
An Executable Model Driven Framework for Enterprise Architecture
Application to the Smart Grids Context

Rachida Seghiri

EDF R&D
LRI, Université Paris-Saclay

91405 Orsay, France
 rachida.seghiri@edf.fr

Frédéric Boulanger
CentraleSupélec

LRI , Université Paris-Saclay
91405 Orsay, France

frederic.boulanger@lri.fr

Claire Lecocq
Institut Mines-Telecom

Telecom SudParis
CNRS UMR 5157, SAMOVAR

91011 Evry, France
claire.lecocq@telecom-sudparis.eu

Vincent Godefroy
EDF R&D

91141 Clamart, France
vincent.godefroy@edf.fr

Abstract
We propose a framework that allows for modeling

Enterprise Architectures (EA) in order to automate
analysis, prediction, simulation, and thus to address
the key issue of business/IT alignment. Smart Grids are
power grids enabled with Information and
Communication Technologies. Extensive studies try to
foresee the impacts of Smart Grids on electric
components, telecommunication infrastructure, and
industrial automation and IT. Our message is that
Smart Grids have also impacts on the overall EA of
grids operators. Therefore, our framework enables
stakeholders to validate and criticize their modeling
choices for the EA in the context of Smart Grids. It is a
multi-view framework regarding three aspects ⎯
information, processes, and goals ⎯ for each view. We
add an integration view to ensure inter- and intra-view
consistency. We rely on Model Driven Engineering
(MDE) techniques to ease the holistic modeling and
analysis of enterprise systems. Finally, we show the
utility of our approach by applying it on a Smart Grid
case study.

1. Introduction

A Smart Grid is a power grid enabled with
information and communication technologies in order
to optimize the production, distribution and
consumption of electric power [25]. Smart Grids
represent a major paradigm shift for organizations
dealing with electric power, especially operators, and
has a significant impact on their enterprise systems.

On one hand, Smart Grids lead the involved
organizations to consider their own business models
and the underlying IT, and thus the whole EA, for a
better control of power grids. In fact, EA consists in
“the explicit description and documentation of the
relationships among business and management
processes and information technology” [12].

On the other hand, stakeholders may have different
interests (business strategies, environmental issues,
standards, technologies, etc.). Enterprise architectures
allow them for an effective alignment of these interests.

Simulation is a well-known method used to validate
and criticize systems design in the early stages of
development. Hence, we aim to enable experts involved
in designing an EA that addresses Smart Grids to have
direct insights into models through simulation. We
identify three main obstacles to overcome in order to
achieve this goal.

First, modeling comes prior to any simulation
activity. There are many existing EA frameworks.
These frameworks are based on multi-view modeling
approaches. Such approaches are essential for the
comprehension of complex systems like the EA of
organizations dealing with Smart Grids. However, the
models produced are usually intended to document
enterprise solutions and to communicate about them.
Modern organizations have to align their strategy and
business goals with their IT infrastructure to maximize
their benefits. Expressing explicit links between EA
views and automating their exploitation is a way to
achieve effective alignment.

Second, Smart Grids involve several experts as they
combine electrical engineering and IT engineering.
Therefore, a model must meet two criteria: (1) it is
understandable to all the stakeholders involved; (2) it is
based on sustainable standards. Smart Grids experts are
effectively adopting standards like UML [24].
Nonetheless, EA must effectively integrate these
standards.

Finally, a model’s ability to be executed is a sine
qua non condition to simulate it. As mentioned, models
produced to express artifacts of an EA lack formal
semantics since these models are aimed at
documentation and communication. So far, the
executability of a language is closely linked to the way
its semantics is formalized. Hence, expressing the
formal semantics of a modeling language remains a key
challenge for EA.

To address the obstacles above, we propose an
integrative approach using several views to model and
simulate an EA. In our approach, we consider models as
first class citizens as they are “productive” instead of
“contemplative” models. This is precisely the leitmotiv
of Model Driven Engineering (MDE) [4]. We take
advantage of MDE principles and techniques such as
model transformations and executable models in order
to align an organization’s business goals with its IT
features before going through simulation.

The paper is structured as follows. Section 2 depicts
the theoretical background regarding MDE concepts
and techniques, EA frameworks and the simulation of
an EA. Section 3 describes the industrial issues inherent
to Smart Grids. In section 4, we detail our approach and
its application to a Smart Grid case study. Section 5
deals with the related work. Section 6 concludes the
paper and gives some perspectives to our work.

2. Theoretical background

Smart Grids and related EA are, in essence,
complex systems [17]. MDE has proven its ability to
tackle such systems through extensive work [9]. The
first part of this section deals with MDE. Our purpose is
to model and simulate the EA of Smart Grids. We
present the main views used for EA modeling in the
second part. Finally, we specify the objectives of EA
simulation and the available means to achieve it.

2.1. Model Driven Engineering

MDE promotes the “everything is a model”
paradigm [4]. Indeed, it is a model driven approach that
covers the whole life cycle of a software system using
“productive” models [3], i.e., machine-processable
models (simulation, validation verification, code
generation, etc.). Models are first-class citizens in
MDE. Although the definition of what a model has
raised some debate, a common definition is: “A model
is a simplification of a system built with an intended
goal in mind. The model should be able to answer
questions in place of the actual system” [5]. This
definition induces the first basic relation of MDE.
Indeed a given system is RepresentedBy by a model,
which only selects the relevant details from that system
in order to answer the modeler's questions.

Furthermore, MDE makes it possible to capture the
business logic through metamodels. Indeed a
metamodel describes all the handled concepts in
addition to their relationships and constraints. All
models used should conform to this business logic and
so to the metamodel. This brings us to the second basic
relation of MDE, namely ConformsTo, which connects
a model to its metamodel [8].

The main interest of MDE is to allow for an
automated manipulation of models through model
transformations. A common definition of a model
transformation is given by [15]: “A model
transformation is the automatic generation of a target
model from a source model, according to a
transformation description”.

As illustrated in Figure 1Erreur ! Nous n’avons
pas trouvé la source du renvoi., the transformation
description is given at the metamodel level. A
transformation engine performs this transformation.
Model transformations lie at the heart of a Model
Driven approach. MDE promotes their use throughout
the whole life cycle of a software system such as for
refinement, composition, analysis, or simulation.
Likewise, model transformations make it possible to
quickly align IT with business needs and easily
capitalize business knowledge in the metamodels.

Figure 1. Model transformation components

Nevertheless, the extensive range of the handled
models should be consistent and representative of the
final system. Therefore, maintaining consistency across
models and their transformations is an active area of
research in MDE. One way to achieve this purpose is to
type entry models of transformations through Model
Typing [22]. Model Typing offers to increase the reuse
of transformations by highlighting the common
characteristics of models. Figure 2Erreur ! Nous
n’avons pas trouvé la source du renvoi. illustrates this
principle. The model mA is typed by MTA, and a model
transformation tAèC transforms mA into mC. If you need
to transform another model mB into mC, you may want
to reuse the same model transformation. If MTB is
declared as a subtype of MTA, you will be able to
perform tAèC to do so. In this way, Model Typing may
be very useful for EA. We give some examples of its
potential use in section 4. Moreover, it is a tooled
approach. Kermeta [11] is a metamodeling language
that implements Model Typing.

Figure 2. Model Typing principle

2.2. Enterprise Architecture
Enterprise Architecture is an effective way to catch

an enterprise system in its current and desired states.
This description should reflect the concerns of business
analysts, data architects, functional architects,
application architects, technical experts, etc. Adopting
a monolithic vision of EA, especially in the Smart Grid
context, is unsuitable to build an adaptive description
given the complexity of these systems and the large
number of involved stakeholders.

For this reason, several frameworks are based on a
multi-view approach in which a view conforms to the
perspective of a particular stakeholder. Such an
approach helps to handle complexity by separating the
concerns of stakeholders in different perspectives.

Zachman’s framework and The Open Group
Architectural Framework (TOGAF) are among the most
popular frameworks adopting a multi-view approach
[1]. The Smart Grid Architecture Model (SGAM)
framework [24] is also worth mentioning. It addresses
the architecture of Smart Grids by combining three
domains: information systems, power grids, and
telecommunication networks.

Views slightly differ between frameworks. But,
generally speaking, there are five main views:

• Business view: This view reflects the business
vision including business objects, processes and actors;

• Information view: This view describes
information required to perform business processes;

• Functional view: This view describes
functional blocks that realize business processes and
functional processes that refine business processes. This
modular structure ensures flexibility and adaptability
while meeting the organization’s needs;

• Application view: This view is divided into
applicative modules. Each one implements one or more
functional blocks;

• Technical view: This view describes the
technical infrastructure on which applications are
deployed (hardware and telecommunication networks).

 Moreover, these frameworks hierarchically
organize the different views according to the “IT
follows business” principle: starting with the business
perspective, deriving it progressively into the technical

infrastructure via information, functions, and
applications. Nonetheless, the information view
deserves special attention. Indeed, information is
modeled as an aspect of all other views (Zachman) or
separately in a dedicated view (TOGAF, SGAM).

The models describing these views are usually
“contemplative” models. Mainly used for
communication and documentation purpose, these
models are disembodied from their implementation.
Moreover, languages used to model EA features, such
as ArchiMate and UML, offer extended concepts to
express the modelers’ needs, but lack formal and
rigorous semantics that allows for automation.

Automated manipulation facilitates business and IT
alignment. Indeed, the use of executable models
improves consistency among views and eases their
understanding by the stakeholders who can simulate
these models in the early design stages.

2.3. EA simulation
According to Shannon [21], simulation is “the

process of designing a model of a real system and
conducting experiments with this model for the purpose
either of understanding the behavior of the system or of
evaluating various strategies (within the limits imposed
by a criterion or set of criteria) for the operation of the
system.”

Regardless of the application field, simulation is a
powerful tool to evaluate the modelers’ choices for the
system structure and behavior. Simulation may take the
form of a model animation and the study of the
behavior of this model according to the inputs.

Simulating EA in the context of Smart Grids is
crucial as they are in constant and swift change: fluid
regulatory frameworks, emergence of new partners,
heterogeneous interactions with customers through
smart meters, smart phones, digital tablets, etc.

Model executability is necessary to reach model
simulation. Execution capabilities of models make the
models more comprehensible for experts and avoid
ambiguities caused by purely contemplative models.

Model execution is made possible by defining
execution semantics for the language that expresses
models. The semantics of a language expresses the
meaning of the concepts and their arrangements when
instantiated at the model level [18]. The construction of
the semantics depends on the pursued goal: simulation,
code execution, verification, etc. Expressing a language
semantics is the focus of intensive research especially
in the field of formal languages [13].

The IBM manifesto [6] attests that the three main
axes of MDE are: (1) open standards, (2) automation,
and (3) direct representation. Given these axes, we
adopt standardized and executable languages that are
understandable to the stakeholders involved in EA in a

Smart Grids context. We identify several languages that
satisfy these criteria:

• A subset of UML diagrams limited to class
diagram and activity diagram has henceforth an
execution semantics formalized by the fUML
(foundational UML) standard. Class diagrams are
suitable for the representation of information models
while activity diagrams are suitable for the
representation of the behaviors expected;

• BPMN is a standardized graphical modeling
language. It allows for the representation of most
aspects of a business process within a unique diagram.
BPMN has a well-defined execution semantics. Thus, a
variety of tools for the simulation of business processes
implement this language;

• The Object Constraint Language (OCL) is a
standardized textual language for expressing constraints
on UML diagrams in order to model properties that are
difficult to capture in UML models. The execution of
OCL is made possible by model transformation
(targeting a lower level language like MiniZinc [19]) or
by using it at the metamodel level (OCLinEcore [27]).

3. Industrial background

In this section, we describe the industrial issues we
address before introducing the Smart Grid case study on
which we test our approach.

3.1. Industrial issues
A good operation of power grids relies on the

balance between consumption and production.
Henceforth, Smart Grids are essential to maintain this
balance and to handle the massive penetration of
electric vehicles and renewable energy sources. Smart
Grids provide automatic and real-time energy
management via sensors and remotely controlled
checkpoints.

In essence, Smart Grids bring profound changes to
the IT that drives them and thus to the whole EA: new
flows of information sent from the power grid, new
stakeholders such as decentralized energy resources
(wind farms, photovoltaic panels), new communication
devices like smart meters, the need of conformance to
the new European regulations and directives [26], new
usages (electric vehicle, connected home).

To handle the emerging paradigms, experts are
developing new use cases that need to be tested and
validated before their final adoption. Various
demonstrators are deployed in the field. These pilot
projects allow for the conduct of experiments in real
conditions to test different functions and services.

For instance, InfiniDrive and Ventea are two French
demonstrators. InfiniDrive controls an electric vehicle
charging infrastructure. Ventea handles a rural grid with

high wind capacity penetration. However, physical
demonstrators force the grid operator to enroll industrial
and/or domestic customers who are willing to install
test equipment at home. Moreover, their operation is
limited by current regulations. Also, their
implementation is often expensive and time consuming.

Besides these demonstrators, full-scale test-grids
allow for the evaluation of new equipment before its
deployment on the real grid. ERDF (Électricité Réseau
Distribution France), a major French distribution
system operator, maintains Concept Grids for this
purpose. Indeed, it is possible to conduct stress tests in
disturbed conditions that would be impossible to
perform on a real grid, with real customers.
Nevertheless, the small size of these networks remains
limiting.

Simulation makes it possible to overcome these
limitations. Such a simulation includes the three
domains of a Smart Grid: electrical infrastructure
(transformers, lines, loads, sources), telecommunication
infrastructure (mobile network, BPL) and, of course, IT.
Specialized simulators for power grids (EMTP-RV,
Dymola, PowerFactory, Eurostag, etc.) and for
telecommunications (OPNET, NS-3 OMNeT ++, etc.)
have already proven how powerful simulation is in their
respective fields. Nonetheless, EA is often reduced to
its IT component and relegated to mere set-points
calculation written in Matlab or C++ [20].

Our ambition is to show how the simulation of EA
models can also be effectively used by experts involved
in Smart Grids development. Indeed, Smart Grids have
an impact not only on the electric and
telecommunication infrastructure of a given system
operator but also on its interactions with customers, its
relations with alternative power providers, its strategic
partners, its internal processes, its branding, its services,
its relations with local authorities, etc.

3.2. Case study: Management of an electric
vehicles fleet

New applications of electric technologies are
emerging including electric mobility. Public authorities
estimate that approximately two million electric
vehicles will be on the French roads by 2020. This
ambition is motivated by the objective of the French
government to reduce greenhouse gas emissions by four
over four decades.

Several R&D projects aim to handle the impact of
the increasing number of electric vehicles on
distribution power grids. Indeed, full charge of an
electric vehicle with 150 km autonomy is equivalent in
terms of power demand to:

• A water heater if the battery charges in 8 hours
(normal charging);

• A building if the battery charges in 1 hour
(accelerated charging);

• An urban area if the battery charges in 3 min
(fast charging).

Maintaining balance between supply and demand is
a key issue to ensure a high quality delivery of electric
power. For this purpose, when demand increases, power
grid operators start coal and oil plants, which are costly
and emit CO2. Ongoing experiments are testing new
methods to avoid supply/demand constraints on power
grids without starting costly and polluting plants. For
instance, La Poste (French mail office) and ERDF
implemented InfiniDrive to optimize the charging
system of the electric vehicles fleet of La Poste.
Optimization algorithms and related charging
infrastructures aim to minimize the concentration of
accelerated and fast charging during peak hours while
taking into account incentive tariff during off-peak
hours.

Engineers use simulation to improve the design of
these charging systems. However, electric mobility
involves a paradigm shift not only for the grid
infrastructure but also for higher company processes
and constraints. Indeed, the electric vehicle is limited by
its autonomy so it cannot be used for any tour. Also,
charging an electric vehicle is different from filling the
tank of a combustion vehicle (time of charging,
charging station availability).

As a result, the massive use of electric vehicles
deeply affects the whole enterprise system: it has an

impact on stakeholders like fleet managers, on agents

who drive the electric vehicles, on business processes
(tour optimization, allocation of vehicles to these tours,
agent’s tours while using an electric vehicle, etc.), on
information (new business objects come out like
electric vehicles, charging points, etc.), and on

applications (new applications have to be deployed and
integrated with existing ones).

French electric grid operators used to have a
relatively slow evolution of their business and technical
environment. This paradigm is changing as Smart Grids
bring broad, deep and rapid shifts on organizational
vision. To anticipate the resulting EA transformations,
we propose to model, analyze and simulate EA by
automating validation, deployment of an enterprise
solution while maintaining consistency across EA
views.

Hereafter, we present our executable Model Driven
approach for EA while maintaining consistency across
views. This approach allows us to perform automated
analysis and simulation through the use of executable
models, Model Typing and model transformations.

4. Approach and its application to the case
study

In this section, we present our approach and we
apply it on the case study of managing an electric
vehicles fleet. Our contribution is twofold. First, we
propose a multi-view framework for EA with an
additional view: the integration view. This view aims to
address consistency and alignment issues. Second, we
use executable and standardized languages from MDE
to model and simulate EA.

4.1. General approach
Our approach is based on multi-view modeling. We

identify four views addressing concerns of experts and

partners involved in modeling and validating EA
features.

In our approach, we consider only business,
functional, and application views (Figure 3). But we

Figure 3. Proposed approach

aim to generalize it to the technical view as well. Most
frameworks commonly use these views.

• We do not model information in a
dedicated view. We explicit information as an
aspect of the other views as recommended by
Zachman’s framework. In fact, information is
spread in the business, functional, and
application views:

• Information aspect of the business view
This aspect represents the major business concepts

handled by the business processes. This model is not
very prone to change, unless a significant change occurs
in business practices. It is involved in the division into
blocks of the processes aspect of the functional view;

• Information aspect of the functional view
This aspect represents the functional data type and

gives a detailed description of data handled by
functional blocks. It refines the business concepts by
giving their types. It models the data properties,
relationships, etc.;

• Information aspect of the application view
This aspect represents the application data model,

which highly depends on the chosen software. It refines
the functional data and gives the required data formats
that are compliant with the application modules.

In addition, we model the dynamics of views in the

processes aspect. Thus, for each view, we differentiate
the flowing processes aspects:

• Processes aspect of the business view
Typical artifacts of this aspect are business

processes and involved actors. The use of executable
and standard formalisms is highly recommended to ease
automated analysis and simulation. UML activities
diagrams and BPMN are good candidates. However,
Domain Specific Modeling Languages can also be used
for this aspect;

• Processes aspect of the functional view
This aspect reflects the perspective of the functional

architect and describes the functions that realize
business processes and their orchestration as functional
processes. These functions are gathered into blocks. A
unique functional block handles each business concept
identified in the information aspect of the business
view. This ensures a high cohesion inside each block as
well as decorrelation between blocks in order to build a
modular and flexible architecture;

• Processes aspect of the application view
This aspect reflects the perspective of the

application (i.e. software) architect and represents the
application modules required to implement the
functional blocks. Firstly, it is recommended to conduct
an inventory of the existing softwares likely to
implement the different functional blocks. Then, if none

of the existing applications are able to satisfy new
business process needs, the software architect chooses
to set up new software components. In addition, he
specifies the links between applications (exchanged
messages, data synchronization, transferred files, etc.).

Besides processes and information aspects, we
explicitly state goals for each view. Business goals are
refined into functional goals, which are refined into
application goals.

Alignment and consistency issues are critical for EA

[12]. Our main contribution is to dedicate a specific
view to address them: the integration view. This view
defines an alignment map by specifying (1) entities to
align (2) the alignment and consistency links (3)
appropriate model transformations required to refine
these entities. Model transformations ease and automate
transitions from one view to another. Figure 4 provides
a metamodel of our overall approach. It represents the
discussed entities and their relationships. Other views
and aspects can extend it.

The integration view allows for “vertical”
integration (between views) and for “horizontal”
integration (within one view).

Figure 4. Metamodel of the approach

Vertical integration describes consistency links
between EA views except for the integration view.
Hence, the transverse integration view makes it possible
to explicitly model “Refinement” links showed in
Figure 3 through the class “Vertical”.

We give a model of the integration view in Figure 5.
For instance, it verifies that an application actually
implements all functional blocks necessary for the
execution of a business process. This view gives access

to traceability information in order to analyze the
impact of an evolution or a failure of an application
module on the business processes. It also verifies that
an application format can encode functional data types
representing a given business concept. Besides it
identifies the potential model transformations required
to automate the deployment and the integration of
models from different views. Thus, model
transformations are seen as operators on models and
Model Typing as data typing.

Figure 5. Entities and relationships involved in the

integration view

Likewise, the integration view checks intra-

consistency links through the “Horizontal” class. In
Figure 5, it takes the form of the "use" association
between information and processes aspects. It ensures

the compatibility of data exchanged among the tasks of
a business process, the functions of a functional
process, and the modules of an application.

The “fulfilledBy” association of Figure 5 also
inherits from the “Horizontal” class. It explicitly
associates a goal and a responsible entity.

Moreover, MDE methods and languages are
valuable to automate the analysis of EA. The selection
of the relevant MDE techniques is guided by the IBM
manifesto [6], which recommends using languages that
are executable, standardized, and familiar to experts’
domain. For instance, this is the case of fUML, BPMN,
and OCL. Moreover, the selection of the relevant
languages for model transformation depends on the
involved models (textual, graphic, etc.).

4.2. Implementation of the approach for the
case study

In this section, we experiment our approach on the
management of an electric vehicles fleet. We create the
required models for business, functional and software
views adopting executable languages. Consistency links
are modeled within the integration view. Figure 6
illustrates the overall architecture of the industrial case.

• Business view
For this view, we use fUML as an executable

modeling language for business processes. Our business
process consists in assigning a vehicle (electric or
combustion) to a giving tour. We model and simulate
this process using Papyrus, which supports fUML.
Thus, the created model represents the business view
processes aspect (Figure 6).

The business process begins with collecting data
concerning vehicles and tours. Then it estimates the
energy needed by each tour before assigning the right

Figure 6. General architecture of the study case according to our approach

vehicle to each tour. Finally, the fleet manager validates
or corrects this allocation.

For the information aspect, we model the concepts
of vehicle, tour and allocation using a UML class
diagram that specifies the class names and their
relationships.

Managing a fleet of vehicles may have various
goals. For this case, getting the best ROI (Return On
Investment) is a business goal for the integration of
electric vehicles into the fleet. The business goal is
modeled as a UML class.

Domain practices motivate the choices regarding
languages and tools. Indeed, the International Electric
Commission relies on UML class diagrams to model
and maintain the CIM standard [24]. CIM is a Common
Information Model for the electric field.

• Functional view
The functional processes aspect contains several

blocks. One block is dedicated to functional processes
that refine the business process. These processes are
constituted of functions orchestration. Further, there is
one block gathering together functions handling the
allocation, one block for the vehicles, and one block for
the tours (Figure 6).

For instance, we model the function that performs
the allocation by creating a number of OCL constraints
to solve (Figure 7). Indeed, in order to allocate an
electric vehicle to a tour, its autonomy must be enough
for the given tour. In this case sudy, we consider that
there is no possibility to recharge the vehicle during the
tour.

Figure 7. OCL constraints for the allocation function

We model the functional data by a UML class
diagram, which represents the information aspect of the
functional view. Besides, the OCL constraints are
applied to this class diagram. Indeed, OCL is suitable
for class diagrams. It is an executable language and an
OMG standard for expressing constraints. For the other
treatments (calculating tour energy, etc.), it is possible
to use executable activity diagrams.

The functional goal is to optimize the use of the
electrical vehicles in order to reach the business goal.
Indeed, an electric vehicle has to be frequently used in
order to be economically profitable. The functional goal

is also modeled through a UML class as illustrated in
Figure 6.

• Application view
For the dynamic aspect of this view, we identify the

applications needed to implement the functional blocks.
In our case, the application portfolio of the company
already has an application for tour management
(calculate optimized tour from work orders), and for
vehicle management (administration, maintenance,
etc.). For allocation, we use MiniZinc to model the
identified constraints Figure 8.

MiniZinc is a medium-level constraint modeling
language. It is high-level enough to express most
constraint problems easily, but low-level enough to be
mapped into existing solvers. It aims to become a
standard modeling language in the field of constraint-
oriented programming.

Figure 8. Constraints in the MiniZinc module

The different data files processed by applications
represent the information aspect of the software view
(Figure 9).

Figure 9. Data file for the MiniZinc module

• Integration view
We model the integration view by (1) the links

between elements from the same view or between
elements belonging to different views and (2) the
constraints on these links. For instance, in Figure 10,
we modeled the function “Allocate EV to tour”, its
inputs and outputs, and the functional goal it fulfills.
We did the same for the MiniZinc module “Optimize
allocation”, for its inputs and outputs, and for the
application goal it fulfills.

Due to the limitation of space, we only illustrate
these elements of the overall case study. Nevertheless,
the same principles are applied to the remaining
elements from the different views.

For instance, an “input” link should check that the
information type is consistent with the function using it
and check that the information format fits the involved
application module. Besides, these constraints ensure a
good orchestration of tasks, functions and modules. For
example, it ensures that the output of a given function is
consistent with the input of the next function. The links
“input”, “output”, and “fulfilled by” inherit from the
class “Horizontal” of the approach metamodel
illustrated in Figure 4.

If a function output does not fit the information type
of the next function, we use Model Typing as explained
in Erreur ! Nous n’avons pas trouvé la source du
renvoi.. For instance, the function that calculates the
required energy for a tour may not use a tour as
information but rather a ride.

Figure 10. Partial integration view model for the EV

allocation case study

In this case, we define “Tour” as subtype of “Ride”
in order to perform the calculation on “Tour” and to be
able to orchestrate the functions. Indeed, a function can
also be seen as a model transformation that takes some
models as inputs and produces other models as outputs.

The integration view also establishes links across
elements of different views. In the example above, the
“refine” association between the functional goal and the
application goal insures Business/IT goal alignment.
This kind of consistency link checks if all applications
are directly or indirectly linked to the goals provided by
the functional view which are linked to the goal of the
business view. For instance, to Optimize electric
vehicles use, the MiniZinc module has to Maximize
electric distance while calculating the allocation
(Figure 10).

Model transformations can also guarantee
consistency between views in addition to facilitating the
shift from one view to another. For instance, OCL
constraints for the allocation function are automatically
transformed into MiniZinc constraints in the application

view using the transformation language Acceleo. We
also transformed the information types “Electric
Vehicle” and “Tour” into the right information format
for the MiniZinc module.

5. Related Work
Model Driven Engineering has proven its capacity

to address complex software systems [9]. Our message
in this paper regarding MDE is twofold. First, it is
suitable for EA modeling. Secondly, it is above all
suitable for the automated analysis, prediction, and
simulation of the whole Enterprise Architecture, not
limited to the application and technical views. Models-
as-executable-artifacts is the least common of all
models usages in EA [14]. However, ontology
approaches allow for automated analysis of models for
specific aspects as tasks and workflows [10] or for a
holistic view of EA in more recent ontology
approaches [23]. Nevertheless, these approaches
requires to map models-as-high-level-specifications
[14] and their equivalent ontologies in order to perform
analysis. Our approach does not require mapping and
performs analysis and simulation immediately on the
executable models as designed by stakeholders.

Besides, intra- and inter-view consistency,
validation and impact analysis are addressed by a UML
based approach where an extension of UML provides a
toolkit of EA entities and their relationships [2]. Our
study relies on these entities and relationships but goes
further by facilitating the shift from one view to
another using model transformation and sticks to the
standard executable languages like fUML and OCL.
Moreover, Model Driven Architecture (MDA) applied
at the level of an organization [7] deals with enterprise
models as it would do with a software system. The
business and function views are seen as Computation
Independent Models, and the application and technical
views as Platform Specific Models. This vision joins
our approach on its principles regarding the need for
well-defined modeling languages. However, our aim is
to provide enterprise modelers with an executable
Model Driven framework in line with their current
practices in order to ease its adoption.

6. Conclusion and perspectives
Existing EA frameworks provide a holistic picture

of enterprise systems but lack executability for
modeling validation and analysis. Modeling
assessment and analyzability help on addressing the
key challenge of business/IT alignment. Model Driven
Engineering applied to EA provides enterprise
modelers with an efficient toolkit of executable
modeling languages and techniques like model
transformation and Model Typing. Given this
statement, our contribution is to provide an executable

Model Driven framework for EA with entities and
relationships across different EA views and with the
relevant MDE methods. We modeled inter- and intra-
view links in a dedicated view: the integration view.
The integration view allows for checking the horizontal
consistency between behavior, information, and goals,
as well as the vertical refinements of behaviors,
information and goals across views.

We apply our approach on the Smart Grids context.
Indeed, we show how Smart Grids have a major impact
not only on power grids but also on the whole
enterprise system of grid operators.

Currently, our approach is used to create machine-
processable models and conduct automated analysis
regarding the As-Is or the To-Be of an EA in separate
ways. However, to retrace the life cycle of EA and the
location of EA in this life cycle, we need an evolution
framework. Research is being conducted in this
direction but at the Information System level [16].
Therefore, we are continuing to enrich our executable
Model Driven framework to take into consideration the
evolution aspect of EA throughout its life cycle.

7. References
[1] Armour, F.J., Kaisler, S.H., and Liu, S.Y. A big-picture
look at enterprise architectures. IT professional 1, 1 (1999),
35–42.

[2] Armour, F., Kaisler, S., Getter, J., and Pippin, D. A
UML-driven enterprise architecture case study. IEEE (2003),
10–pp.

[3] Bézivin, J. In search of a basic principle for model driven
engineering. Novatica Journal, Special Issue 5, 2 (2004), 21–
24.

[4] Bézivin, J. On the unification power of models. Software
& Systems Modeling 4, 2 (2005), 171–188.

[5] Bézivin, J. and Gerbé, O. Towards a precise definition of
the OMG/MDA framework. IEEE (2001), 273–280.

[6] Chesbrough, H. and Spohrer, J. A research manifesto for
services science. Communications of the ACM 49, 7 (2006),
35–40.

[7] Clark, T., Kulkarni, V., Barn, B., France, R., Frank, U.,
and Turk, D. Towards the Model Driven Organization. IEEE
(2014), 4817–4826.

[8] Favre, J.-M. Towards a basic theory to model model
driven engineering. Citeseer (2004), 262–271.

[9] France, R. and Rumpe, B. Model-driven development of
complex software: A research roadmap. IEEE (2007), 37–54.

[10] Fraser, J. and Tate, A. The Enterprise Tool Set: An Open
Enterprise Architecture. AIAI, University of Edinburgh,
1995.

[11] Jézéquel, J.-M., Barais, O., and Fleurey, F. Model driven
language engineering with kermeta. In Generative and
Transformational Techniques in Software Engineering III.
Springer, 2011, 201–221.

[12] Kaisler, S.H., Armour, F., and Valivullah, M. Enterprise
architecting: Critical problems. IEEE (2005), 224b–224b.

[13] Kleppe, A.G. A language description is more than a
metamodel. (2007).

[14] Kulkarni, V., Roychoudhury, S., Sunkle, S., Clark, T.,
and Barn, B. Modelling and Enterprises-The Past, the Present
and the Future. (2013), 95–100.

[15] Mens, T. and Van Gorp, P. A taxonomy of model
transformation. Electronic Notes in Theoretical Computer
Science 152, (2006), 125–142.

[16] Métrailler, A. and Estier, T. EVOLIS Framework: A
Method to Study Information Systems Evolution Records.
IEEE (2014), 3798–3807.

[17] Monti, A. and Ponci, F. Power grids of the future: Why
smart means complex. IEEE (2010), 7–11.

[18] Muller, P.-A., Fleurey, F., and Jézéquel, J.-M. Weaving
executability into object-oriented meta-languages. In Model
Driven Engineering Languages and Systems. Springer, 2005,
264–278.

[19] Nethercote, N., Stuckey, P.J., Becket, R., Brand, S.,
Duck, G.J., and Tack, G. Minizinc: Towards a standard CP
modelling language. In Principles and Practice of Constraint
Programming–CP 2007. Springer, 2007, 529–543.

[20] Palensky, P., Widl, E., and Elsheikh, A. Simulating
cyber-physical energy systems: challenges, tools and
methods. Systems, Man, and Cybernetics: Systems, IEEE
Transactions on 44, 3 (2014), 318–326.

[21] Shannon, R.E. Systems simulation: the art and science.
Prentice-Hall Englewood Cliffs, NJ, 1975.

[22] Steel, J. and Jézéquel, J.-M. On model typing. Software
& Systems Modeling 6, 4 (2007), 401–413.

[23] Sunkle, S., Kulkarni, V., and Roychoudhury, S.
Analyzing enterprise models using enterprise architecture-
based ontology. In Model-Driven Engineering Languages
and Systems. Springer, 2013, 622–638.

[24] Uslar, M., Specht, M., Dänekas, C., et al.
Standardization in Smart Grids: Introduction to IT-Related
Methodologies, Architectures and Standards. Springer
Science & Business Media, 2012.

[25] www.smartgrids-cre.fr.

[26] ec.europa.eu/programmes/horizon2020.

[27] wiki.eclipse.org/OCL/OCLinEcore.

