart Grids by combining three 
domains: information systems, power grids, and 
telecommunication networks. 

Views slightly differ between frameworks. But, 
generally speaking, there are five main views:  

• Business view: This view reflects the business 
vision including business objects, processes and actors; 

• Information view: This view describes 
information required to perform business processes; 

• Functional view: This view describes 
functional blocks that realize business processes and 
functional processes that refine business processes. This 
modular structure ensures flexibility and adaptability 
while meeting the organization’s needs; 

• Application view: This view is divided into 
applicative modules. Each one implements one or more 
functional blocks;  

• Technical view: This view describes the 
technical infrastructure on which applications are 
deployed (hardware and telecommunication networks). 

  Moreover, these frameworks hierarchically 
organize the different views according to the “IT 
follows business” principle: starting with the business 
perspective, deriving it progressively into the technical 

infrastructure via information, functions, and 
applications. Nonetheless, the information view 
deserves special attention. Indeed, information is 
modeled as an aspect of all other views (Zachman) or 
separately in a dedicated view (TOGAF, SGAM).  

The models describing these views are usually 
“contemplative” models. Mainly used for 
communication and documentation purpose, these 
models are disembodied from their implementation. 
Moreover, languages used to model EA features, such 
as ArchiMate and UML, offer extended concepts to 
express the modelers’ needs, but lack formal and 
rigorous semantics that allows for automation.  

Automated manipulation facilitates business and IT 
alignment. Indeed, the use of executable models 
improves consistency among views and eases their 
understanding by the stakeholders who can simulate 
these models in the early design stages. 

2.3. EA simulation 
According to Shannon [21], simulation is “the 

process of designing a model of a real system and 
conducting experiments with this model for the purpose 
either of understanding the behavior of the system or of 
evaluating various strategies (within the limits imposed 
by a criterion or set of criteria) for the operation of the 
system.”  

Regardless of the application field, simulation is a 
powerful tool to evaluate the modelers’ choices for the 
system structure and behavior. Simulation may take the 
form of a model animation and the study of the 
behavior of this model according to the inputs.  

Simulating EA in the context of Smart Grids is 
crucial as they are in constant and swift change: fluid 
regulatory frameworks, emergence of new partners, 
heterogeneous interactions with customers through 
smart meters, smart phones, digital tablets, etc.  

Model executability is necessary to reach model 
simulation. Execution capabilities of models make the 
models more comprehensible for experts and avoid 
ambiguities caused by purely contemplative models.  

Model execution is made possible by defining 
execution semantics for the language that expresses 
models.  The semantics of a language expresses the 
meaning of the concepts and their arrangements when 
instantiated at the model level [18]. The construction of 
the semantics depends on the pursued goal: simulation, 
code execution, verification, etc. Expressing a language 
semantics is the focus of intensive research especially 
in the field of formal languages [13]. 

The IBM manifesto [6] attests that the three main 
axes of MDE are: (1) open standards, (2) automation, 
and (3) direct representation. Given these axes, we 
adopt standardized and executable languages that are 
understandable to the stakeholders involved in EA in a 



Smart Grids context. We identify several languages that 
satisfy these criteria: 

• A subset of UML diagrams limited to class 
diagram and activity diagram has henceforth an 
execution semantics formalized by the fUML 
(foundational UML) standard. Class diagrams are 
suitable for the representation of information models 
while activity diagrams are suitable for the 
representation of the behaviors expected;  

• BPMN is a standardized graphical modeling 
language. It allows for the representation of most 
aspects of a business process within a unique diagram. 
BPMN has a well-defined execution semantics. Thus, a 
variety of tools for the simulation of business processes 
implement this language;  

• The Object Constraint Language (OCL) is a 
standardized textual language for expressing constraints 
on UML diagrams in order to model properties that are 
difficult to capture in UML models. The execution of 
OCL is made possible by model transformation 
(targeting a lower level language like MiniZinc [19]) or 
by using it at the metamodel level (OCLinEcore [27]).  
 
3. Industrial background 

In this section, we describe the industrial issues we 
address before introducing the Smart Grid case study on 
which we test our approach. 

3.1. Industrial issues 
A good operation of power grids relies on the 

balance between consumption and production. 
Henceforth, Smart Grids are  essential to maintain this 
balance and to handle the massive penetration of 
electric vehicles and renewable energy sources. Smart 
Grids provide automatic and real-time energy 
management via sensors and remotely controlled 
checkpoints. 

In essence, Smart Grids bring profound changes to 
the IT that drives them and thus to the whole EA: new 
flows of information sent from the power grid, new 
stakeholders such as decentralized energy resources 
(wind farms, photovoltaic panels), new communication 
devices like smart meters, the need of conformance to 
the new European regulations and directives [26], new 
usages (electric vehicle, connected home). 

To handle the emerging paradigms, experts are 
developing new use cases that need to be tested and 
validated before their final adoption. Various 
demonstrators are deployed in the field. These pilot 
projects allow for the conduct of experiments in real 
conditions to test different functions and services.  

For instance, InfiniDrive and Ventea are two French 
demonstrators. InfiniDrive controls an electric vehicle 
charging infrastructure. Ventea handles a rural grid with 

high wind capacity penetration. However, physical 
demonstrators force the grid operator to enroll industrial 
and/or domestic customers who are willing to install 
test equipment at home. Moreover, their operation is 
limited by current regulations. Also, their 
implementation is often expensive and time consuming. 

Besides these demonstrators, full-scale test-grids 
allow for the evaluation of new equipment before its 
deployment on the real grid. ERDF (Électricité Réseau 
Distribution France), a major French distribution 
system operator, maintains Concept Grids for this 
purpose. Indeed, it is possible to conduct stress tests in 
disturbed conditions that would be impossible to 
perform on a real grid, with real customers. 
Nevertheless, the small size of these networks remains 
limiting. 

Simulation makes it possible to overcome these 
limitations. Such a simulation includes the three 
domains of a Smart Grid: electrical infrastructure 
(transformers, lines, loads, sources), telecommunication 
infrastructure (mobile network, BPL) and, of course, IT. 
Specialized simulators for power grids (EMTP-RV, 
Dymola, PowerFactory, Eurostag, etc.) and for 
telecommunications (OPNET, NS-3 OMNeT ++, etc.) 
have already proven how powerful simulation is in their 
respective fields. Nonetheless, EA is often reduced to 
its IT component and relegated to mere set-points 
calculation written in Matlab or C++ [20].  

Our ambition is to show how the simulation of EA 
models can also be effectively used by experts involved 
in Smart Grids development. Indeed, Smart Grids have 
an impact not only on the electric and 
telecommunication infrastructure of a given system 
operator but also on its interactions with customers, its 
relations with alternative power providers, its strategic 
partners, its internal processes, its branding, its services, 
its relations with local authorities, etc.  

3.2. Case study: Management of an electric 
vehicles fleet 

New applications of electric technologies are 
emerging including electric mobility. Public authorities 
estimate that approximately two million electric 
vehicles will be on the French roads by 2020. This 
ambition is motivated by the objective of the French 
government to reduce greenhouse gas emissions by four 
over four decades.  

Several R&D projects aim to handle the impact of 
the increasing number of electric vehicles on 
distribution power grids. Indeed, full charge of an 
electric vehicle with 150 km autonomy is equivalent in 
terms of power demand to:  

• A water heater if the battery charges in 8 hours 
(normal charging); 



• A building if the battery charges in 1 hour 
(accelerated charging); 

• An urban area if the battery charges in 3 min 
(fast charging). 

Maintaining balance between supply and demand is 
a key issue to ensure a high quality delivery of electric 
power. For this purpose, when demand increases, power 
grid operators start coal and oil plants, which are costly 
and emit CO2. Ongoing experiments are testing new 
methods to avoid supply/demand constraints on power 
grids without starting costly and polluting plants. For 
instance, La Poste (French mail office) and ERDF 
implemented InfiniDrive to optimize the charging 
system of the electric vehicles fleet of La Poste. 
Optimization algorithms and related charging 
infrastructures aim to minimize the concentration of 
accelerated and fast charging during peak hours while 
taking into account incentive tariff during off-peak 
hours.  

Engineers use simulation to improve the design of 
these charging systems. However, electric mobility 
involves a paradigm shift not only for the grid 
infrastructure but also for higher company processes 
and constraints. Indeed, the electric vehicle is limited by 
its autonomy so it cannot be used for any tour. Also, 
charging an electric vehicle is different from filling the 
tank of a combustion vehicle (time of charging, 
charging station availability).  

As a result, the massive use of electric vehicles 
deeply affects the whole enterprise system: it has an 

impact on stakeholders like fleet managers, on agents 

who drive the electric vehicles, on business processes 
(tour optimization, allocation of vehicles to these tours, 
agent’s tours while using an electric vehicle, etc.), on 
information (new business objects come out like 
electric vehicles, charging points, etc.), and on 

applications (new applications have to be deployed and 
integrated with existing ones).  

French electric grid operators used to have a 
relatively slow evolution of their business and technical 
environment. This paradigm is changing as Smart Grids 
bring broad, deep and rapid shifts on organizational 
vision. To anticipate the resulting EA transformations, 
we propose to model, analyze and simulate EA by 
automating validation, deployment of an enterprise 
solution while maintaining consistency across EA 
views.  

Hereafter, we present our executable Model Driven 
approach for EA while maintaining consistency across 
views. This approach allows us to perform automated 
analysis and simulation through the use of executable 
models, Model Typing and model transformations. 

4. Approach and its application to the case 
study 

In this section, we present our approach and we 
apply it on the case study of managing an electric 
vehicles fleet. Our contribution is twofold. First, we 
propose a multi-view framework for EA with an 
additional view: the integration view. This view aims to 
address consistency and alignment issues. Second, we 
use executable and standardized languages from MDE 
to model and simulate EA. 

4.1. General approach 
Our approach is based on multi-view modeling. We 

identify four views addressing concerns of experts and 

partners involved in modeling and validating EA 
features.  

In our approach, we consider only business, 
functional, and application views (Figure 3). But we 

Figure 3. Proposed approach 



aim to generalize it to the technical view as well. Most 
frameworks commonly use these views.  

• We do not model information in a 
dedicated view. We explicit information as an 
aspect of the other views as recommended by 
Zachman’s framework. In fact, information is 
spread in the business, functional, and 
application views:  

• Information aspect of the business view 
This aspect represents the major business concepts 

handled by the business processes. This model is not 
very prone to change, unless a significant change occurs 
in business practices. It is involved in the division into 
blocks of the processes aspect of the functional view; 

• Information aspect of the functional view 
This aspect represents the functional data type and 

gives a detailed description of data handled by 
functional blocks. It refines the business concepts by 
giving their types. It models the data properties, 
relationships, etc.; 

• Information aspect of the application view 
This aspect represents the application data model, 

which highly depends on the chosen software. It refines 
the functional data and gives the required data formats 
that are compliant with the application modules. 

 
In addition, we model the dynamics of views in the 

processes aspect. Thus, for each view, we differentiate 
the flowing processes aspects:  

• Processes aspect of the business view 
Typical artifacts of this aspect are business 

processes and involved actors. The use of executable 
and standard formalisms is highly recommended to ease 
automated analysis and simulation. UML activities 
diagrams and BPMN are good candidates. However, 
Domain Specific Modeling Languages can also be used 
for this aspect; 

• Processes aspect of the functional view 
This aspect reflects the perspective of the functional 

architect and describes the functions that realize 
business processes and their orchestration as functional 
processes.  These functions are gathered into blocks. A 
unique functional block handles each business concept 
identified in the information aspect of the business 
view. This ensures a high cohesion inside each block as 
well as decorrelation between blocks in order to build a 
modular and flexible architecture; 

• Processes aspect of the application view 
This aspect reflects the perspective of the 

application (i.e. software) architect and represents the 
application modules required to implement the 
functional blocks. Firstly, it is recommended to conduct 
an inventory of the existing softwares likely to 
implement the different functional blocks. Then, if none 

of the existing applications are able to satisfy new 
business process needs, the software architect chooses 
to set up new software components. In addition, he 
specifies the links between applications (exchanged 
messages, data synchronization, transferred files, etc.). 

Besides processes and information aspects, we 
explicitly state goals for each view. Business goals are 
refined into functional goals, which are refined into 
application goals. 

 
Alignment and consistency issues are critical for EA 

[12]. Our main contribution is to dedicate a specific 
view to address them: the integration view. This view 
defines an alignment map by specifying (1) entities to 
align (2) the alignment and consistency links (3) 
appropriate model transformations required to refine 
these entities. Model transformations ease and automate 
transitions from one view to another. Figure 4 provides 
a metamodel of our overall approach. It represents the 
discussed entities and their relationships. Other views 
and aspects can extend it. 

The integration view allows for “vertical” 
integration (between views) and for “horizontal” 
integration (within one view).  

 

 
Figure 4. Metamodel of the approach 

Vertical integration describes consistency links 
between EA views except for the integration view. 
Hence, the transverse integration view makes it possible 
to explicitly model “Refinement” links showed in 
Figure 3 through the class “Vertical”.  

We give a model of the integration view in Figure 5. 
For instance, it verifies that an application actually 
implements all functional blocks necessary for the 
execution of a business process. This view gives access 



to traceability information in order to analyze the 
impact of an evolution or a failure of an application 
module on the business processes. It also verifies that 
an application format can encode functional data types 
representing a given business concept. Besides it 
identifies the potential model transformations required 
to automate the deployment and the integration of 
models from different views. Thus, model 
transformations are seen as operators on models and 
Model Typing as data typing.  

 

 
Figure 5. Entities and relationships involved in the 

integration view 

 
Likewise, the integration view checks intra-

consistency links through the “Horizontal” class.  In 
Figure 5, it takes the form of the "use" association 
between information and processes aspects. It ensures 

the compatibility of data exchanged among the tasks of 
a business process, the functions of a functional 
process, and the modules of an application. 

The “fulfilledBy” association of Figure 5 also 
inherits from the “Horizontal” class. It explicitly 
associates a goal and a responsible entity.  

Moreover, MDE methods and languages are 
valuable to automate the analysis of EA. The selection 
of the relevant MDE techniques is guided by the IBM 
manifesto [6], which recommends using languages that 
are executable, standardized, and familiar to experts’ 
domain. For instance, this is the case of fUML, BPMN, 
and OCL. Moreover, the selection of the relevant 
languages for model transformation depends on the 
involved models (textual, graphic, etc.).  

4.2. Implementation of the approach for the 
case study  

In this section, we experiment our approach on the 
management of an electric vehicles fleet. We create the 
required models for business, functional and software 
views adopting executable languages. Consistency links 
are modeled within the integration view. Figure 6 
illustrates the overall architecture of the industrial case. 

• Business view 
For this view, we use fUML as an executable 

modeling language for business processes. Our business 
process consists in assigning a vehicle (electric or 
combustion) to a giving tour. We model and simulate 
this process using Papyrus, which supports fUML. 
Thus, the created model represents the business view 
processes aspect (Figure 6). 

The business process begins with collecting data 
concerning vehicles and tours. Then it estimates the 
energy needed by each tour before assigning the right 

Figure 6. General architecture of the study case according to our approach 



vehicle to each tour. Finally, the fleet manager validates 
or corrects this allocation.  

For the information aspect, we model the concepts 
of vehicle, tour and allocation using a UML class 
diagram that specifies the class names and their 
relationships.  

Managing a fleet of vehicles may have various 
goals. For this case, getting the best ROI (Return On 
Investment) is a business goal for the integration of 
electric vehicles into the fleet. The business goal is 
modeled as a UML class. 

Domain practices motivate the choices regarding 
languages and tools. Indeed, the International Electric 
Commission relies on UML class diagrams to model 
and maintain the CIM standard [24]. CIM is a Common 
Information Model for the electric field.  

• Functional view 
The functional processes aspect contains several 

blocks.  One block is dedicated to functional processes 
that refine the business process. These processes are 
constituted of functions orchestration. Further, there is 
one block gathering together functions handling the 
allocation, one block for the vehicles, and one block for 
the tours (Figure 6). 

For instance, we model the function that performs 
the allocation by creating a number of OCL constraints 
to solve (Figure 7). Indeed, in order to allocate an 
electric vehicle to a tour, its autonomy must be enough 
for the given tour. In this case sudy, we consider that 
there is no possibility to recharge the vehicle during the 
tour. 

Figure 7. OCL constraints for the allocation function 
 

We model the functional data by a UML class 
diagram, which represents the information aspect of the 
functional view. Besides, the OCL constraints are 
applied to this class diagram. Indeed, OCL is suitable 
for class diagrams. It is an executable language and an 
OMG standard for expressing constraints. For the other 
treatments (calculating tour energy, etc.), it is possible 
to use executable activity diagrams.  

The functional goal is to optimize the use of the 
electrical vehicles in order to reach the business goal. 
Indeed, an electric vehicle has to be frequently used in 
order to be economically profitable. The functional goal 

is also modeled through a UML class as illustrated in 
Figure 6.  

• Application view 
For the dynamic aspect of this view, we identify the 

applications needed to implement the functional blocks. 
In our case, the application portfolio of the company 
already has an application for tour management 
(calculate optimized tour from work orders), and for 
vehicle management (administration, maintenance, 
etc.). For allocation, we use MiniZinc to model the 
identified constraints Figure 8.  

MiniZinc is a medium-level constraint modeling 
language. It is high-level enough to express most 
constraint problems easily, but low-level enough to be 
mapped into existing solvers. It aims to become a 
standard modeling language in the field of constraint-
oriented programming.  
 

 
Figure 8. Constraints in the MiniZinc module 

The different data files processed by applications 
represent the information aspect of the software view 
(Figure 9).  

 
Figure 9. Data file for the MiniZinc module 

• Integration view 
We model the integration view by (1) the links 

between elements from the same view or between 
elements belonging to different views and (2) the 
constraints on these links. For instance, in Figure 10, 
we modeled the function “Allocate EV to tour”, its 
inputs and outputs, and the functional goal it fulfills. 
We did the same for the MiniZinc module “Optimize 
allocation”, for its inputs and outputs, and for the 
application goal it fulfills.  

Due to the limitation of space, we only illustrate 
these elements of the overall case study. Nevertheless, 
the same principles are applied to the remaining 
elements from the different views.  



For instance, an “input” link should check that the 
information type is consistent with the function using it 
and check that the information format fits the involved 
application module. Besides, these constraints ensure a 
good orchestration of tasks, functions and modules. For 
example, it ensures that the output of a given function is 
consistent with the input of the next function. The links 
“input”, “output”, and “fulfilled by” inherit from the 
class “Horizontal” of the approach metamodel 
illustrated in Figure 4.  

If a function output does not fit the information type 
of the next function, we use Model Typing as explained 
in Erreur ! Nous n’avons pas trouvé la source du 
renvoi.. For instance, the function that calculates the 
required energy for a tour may not use a tour as 
information but rather a ride. 

 

 
Figure 10. Partial integration view model for the EV 

allocation case study 

In this case, we define “Tour” as subtype of “Ride” 
in order to perform the calculation on “Tour” and to be 
able to orchestrate the functions. Indeed, a function can 
also be seen as a model transformation that takes some 
models as inputs and produces other models as outputs.  

The integration view also establishes links across 
elements of different views. In the example above, the 
“refine” association between the functional goal and the 
application goal insures Business/IT goal alignment. 
This kind of consistency link checks if all applications 
are directly or indirectly linked to the goals provided by 
the functional view which are linked to the goal of the 
business view. For instance, to Optimize electric 
vehicles use, the MiniZinc module has to Maximize 
electric distance while calculating the allocation 
(Figure 10). 

Model transformations can also guarantee 
consistency between views in addition to facilitating the 
shift from one view to another. For instance, OCL 
constraints for the allocation function are automatically 
transformed into MiniZinc constraints in the application 

view using the transformation language Acceleo. We 
also transformed the information types “Electric 
Vehicle” and “Tour” into the right information format 
for the MiniZinc module. 

5. Related Work 
Model Driven Engineering has proven its capacity 

to address complex software systems [9]. Our message 
in this paper regarding MDE is twofold. First, it is 
suitable for EA modeling. Secondly, it is above all 
suitable for the automated analysis, prediction, and 
simulation of the whole Enterprise Architecture, not 
limited to the application and technical views. Models-
as-executable-artifacts is the least common of all 
models usages in EA [14]. However, ontology 
approaches allow for automated analysis of models for 
specific aspects as tasks and workflows [10] or for a 
holistic view of EA in more recent ontology 
approaches [23]. Nevertheless, these approaches 
requires to map models-as-high-level-specifications 
[14] and their equivalent ontologies in order to perform 
analysis. Our approach does not require mapping and 
performs analysis and simulation immediately on the 
executable models as designed by stakeholders.  

Besides, intra- and inter-view consistency, 
validation and impact analysis are addressed by a UML 
based approach where an extension of UML provides a 
toolkit of EA entities and their relationships [2]. Our 
study relies on these entities and relationships but goes 
further by facilitating the shift from one view to 
another using model transformation and sticks to the 
standard executable languages like fUML and OCL. 
Moreover, Model Driven Architecture (MDA) applied 
at the level of an organization [7] deals with enterprise 
models as it would do with a software system. The 
business and function views are seen as Computation 
Independent Models, and the application and technical 
views as Platform Specific Models. This vision joins 
our approach on its principles regarding the need for 
well-defined modeling languages. However, our aim is 
to provide enterprise modelers with an executable 
Model Driven framework in line with their current 
practices in order to ease its adoption. 

6. Conclusion and perspectives 
Existing EA frameworks provide a holistic picture 

of enterprise systems but lack executability for 
modeling validation and analysis. Modeling 
assessment and analyzability help on addressing the 
key challenge of business/IT alignment. Model Driven 
Engineering applied to EA provides enterprise 
modelers with an efficient toolkit of executable 
modeling languages and techniques like model 
transformation and Model Typing. Given this 
statement, our contribution is to provide an executable 



Model Driven framework for EA with entities and 
relationships across different EA views and with the 
relevant MDE methods. We modeled inter- and intra-
view links in a dedicated view: the integration view. 
The integration view allows for checking the horizontal 
consistency between behavior, information, and goals, 
as well as the vertical refinements of behaviors, 
information and goals across views. 

We apply our approach on the Smart Grids context. 
Indeed, we show how Smart Grids have a major impact 
not only on power grids but also on the whole 
enterprise system of grid operators.  

Currently, our approach is used to create machine-
processable models and conduct automated analysis 
regarding the As-Is or the To-Be of an EA in separate 
ways. However, to retrace the life cycle of EA and the 
location of EA in this life cycle, we need an evolution 
framework. Research is being conducted in this 
direction but at the Information System level [16]. 
Therefore, we are continuing to enrich our executable 
Model Driven framework to take into consideration the 
evolution aspect of EA throughout its life cycle. 
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