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ABSTRACT
The simulation of complex systems is an activity that affects many
industrial and research fields and is important to verify the future
behavior of a system. When it comes to hybrid systems [1], the
heterogeneity of the discrete and continuous parts makes the mod-
eling and simulation more difficult. Usually, numerical methods are
chosen to simulate the continuous part of the models. However,
their cost can be high when precision is needed and when interac-
tions with the discrete part force rollbacks in the simulation. Other
techniques are proposed to deal with uncertainties and expensive
models, such as the flow-pipe methods [2] or qualitative model-
ing [3]. In this article, we present preliminary work to rely on a
qualitative analysis of the model to supervise its simulation. Our
goal is to build a qualitative map of the state space of the model in
order to adapt the quantification of values and the discretization of
time of the integration method. We expect this supervisor to opti-
mize the time/precision balance, especially in the case of complex
systems with many components.
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1 INTRODUCTION
Quantitative methods, such as numerical integration, give precise
results but may consume a lot of time and resources. Qualitative
techniques use a symbolic interpretation of the models without
knowing all the numerical parameters by relying on dependency
relationships between variables. They are less precise but can be
applied early in the design phase. They can be used to plan numeri-
cal simulations according to the objectives and improve the results
of analyses (proofs, optimization, diagnosability, etc.) [4].

Brown [5] and De Kleer [6] first mentioned qualitative represen-
tation of information in their works related to computer-assisted
calculus for physics, such as electronics and classical mechanics.
They created an opposition between qualitative and quantitative
knowledge and proposed the idea of a causal ordering of events.
Hayes [3, 7] pursued this idea and introduced the concepts of qual-
itative modeling and naive physics. Forbus developed the concepts
further in a more complex theory of the process [8] and paved the
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way for the modern qualitative modeling theories. Kuipers [9] and
Tiwari [10] proposed two major approaches: the former studied a
group of models described by causality relations and qualitative
differential equations, while the latter proposed a division of the
hybrid systems based on a description by ordinary differential equa-
tions. Previous work in our teams followed Kuipers’ approach [11],
while others followed Tiwari’s [12, 13].

In qualitative modeling, the dynamics of complex systems are
described as modes, phases, and events [8]. Each mode is defined by
a set of differential equations [10]. A phase is a period of time that
corresponds to a particular set of results of these equations and is
associated with a specific evolution of the state variables. Events are
instantaneous occurrences that mark a transition between modes
or phases. Complex systems are often heterogeneous i.e. with many
modes and, therefore, many kinds of dynamics, requiring discrete
and continuous variables to be managed in parallel. However, since
this article deals with preliminary work, we will focus on the simu-
lation of the continuous part of a system and choose the Brusselator
as a case study to illustrate our approach.

2 QUALITATIVE MODEL OF THE STATE SPACE
The Brusselator, first described in [14], models a chemical reac-
tion between two components, whose concentrations are noted 𝑥
and 𝑦, and are characterized by the following ordinary differential
equations with parameters 𝑎 and 𝑏 :{

¤𝑥 = 1 − (𝑏 + 1)𝑥 + 𝑎𝑥2𝑦

¤𝑦 = 𝑏𝑥 − 𝑎𝑥2𝑦

Starting from the initial concentrations 𝑥0 and 𝑦0, and knowing
the parameters 𝑎 and 𝑏, we want to determine the kind of behavior
of the concentrations. A numerical analysis of the Jacobian [14]
proves that if 𝑏 < 𝑎 + 1, the system will follow a pseudo-cycle
converging to the point (𝑥 = 1, 𝑦 = 𝑏

𝑎
). Otherwise, it will generate a

non-converging cycle. One usually computes the system’s evolution
with a numerical integration method, such as Euler or Runge-Kutta.
To save computation time and focus only on visualizing specific
properties such as the periodicity, previous work in our team [12,
13] relied on the partitioning of the state space with the nullclines
of the two derivatives ¤𝑥 and ¤𝑦. These nullclines are computed by
finding the zeros of the differential equations, which gives 𝑦 as a
function of 𝑥 in the following functions 𝑓 ¤𝑥 : 𝑥 → (𝑏+1)𝑥−1

𝑎𝑥2
and 𝑓 ¤𝑦 :

𝑥 → 𝑏
𝑎𝑥
. The computed partition splits the state space into phases

defined by the direction of variation of the two state variables
(see Figure 1). The relative position of the current state to these
nullclines gives the direction of variation of each variable. We
represent this information with the black arrows in the figure.
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Figure 1: Qualitative state space for a Brusselator

This method is efficient whenwe seek only general and imprecise
information about the model’s behavior. To obtain more details,
we intend to mix these qualitative possibilities with quantitative
simulation to optimize the state space partition, the quantification
of the value of state variables, and the adaptation of the integration
step. This should allow for better use of the computation power
where it is relevant.

2.1 Isoclines as neighborhood borders
The first step in the supervision of the numerical simulation is
to refine the partition of the state space. For this, we divide the
phases identified thanks to the nullclines into areas according to
the proximity of the current state to a potential event.

For instance, in our example, the nullclines delimit four phases
numbered 0, 1, 3, and 4 in Figure 1, and define four events numbered
2, 5, 6 and 7. A fifth event (numbered 8) is the convergence point.
Events correspond to transitions between phases. To build a finer
abstraction of the state space structure, we introduce isoclines (lines
of constant derivative), which give information about the proximity
to a nullcline or an event.

For example, we can define our isoclines with 𝑦 =
(𝑏+1)𝑥−1±𝑐1

𝑎𝑥2

and 𝑦 =
𝑏𝑥 ±𝑐2
𝑎𝑥2

, where 𝑐1 and 𝑐2 are constants that depend on how
fine or coarse we want the model to be. If we place an isocline at
the same distance on each side of a nullcline, they will delimit a
neighborhood for the nullcline. If we consider the previous partition
of the state space as a separation between phases (defined by the
dynamics of the system), we now have a separation into areas
defined by their proximity to a border between phases. This allows
us to identify “safe” areas in which we know that no border will
be crossed during the next simulation step, and proximity areas, in
which we should adapt the simulation policy to take care of possible
phase changes and prevent rollbacks in the numerical integrator.
We now have a topographic map of the state space that will help us
to explore the system’s behavior with a finer division of the state
space, which is encouraged in qualitative studies [10].

2.2 Quantization
The previous division of the state space along nullclines and iso-
clines depends only on a qualitative analysis of the behavior of
the system. However, since our goal is to supervise a quantitative
simulation of the system, we have to divide the state space into
rectangles by quantizing the state variables. For now, we consider
a regular quantization that does not depend on the value of the
state variables. We will see later that during the simulation, we
will have to adapt this quantization depending on the value of the
integration step. A purely qualitative model of the state space is
usually finite (there is a finite number of phases). A purely quanti-
tative version is usually infinite and non-countable (assuming real
values for the state variables). Our quantized model of the state
space can be considered as semi-qualitative and may not be finite
but is countable.

3 SUPERVISED QUANTITATIVE SIMULATION
Guided by our qualitative map of the state space, we can supervise
the numerical simulation of the model.

3.1 Adaptive Time Steps
To reduce the number of simulation steps, we will use an adap-
tive integration step for computing the value of the state variables
over time. Some programs make a first simulation to get an ap-
proximation of the result and make a second run with an adapted
integration time step [15]. We prefer a single-run method, which
is suitable for real-time analysis. We adapt the integration step to
the speed of variation of the variables in order to limit numerical
errors, and we adapt it according to our semi-qualitative model of
the system to determine precisely when events occur.

3.2 Time Step and Maximum Variation
The usual way to adapt the integration step to the speed of varia-
tion of the state variable is to use the largest integration step that
guarantees a bounded error on the computed value. To simplify
the computations, we chose to reason with decimal orders of mag-
nitude, i.e. ⌈log10 ( |ℎ ¤𝑥 |)⌉ should be constant, with ℎ the current
integration step. In our case study with two variables, we consider
the maximum magnitude of the two derivatives to determine ℎ.
We use magnitudes of 10 to stay close to human reasoning, which
is key to qualitative modeling [16]. We also did experiments with
bases such as 2 and 16. It appears that using smaller bases gives
better precision and that base 2 is more suitable for numerical com-
putations. However, base 10 makes the program structure more
intuitive and understandable. The choice between these possibili-
ties will depend on the objective of the model and the preference
between efficiency and simplicity. Bigger bases for the order of
magnitude can be considered on models with potential significant
variations.

The constant value of ⌈log10 ( |ℎ ¤𝑥 |)⌉ must be chosen accordingly
to 𝑐1 and 𝑐2, which determine the safe distance from the nullclines.
In order to prevent missing any transition between two phases,
it should be impossible to change of phase in one step without
hitting the neighborhood of the nullcline. This criterion ensures
that the system will not have an unpredicted transition, which
would require a rollback of the simulation to detect its exact spot.
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3.3 Proximity Planning
The second adaptive aspect we use in our approach is the adaptation
of the integration step to the distance to the nullclines. This is
where the isoclines we introduced earlier play a central role. We
aim to avoid missing any transition between phases or computing
a transition that does not exist by using a bad integration step.

Therefore, we reduce the integration step by a given magnitude
when the current state enters the neighborhood of a nullcline, de-
fined by the isoclines. We chose to use a magnitude of 10 for the
same reason we evoked in the precedent paragraph. This reduction
of the integration step is even more important in areas that are close
to all nullclines. If the total derivative is noted

−→
𝑑 = ¤𝑥−→𝑑𝑥 + ¤𝑦−→𝑑𝑦 and

if ¤𝑥 changes its sign at instant 𝑡 , by continuity and because of our
adaptation of ℎ to the derivative, ¤𝑥𝑡−ℎ and ¤𝑥𝑡 will be both in a close
neighborhood of the nullcline ¤𝑥 = 0. So if we are not at the same
time in a close neighborhood of the nullcline ¤𝑦 = 0, then ¤𝑥 = 𝑜 ( ¤𝑦)
and ¤𝑥−→𝑑𝑥 + ¤𝑦−→𝑑𝑦 ≈ ¤𝑦−→𝑑𝑦. However, if we are in the neighborhood of
the ¤𝑦 nullcline, then a change in the sign of ¤𝑥 may strongly affect
the total derivative.

To avoid false transitions, our integration step reduction must
be additive, and the system must reduce the integration step even
more when in the neighborhoods of multiple nullclines.

3.4 Variable quantification
We quantized the state space of the system when building the
semi-qualitative model that we use to supervise the quantitative
simulation. However, our experiments showed that we need more
information and smaller quantization rectangles when we reduce
the integration step. Otherwise, we accumulate errors too fast and
drift too far from the real trajectory. A solution is to adapt the
quantization to the current time step. For this, we use a function
taking as parameters the initial state space precision and the current
integration step and returning the current quantization. Thinking in
terms of order of magnitude, we choose the size of the quantization
rectangle as 𝑑 = ℎ × 𝑑𝑖 , with 𝑑 the current quantization step, 𝑑𝑖 the
initial one, and ℎ the current integration step.

4 RESULTS
In this section, we apply our approach to a Brusselator and compare
the results to other methods. We made many simulations starting
from different initial points, but we show the results starting from
the (5, 4) initial point. Other starting points gave similar results.
We stop the simulation at time 10. For the quantitative simulation,
we used the Euler method. Everything was implemented in Python.
For all the plots shown here, abscissas and ordinates correspond
respectively to the values of 𝑥 and 𝑦.

4.1 Fully adaptative vs. fixed integration step
First, we choose 𝑎 = 1 and 𝑏 = 1.7 to make the system convergent.
The initial integration step is set to ℎ = 0.1. Our results are pretty
close to the actual behavior computed with precise numerical meth-
ods (see Figure 2). In contrast, a fixed-step model with a time step
of 0.1 diverges completely from the real solution, and has already
left the validity area of the differential equation with a negative

Figure 2: Our results (orange) vs. real behavior (blue)

Figure 3: Single-step simulation with ℎ = 0.1

value of 𝑦 after only one step (see Figure 3). When pushed further,
this simulation diverges to give meaningless results.

To obtain results similar to those given by our approach, we
have to use a fixed integration step ℎ = 0.01. However, this leads to
the computation of 1002 steps in 0.08 seconds, while our approach
computes only 290 steps in 0.07 seconds.

To illustrate the importance of that difference, we show the same
kind of results with 𝑎 = 1 and 𝑏 = 2.7, which makes the system
divergent, and change the stopping criterion to a fixed number of
steps. The results are shown in Figure 4 and Figure 5. This example
shows that our approach computes an entire cycle of the behavior
in 280 steps. On the contrary, the fixed integration step method
requires more than 800 steps as shown in Figure 6.

The difference with our approach is particularly visible when
the values stay far from the nullclines. In these areas, our semi-
qualitative model efficiently supervises the numerical simulation,
taking advantage of the fact that it is useless to keep a small time
step when there is no chance of having some brutal change in the
derivative or in the values of 𝑥 and𝑦. This saves time and execution
resources that can be better used in critical areas where they are
needed.

On a simple system like the Brusselator, dividing the total num-
ber of simulation steps by more than three does not yield a big
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Figure 4: Our approach on 280 steps

Figure 5: Fixed integration step (0.01) on 280 steps

Figure 6: Fixed integration step (0.01) on 800 steps.

improvement in execution time. However, on complex systems
with many components, where each step is more costly, we believe
that the improvement will be more impressive and that the extra
computations we perform to supervise the simulation will save

Figure 7: Fixed integration step of 0.025 and false transitions

more time than they consume. This has still to be verified on a
more significant use case.

To complete the comparison, we show how the fixed integration
step method generates false transitions when it gets near the two
nullclines. Figure 7 shows the result of the simulation with a fixed
integration step of 0.025 on one full cycle of the system. Transitions
are represented as colored arrows on our figures. We can see that
when we get near the two nullclines, there are five false transitions
between phases that should not exist. This is easily understandable
considering that when both derivatives have a low absolute value, a
change of sign completely reverses the total derivative of the system.
On the contrary, when one of them has a high absolute value, a
change of sign of the lower one does not significantly influence the
total derivative. Yet, the inability to react quickly in the presence
of a sufficiently high derivative causes another deviation.

4.2 Partially adaptive models
To better understand the role of the two kinds of adaptation of the
integration step we use in our model, we ran the simulation with
partially adaptive models.

Figure 8 shows the result of a full-cycle simulation when the in-
tegration step (initially set to 0.025) is only adapted to the proximity
of the nullclines. Significant errors appear very quickly when the
state variables vary rapidly but are corrected progressively when
the derivatives are low. Hence, the approximation of the limit cycle
is still quite good and we observe three false transitions.

Figure 9 shows the result of a full-cycle simulation when the
integration step (initially set to 0.025) is only adapted to the varia-
tion rate of the variables. The approximation is better in the area
where the variables evolve rapidly. Still, we observe as many false
transitions as before, due to the lack of precision near the two
nullclines.

This shows that the combination of both adaptations is required
to get good results with a reasonably sized initial integration step.

5 PERSPECTIVES
5.1 Multiple isoclines
We saw the interest of having an isocline on each side of a null-
cline to delimit an area in which we take great care of transitions



Qualitative Models for the Supervision of CPS Simulations
MoDeVVa 2022, Montréal, Canada,

Figure 8: Proximity adaptation only.

Figure 9: Variation adaptation only.

between phases. However, Figure 8 shows that the adaptation of
the integration step to the proximity of the nullclines is insufficient
to guarantee the precision of the value of the state variables. We
could therefore think that using more isoclines to have a more pro-
gressive adaptation to the proximity of phase changes is not useful.
However, the adaptation to the proximity of the nullclines gives
more accurate locations for the transitions. In a real-time context,
for the control of a cyber-physical system, additional isoclines could
therefore help to anticipate the transitions of the system and allow
for an efficient adaptation of the sampling rate of the continuous
part by the controller.

5.2 Thick borders
Because of the quantization of the value of the state variables, the
computed state of the system is never exactly on a nullcline, so we
detect events only when we have crossed it. The adaptation of the
integration step avoids overshooting the phase change too much,
and using multiple isoclines improves the adaptation and makes
it smoother. However, making the border a bit thick around the
nullcline could help to identify transitions, and it would also help to
avoid jumping back and forth over the nullcline when the behavior

of the system remains in its close neighborhood. The main issue
with this idea is to choose the right thickness for the border: if it is
too thin, we may compute too many transitions that do not exist,
and if it is too thick, we may miss significative transitions of the
system.

6 CONCLUSION AND FUTUREWORKS
The results presented in this article show that there is an interest in
building a qualitative model of a system and using semi-qualitative
logic to supervise a numerical simulation to optimize the resources
consumed by the simulation of the system when verifying its be-
havior. We obtained these results on a continuous model, but the
improvement in the detection of phase changes shows that our
approach can improve the simulation of hybrid systems and the
control of cyber-physical systems.

In this preliminary work, we focused the qualitative analysis on
the structure of the state space, but other modeling paradigms could
be used to improve the supervision of numerical simulations. For
instance, using models in the spatial (or time) frequency domains
could also help to anticipate the system’s behavior.

Another possible application of this approach is to explore the
design space for a family of systems instead of the state space of one
system. For our use case, we would build qualitative models that
describe how the behavior of the system varies depending on the
parameters 𝑎 and 𝑏. This would reduce the number of simulations
required to determine safe or optimal values for the parameters of
the system.
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