
Proving properties of Discrete-Valued Functions
using Deductive Proof: Application to the Square

Root

Vassil Todorov1, Safouan Taha2, Frédéric Boulanger2 and Armando
Hernandez1

1 Groupe PSA, France
2 LRI, CentraleSupélec, Université Paris-Saclay, France

Abstract. For many years, automotive embedded systems have been
validated only by testing. In the near future, Advanced Driver Assis-
tance Systems (ADAS) will take a greater part in the car’s software
design and development. Furthermore, their increasing critical level may
lead authorities to require a certification for those systems. We think that
bringing formal proof in their development can help establishing safety
properties and get an efficient certification process. Other industries (e.g.
aerospace, railway, nuclear) that produce critical systems requiring certi-
fication also took the path of formal verification techniques. One of these
techniques is deductive proof. It can give a higher level of confidence in
proving critical safety properties and even avoid unit testing.
In this paper, we chose a production use case: a function calculating
a square root by linear interpolation. We use deductive proof to prove
its correctness and show the limitations we encountered with the off-the-
shelf tools. We propose approaches to overcome some limitations of these
tools and succeed with the proof. These approaches can be applied to
similar problems, which are frequent in automotive embedded software.

Keywords: Formal Methods ·Deductive Proof · Proving Discrete-Valued
Functions

1 Introduction and Motivation

Today, the automotive industry relies mostly on a model-based approach for
developing embedded software. It consists in connecting common library blocks
(operators) to design and simulate a model of the behavior to be produced.
It uses a higher level of abstraction than the code. Code with the behavior of
the model is then produced automatically. The most commonly used tools for
software design are Simulink, from the MathWorks, and Scade, from ANSYS.

The main advantage of this approach is that models can be simulated and
debugged before code generation. Thus, some of the errors are found and fixed
earlier in the design process. On the other hand, simulation shares many common
points with testing and cannot prove that the calculation is correct. Furthermore,



the implementation of a model on a specific hardware can bring behaviors that
have not been seen before at design stage.

For the rest of the study we take as example a function calculating a square
root. During the design stage, the simulation can use a standard implementation
of this function. However, in the implementation, we replace it with an optimized
version because of hardware constraints. Our example is a discrete-valued func-
tion implementing the square root calculation, which uses a linear interpolation
table. In automotive applications, as on-board computers have limited power,
discrete-valued functions are frequently used in the implementation to avoid
complex calculations.

In the near future, we expect that authorities will require a certification for
highly critical software in self-driving cars. Our motivation is to provide proofs
of correctness for production code using formal methods.

In a previous paper [17], we summarized some experiments about applying
tools that use formal methods to industrial software. In this paper, we give details
about the application of deductive proof to production code, the problems we
encountered with off-the-shelf tools, and some approaches to solve this type
of problems. Our function has been implemented in C and we used Frama-C
WP [12] for proving its correctness. As some of the goals were impossible to
prove with Frama-C and its solvers we implemented it in SPARK (based on
Ada) to prove it with GNATprove [5]. We discuss the results and how other
methods such as Abstract interpretation can be combined with deductive proof.

2 Deductive methods

2.1 Preliminaries

The foundations of the proof of logical properties on an imperative language
program were put forward by C. A. R. Hoare [11] in 1969. Based on the precise
semantic of a computer program, Hoare proposed to prove certain properties by
mathematical deductive reasoning, generally at the end of the program.

He introduced a notation called the Hoare triple, which associates a program
Q, start hypotheses P, and expected output properties R:

P {Q} R

The logical meaning of this triple corresponds to: if P is true, then after executing
program Q, R will be true if Q terminates. The calculus of Hoare’s triples is, in
general, undecidable.

The proving by application of Hoare’s rules is an intellectual process and is
not tool driven. It is up to the author of the proof to define the correct properties
between each instruction of the program and to establish its demonstration by
applying the different theorems. This activity is not adapted to process thou-
sands of lines of code in an acceptable time.

An initial automation of the process of proving programs was brought by the
calculation of the WP (Weakest Precondition) from Dijkstra [8]. The principle



consists in automatically calculating the most general property WP(S,P) holding
before a statement S such that property P holds after the execution of S:

WP (S, P ) {S} P

The calculus of WP is defined for each instruction. The proof process consists
in calculating WP by going backward from the end of the program for which we
want to prove P, up to the beginning. For full correctness, S must terminate.

The returned predicate from the WP calculation can rapidly become rather
complex. Efficient (quadratic instead of exponential) verification condition gener-
ation (including WP generation) were proposed in the following papers [16,2,10].
In order to automate the process, all modern tools based on WP are using au-
tomatic theorem provers as back-end. We can cite, for example Alt-Ergo [6],
Colibri3, CVC4 [3], Yices2 [9], Z3 [7].

2.2 Tools for deductive reasoning

As we are interested in tools used by the industry, we present here only those that
are mostly used today: Atelier B4, Caveat [15], Frama-C WP and GNATprove.

Atelier B. Atelier B is a tool supporting the B method, which is a formal
methodology to specify, build and implement software systems. The B method
was originally developed in the 1980s by Jean-Raymond Abrial [1] and is based
on first-order logic, set theory, abstract machine theory and refinement theory.
This method is suitable for a new development. As we reused existing C code,
we did not use this method.

Caveat and Frama-C WP. Caveat and Frama-C WP are tools for deductive
reasoning on C programs. Caveat was introduced at Airbus in 2002 to replace
unit tests by unit proof and thus obtain a cost reduction and quality improvement
over this part of the development process. The tool with its back-end Alt-Ergo
were certified and recognized by the aviation certification authorities. Caveat
analyzed C programs (with some restrictions in terms of language constructs)
and had its own specification language based on a first order logic. Frama-C
is the academic open source tool developed by the same team as Caveat. Its
WP module verifies properties written in the ACSL5 language in a deductive
manner. It implements the Weakest Precondition calculus and targets multiple
automatic solvers via the Why3 platform6.

3 Colibri: http://smtcomp.sourceforge.net/2018/systemDescriptions/COLIBRI.pdf
4 Atelier B: https://www.atelierb.eu
5 ACSL specification language: https://frama-c.com/acsl.html
6 Why3: http://why3.lri.fr/

http://smtcomp.sourceforge.net/2018/systemDescriptions/COLIBRI.pdf
https://www.atelierb.eu
https://frama-c.com/acsl.html
http://why3.lri.fr/


GNATprove. GNATprove is a tool for deductive reasoning over SPARK (based
on Ada) programs. Like Frama-C, it uses the Why3 platform but SPARK sup-
ports bit-vector data types. A bit-vector is an array data type for compactly
storing bits. Most modern SMT-solvers support a theory of bit-vectors, which
can help solving problems using this data type. Furthermore, for properties that
are not valid, GNATprove can obtain a counterexample from the SMT solver.

3 Experiment

We took the C code implemented in an on-board computer to prove its cor-
rectness using deductive proof. The function calculates the square root Y of X
by linear integer interpolation between two known points (Xa, Ya) and (Xb, Yb)

using the following formula: Y = Ya + (X −Xa)
(Yb−Ya)
(Xb−Xa)

This code is used in an implementation on an on-board computer, which
cannot use floating-point numbers. We calculate the square root for numbers
between 0.00 and 100.00 using an integer representation. We consider it as a fix-
point number (multiplied by 100 to have a precision of 2 digits after the decimal
separator), thus the input range is between 0 and 10000 (representing 0 and
100.00) and the returned result is a linearly interpolated value between 0 and
1000 (to be interpreted as a number between 0 and 10.00). We want to prove
that the calculation is correct for a given precision. We present an example for
the calculation in the [0, 1.00] subrange using eight known values in Fig. 1.

Fig. 1. Square root calculation in [0, 1.00] by linear interpolation from eight values

We proceeded in two steps. First, we proved a simplified version of the code
using only eight values in the interpolation table (Fig. 1). These values were
a subset of the full table present in the code, which contains 41 values. Then,
we added the other values in the table and updated the contracts to take into
account the new bounds. At our surprise, this did not scale up with Frama-C.



We worked with the developers of Frama-C to understand why (we explain it in
Section 4). Then we rewrote the function in SPARK7 to see whether it would
scale better. The main difference between C and SPARK is that we can specify a
bit-vector data type in SPARK. For our use case, it helped the solver to reason
using modular arithmetic. Most SMT solvers used as back-end via Why3 have a
theory of bit-vectors. If we do not use bit-vectors, the SMT solver is reasoning
by default using non-modular arithmetic. We also analyzed our complete C code
with Astrée [13] from AbsInt, a static analysis tool using abstract interpretation,
to prove some difficult goals and provide useful hypotheses to Frama-C WP.

Our first proof on the simplified code succeeded with Frama-C. Extending
the table to 41 values, as in the real code, did not succeed. On the other hand,
SPARK succeeded with the full table of 41 values.

4 Results

In this section, we explain the results and why Frama-C failed to scale-up from
8 to 41 values, and what should be done to cope with this type of problems.

From Frama-C to the SMT solver. To understand the reason why automatic
proof failed for the full table, we have to detail the transformations between the
C code through Frama-C, Why3 and the solvers. First, Frama-C transforms
the C code and its ACSL contracts using the weakest precondition calculus
into verification conditions (VC) in the WhyML language. It also introduces
additional goals to verify the absence of runtime errors such as overflows. The
WhyML output contains all the theories necessary for the proof and is sent to
Why3. Then Why3 transforms it into the language of the chosen prover. For
our use case, the WhyML transformation contained quantified formulas and
redefined some operators such as division using uninterpreted functions.

The difficult goal. There were 51 goals (verification conditions) to be proved
and two of them were not proven. The most difficult goal was about proving
that the contract of the post condition in the linear interpolation function had
the same behavior as the code. We show it in Fig. 2.

Actually, contracts use mathematical arithmetic (without overflow), but code
uses modular arithmetic, where overflows may occur. For our use case, we used
a 16-bit unsigned integer to store the returned value of the interpolation.

Direct proof with SMT-LIB. Since 2 goals were not proven with the of-
ficial Frama-C version, we obtained a new version that could address directly
SMT solvers using the SMT-LIB standard [4]. We proved our goals with Colibri,
CVC4 and Yices2. We remarked that the SMT-LIB file did not contain quanti-
fiers and did not redefine operators such as division. We concluded that this
7 Special thanks to Yannick Moy from AdaCore.



approach scaled and worked better for problems with nonlinear arithmetic such
as interpolation functions. Furthermore, some SMT solvers such as Yices2 do
not support quantification.

Experience with the Why3 SMT output files. We wanted to understand
what was the impact of the redefined division using uninterpreted functions
and of quantified formulas, so we modified manually the SMT request sent to
the solver. First, we removed the specific functions about division and used the
standard SMT-LIB div operator. Then, the proof succeeded with CVC4 but
only if using nonlinear logic containing bit-vectors. Disabling bit-vectors from
that logic resulted in a failure to prove the formula. On the other hand, the
quantifier-free SMT output did not need bit-vector logic to be proved.

Abstract interpretation. Because it is difficult to understand how the SMT
solvers proved the difficult goal, we used Astrée to prove the absence of overflow
in the returned value of the linear interpolation function. This proof can then be
used as hypothesis in Frama-C WP. Astrée could find the dependency between
Yb and Ya and estimate a precise interval for (Yb − Ya). The same was done for
(Xb − Xa) and (X − Xa). Thus a precise interval was calculated for Y in [0,
10000], which fits in a 16-bit unsigned integer without overflow.

5 Methodology

In this section, we propose a methodology based on our experience to solve prob-
lems using discrete-valued functions such as linear interpolation. Our use case is a

typedef unsigned short uint16;
typedef unsigned char uint8;
/*@
requires 0 <= Xa <= 10000 && 0 <= Xb <= 10000;
requires 0 <= Ya <= 1000 && 0 <= Yb <= 1000;
requires Yb > Ya && Xb >= Xa;
requires Xa <= X <= Xb;
ensures Xa != Xb ==> \result == (Ya + (X - Xa) * (Yb - Ya) / (Xb - Xa));
ensures Xa == Xb ==> \result == Ya;
assigns \nothing;
*/
uint16 LinearInterpolation(uint16 Xa, uint16 Ya, uint16 Xb, uint16 Yb,

uint16 X) {
if (Xa != Xb) {

return(Ya + (X - Xa) * (Yb - Ya) / (Xb - Xa));
} else {

return(Ya);
}

}

Fig. 2. Annotated interpolation function for Frama-C WP automatic proof



simple one and we could have tested it for each value in the domain of validity of
the function. However, in practice, there are more complex discrete-valued func-
tions implemented with linear interpolation tables called lookup tables. These
functions are often called by other discrete-valued functions. The number of cases
to test can be the product of the cardinalities of the domains of the individual
functions. We propose to use the methodology shown below in Fig. 3 in order to
prove those functions.

First, we need to isolate all the functions we want to prove together and
annotate the code with contracts specifying the behavior expected from each
function. Then, we can try to prove it in Frama-C via Why3. If the proof suc-
ceeds, we can stop. Otherwise, we can try to use the direct SMT-LIB output
of Frama-C WP with the SMT solvers. As we have seen, this approach removes
quantifiers and uses native mathematical operators. If it does not succeed, for
some goals (VCs) we can try to prove them using abstract interpretation tools.
If this method does not succeed, we need to use a proof assistant to prove the
difficult goals.

Fig. 3. Methodology for proving Discrete-Valued Functions

6 Conclusions and Future work

In this paper, we have presented our experiments with automatic deductive
proof of correctness of a discrete-valued function calculating a square root by
interpolation. We used Frama-C WP and GNATprove to prove the function
correct but encountered some difficulties with the nonlinear formula of the linear
interpolation. Three non-standard approaches worked well for us: the use of
bit-vectors in SPARK, the direct SMT-LIB quantifier-free output of Frama-
C and the static analysis with Astrée. Bit-vectors are well supported in most
modern SMT solvers and are well suited for problems that involve modular
arithmetic, but scaling is sometimes difficult. For our use case, SMT requests
without quantifiers performed and scaled better because there was no need for
bit-vectors. Abstract Interpretation analysis gave more confidence in proving



that there was no overflow in the linear interpolation calculus. We have proposed
a methodology to use a combination of these different methods until the proof is
done. We also show that using industrial use cases with off-the-shelf tools does
not always scale, but if we work with researchers, we can find a solution and
improve the tools.

Using deductive methods is very promising in an industrial context for safety-
critical applications. It can replace unit tests as shown in [14] and thus decrease
cost while increasing quality. It is also an intellectual activity that brings more
satisfaction for engineers compared to testing.

References
1. Abrial, J.R.: The B-book : assigning programs to meanings (1996)
2. Barnett, M., Leino, K.R.M.: Weakest-precondition of Unstructured Programs. SIG-

SOFT Softw. Eng. Notes 31(1), 82–87 (2005)
3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi’c, D., King,

T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.)
(CAV’11). LNCS, vol. 6806, pp. 171–177. Springer (Jul 2011)

4. Barrett, C., Stump, A., Tinelli, C., Boehme, S., Cok, D., Deharbe, D., Dutertre,
B., Fontaine, P., Ganesh, V., Griggio, A., Grundy, J., Jackson, P., Oliveras, A.,
Krstić, S., Moskal, M., Moura, L.D., Sebastiani, R., Cok, T.D., Hoenicke, J.: The
SMT-LIB Standard: Version 2.0. Tech. rep. (2010)

5. Chapman, R.: Industrial Experience with SPARK. Ada Letters XX(4) (2000)
6. Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In: SMT

Workshop: International Workshop on SMT. Oxford, United Kingdom (Jul 2018)
7. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. TACAS’08/ETAPS’08,

Springer-Verlag, Berlin, Heidelberg (2008)
8. Dijkstra, E.W.: Guarded Commands, Nondeterminacy and Formal Derivation of

Programs. Commun. ACM 18(8), 453–457 (Aug 1975)
9. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification.

pp. 737–744. Springer International Publishing, Cham (2014)
10. Flanagan, C., Flanagan, C., Saxe, J.B.: Avoiding Exponential Explosion: Generat-

ing Compact Verification Conditions. SIGPLAN Not. 36(3), 193–205 (2001)
11. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming (Oct 1969)
12. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:

A software analysis perspective. Formal Aspects of Computing 27(3) (2015)
13. Mauborgne, L.: Astrée: Verification of Absence of Runtime Error. In: Jacquart,

R. (ed.) Building the Information Society: IFIP 18th World Computer Congress
Topical Sessions 22–27 August 2004 Toulouse, France, pp. 385–392. Springer (2004)

14. Moy, Y., Ledinot, E., Delseny, H., Wiels, V., Monate, B.: Testing or Formal Verifi-
cation: DO-178c Alternatives and Industrial Experience. IEEE Soft. 30(3) (2013)

15. Randimbivololona, F., Souyris, J., Baudin, P., Pacalet, A., Raguideau, J., Schoen,
D.: Applying Formal Proof Techniques to Avionics Software: A Pragmatic Ap-
proach. In: Proceedings of the Wold Congress on Formal Methods in the Develop-
ment of Computing Systems. Springer-Verlag, London (1999)

16. Shilov, N.V., Anureev, I.S., Bodin, E.V.: Generation of correctness conditions for
imperative programs. Programming and Computer Software 34(6), 307–321 (2008)

17. Todorov, V., Boulanger, F., Taha, S.: Formal Verification of Automotive Embedded
Software. In: Proceedings of the 6th Conference on Formal Methods in Software
Engineering. pp. 84–87. FormaliSE ’18, ACM, New York, NY, USA (2018)


	Proving properties of Discrete-Valued Functions using Deductive Proof: Application to the Square Root

