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Laboratoire de Mathématiques Appliquées aux Systèmes (MAS)
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Abstract. In this paper, we present a conformance testing theory for
Barbosa’s abstract components. We do so by defining a trace model for
components from causal transfer functions which operate on data flows at
discrete instants. This allows us to define a test selection strategy based
on test purposes which are defined as subtrees of the execution tree built
from the component traces. Moreover, we show in this paper that Bar-
bosa’s definition of components is abstract enough to subsume a large
family of state-based formalisms such as Mealy machines, Labeled Tran-
sition Systems and Input/Output Labeled Transition Systems. Hence,
the conformance theory presented here is a generalization of the stan-
dard theories defined for different state-based formalisms and is a key
step toward a theory of the test of heterogeneous systems.
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Introduction

The design of complex software systems relies on the hierarchical composition
of subsystems which may be modeled using different formalisms [12]. These sub-
systems can be considered as state-based components whose behavior can be
observed at their interface. In order to model such components in an abstract
way, we use a definition introduced by Barbosa in [1, 19]. The interest of this def-
inition is twofold: first, it can be used to describe differents kinds of state-based
formalisms, and second, it extends Mealy machines, which, following Rutten’s
work [11], allows us to define a trace model over components using causal trans-
fer functions. Barbosa defines a component as a coalgebra over the endofunctor
H = T (Out × )In where T is a monad3, and In and Out are two sets of ele-
ments which denote respectively inputs and outputs of the component. Hence,
Barbosa’s definition of a component is an extension of Mealy automata [18],
which are efficient to specify the behavior of components deterministically. The

3 The definitions and notations used in this paper are recalled in Section 1.



role of the T monad is to take into account in a generic way various computa-
tion structures such as non-determinism, partiality, etc [21]. Therefore, Barbosa’s
definition of a component allows us to model components independently of any
computation structure but also independently of the state-based formalisms clas-
sically used to specify software components. Indeed we show in this paper that
state-based formalisms such as Mealy automata, Labeled Transition Systems
and Input-Output Symbolic Transitions [8, 9] can be embedded into Barbosa’s
definition by a suitable choice for the monad T . Moreover, this way of modeling
the behavior of components allows us, following Rutten’s works [11], to define
a trace model over components by causal transfer functions. Such functions are
dataflow transformations of the form: y = F(x, q, t) where x, y and q are respec-
tively the input, output and state of the component under consideration, and t
stands for the time which is considered here as discrete.

Indeed, defining a trace model from causal functions allows us, first to show
the existence of a final coalgebra in the category of coalgebras over a signature
T (Out × )In under some sufficient conditions on the monad T , and second, to
define a conformance testing theory for components, which is the main contri-
bution of this paper. Final coalgebras are important because their existence is
the key of co-induction, a powerful reasoning principle. Following some previous
works by some authors of this paper [9], we define test purposes as particular
subtrees of the execution tree built from our trace model for components. Then,
we define an algorithm for generating test cases from a test purpose. Like in [9],
this algorithm is given as a set of inference rules. Each rule is dedicated to the
handling of an observation of the system under test (SUT ) or of a stimulation
sent by the test case to the SUT .

The paper is structured as follows: Section 1 recalls the basic notions of
the categorical theory of coalgebras and monads that are used in this paper.
Then, Section 2 recalls Barbosa’s definition of components and introduces our
trace model from causal transfer functions. The formalization of components as
coalgebras allows us to extend standard results connected to the definition of
a terminal component. Section 3 presents our conformance testing theory for
components, and Section 4 gives the inference rules for generating test cases.

1 Preliminaries

This paper relies on many terms and notations from the categorical theory of
coalgebras and monads. We briefly introduce them here, but interested readers
may refer to textbooks such as [2, 7, 17].

1.1 Categories, functors and natural transformations

A category C is a mathematical structure consisting of a collection of objects
Obj(C) and a collection of maps or morphisms Hom(C). Each map f : X → Y
has a domain X ∈ Obj(C) and a codomain Y ∈ Obj(C).



Maps may be composed using the ◦ operation, which is associative. For each
object X ∈ Obj(C), there is an identity map idX : X → X which is neutral for
the ◦ operation: for any map f : X → Y , one has f ◦ idX = f = idY ◦ f .

An object I ∈ Obj(C) is initial if for any object X ∈ Obj(C), there is a unique
morphism f : I → X in Hom(C). Conversely, an object F ∈ Obj(C) is final if for
any object X ∈ Obj(C), there is a unique morphism f : X → F in Hom(C).

Given two categories C and D, a functor F : C→ D consists of two mappings
Obj(C)→ Obj(D) and Hom(C)→ Hom(D), both written F , such that:

– F preserves domains and codomains:
if f : X → Y is in C, F (f) : F (X)→ F (Y ) is in D

– F preserves identities: ∀X ∈ C, F (idX) = idF (X)

– F preserves composition:
∀f : X → Y and g : Y → Z in C, F (g ◦ f) = F (g) ◦ F (f) in D.

Given two functors F,G : C → D from a category C to a category D, a
natural transformation ε : F ⇒ G associates to any objectX ∈ C a morphism
εX : F (X) → G(X) in D, called the component of ε at X, such that for every
morphism f : X → Y in C, we have εY ◦ F (f) = G(f) ◦ εX .

1.2 Algebras and coalgebras

Given an endofunctor F : C → C on a category C, an F -algebra is defined
by a carrier object X ∈ C and a morphism α : F (X) → X. In this categorical
definition, F gives the signature of the algebra. For instance, with 1 denoting the
singleton set {?}, if we consider the functor F = 1 + which maps X 7→ 1 +X,
the F -algebra (N, [0, succ]) is Peano’s algebra of natural numbers, with the usual
constant 0 : 1→ N and constructor succ : N→ N.

Similarly, an F -coalgebra is defined by a carrier object X ∈ C and a mor-
phism α : X → F (X). In the common case where C is Set, the category of sets,
the signature functor of an algebra describes operations for building elements
of the carrier object. On the contrary, in a coalgebra, the signature functor de-
scribes operations for observing elements of the carrier objet. For instance, a
Mealy machine can be described as a F -coalgebra (S, 〈out, next〉) of the functor
F = (Out× )In with S, In and Out the sets of states, inputs and outputs.

1.3 Induction and coinduction

An homomorphism of (co)algebras is a morphism from the carrier object of
a (co)algebra to the carrier object of another (co)algebra which preserves the
structure of the (co)algebras. On the following commutative diagrams, f is an
homomorphism of algebras and g is an homomorphism of coalgebras:

F (X) F (Y )

X Y

F (f)

f

α β

Z U

F (Z) F (U)

g

F (g)

δ γ



F -algebras and homomorphisms of algebras constitute a category Alg(F ).
Similarly, F -coalgebras and homomorphisms of coalgebras constitute a category
CoAlg(F ). If an initial algebra exists in Alg(F ), it is unique, and its structure
map is an isomorphism. The uniqueness of the homomorphism from an initial
object to the other objects of a category is the key for defining morphisms
by induction: giving the structure of an F -algebra (X,β) defines uniquely the
homomorphism f : I → X from the initial F -algebra (I, α) to this algebra.

Conversely, if a final coalgebra exists in CoAlg(F ), it is unique, and its
structure map is an isomorphism. The uniqueness of the homomorphism from
any object to a final object of a category is the key for defining morphisms by
coinduction: giving the structure of an F -coalgebra (Y, δ) defines uniquely the
morphism f : Y → F from this coalgebra to the final F -coalgebra (F, ω).

1.4 Monads

Monads [17] are a powerful abstraction for adding structure to objects. Given
a category C, a monad consists of an endofunctor T : C → C equipped with
two natural transformations η : idC ⇒ T and µ : T 2 ⇒ T which satisfy the
conditions µ ◦ Tη = µ ◦ ηT = idC and µ ◦ Tµ = µ ◦ µT :

T 2 T T 2

T

Tη ηT

idC
µ µ

T 3 T 2

T 2 T

Tµ

µT

µ

µ

η is called the unit of the monad. Its components map objects in C to their
naturally structured counterpart. µ is the product of the monad. Its components
map objects with two levels of structure to objects with only one level of struc-
ture. The first condition states that a doubly structured object ηT (X)(t) built by
η from a structured object t is flattened by µ to the same structured object as
a structured object T (ηX)(x) made of structured objects built by η. The second
condition states that flattening two levels of structure can be made either by
flattening the outer (with µT (X)) or the inner (with T (µX)) structure first.

Let us consider a monad built on the powerset functor P : Set → Set. We
use it to model non-deterministic state machines by replacing the target state
of a transition by a set of possible states. The component ηS : S → P(S) of
the unit of this monad has to build a set of states from a state. We can choose
ηS : σ 7→ {σ}. The component µS : P(P(S)) → P(S) of the product of the
monad has to flatten a set of sets of states into a set of states. For a series of
sets of states (si), ∀i, si ∈ P(S), we can choose µS : {s1 . . . si . . .} 7→ ∪si.

Moreover, monads have also been used to represent many computation situ-
ations such as partiality, side-effects, exceptions, etc [21].



2 Transfer functions and components

In this section, we use the definition given by Barbosa in [1, 19] to define com-
ponents, i.e. as coalgebras of the Set endofunctor T (Out × )In where In and
Out are the sets of respectively input and output data and T is a monad. As we
will see in Section 2.2, the interest of Barbosa’s definition of components is that
it is abstract enough to unify in a same framework a large family of formalisms
classically used to specify state-based systems, such as Mealy machines, Labelled
Transition Systems (LTS), Input-Output Labelled Transition Systems (IOLTS),
etc. Similarly to Rutten’s works in [11], we denote the behavior of a component
by a transfer function.

2.1 Transfer function

In the following, we note ω the least infinite ordinal, identified with the corre-
sponding hereditarily transitive set.

Definition 1 (Dataflow). A dataflow over a set of values A is a mapping
x : ω → A. The set of all dataflows over A is noted Aω.

Transfer functions, which we use to describe the observable behavior of com-
ponents, can be seen as dataflow transformers satisfying the causality condition
in a standard framework [24], that is the output data at index n only depends
on input data at indexes 0, . . . , n.

Definition 2 (Transfer function). Let T be a monad. Let In and Out be
two sets denoting, respectively, the input and output domains. A function F :
Inω −→ Outω is a transfer function if, and only if it is causal, that is:

∀n ∈ ω,∀x, y ∈ Inω, (∀m, 0 ≤ m ≤ n, x(m) = y(m)) =⇒ F(x)(n) = F(y)(n)

2.2 Components

Definition 3 (Components). Let In and Out be two sets denoting, respec-
tively, the input and output domains. Let T be a monad. A component C is
a coalgebra (S, α) for the signature H = T (Out × )In : Set → Set with a
distinguished element s0 denoting the initial state of the component C.

Example 1. We illustrate the notions and results previously mentioned with
the simple example of a coffee machine M modeled by the transition diagram
shown on Figure 1. The behavior of M is the following: from its initial state
STDBY, when it receives a coin from the user, it goes into the READY state.
Then, when the user presses the “coffee” button, it either serves a coffee to
the user and goes to the STDBY state, or it fails to do so, refunds the user
and goes to the FAILED state. The only escape from the FAILED state is
to have a repair. In our framework, this machine is considered as a compo-
nent M = (S, s0, α) over the signature4 Pf (Out × )In. The state space is

4 Pf (X) = {U ⊆ X|U is finite} is the finite powerset of X.



S = {STDBY,READY,FAILED} and s0 = STDBY. The sets of inputs and
outputs are In = {coin, coffee, repair} and Out = {⊥, served, refund}. Finally,

the transition function α : S −→ Pf

(
{⊥, served, refund} × S

){coin,coffee,repair}
is

defined as follows:α(STDBY)(coin) =
{

(⊥,READY)
}

α(READY)(coffee) =
{

(served,STDBY), (refund,FAILED)
}

α(FAILED)(repair) =
{

(⊥,STDBY)
}

STDBY READY FAILED

coin | ⊥

coffee | served

coffee | refund

repair | ⊥

Fig. 1. Coffee machine

Definition 4 (Category of components). Let C and C′ be two components
over H = T (Out × )In. A component morphism h : C → C′ is a coalgebra
homomorphism h : (S, α)→ (S′, α′) such that h(s0) = h(s′0).
We note Cat(H) the category of components over H.

Using Definition 3 for components, we can unify in a same framework a
large family of formalisms classically used to specify state-based systems such
as Mealy machines, LTS and IOLTS. Hence, when T is the identity functor Id,
the resulting component is a Mealy machine. A Labelled Transition System is
obtained by choosing Out = {} and In = Act, a set of symbols standing for
actions names, and the powerset functor P for T . Finally, with the powerset
monad P for T , and with the additional property on the transition function
α : S −→ P(Out× S)In:

∀i ∈ In, ∀s ∈ S, (o, s′) ∈ α(s)(i) =⇒ either i = ε or o = ε

we obtain an IOLTS (input and output are mutually exclusive).

2.3 Traces

To associate behaviors to components by their transfer function, we need to
impose the supplementary condition on the monad T that there exists a natural
transformation η−1 : T =⇒ P where P : S 7→ P(S) is the powerset functor, such
that: ∀S ∈ Set,∀s ∈ S, η−1

S (ηS(s)) = {s}.
Most monads used to represent computation situations satisfy the above

condition. For instance, for the monad T : S 7→ P(S), η−1
S is the identity on

sets, while for the functor T : S 7→ S ∪ {⊥}, η−1
S is the mapping that associates

to s ∈ S the singleton {s} and the emptyset for ⊥. The interest of η−1 is to
allow the association of a set of transfer functions to a component (S, α) as its
possible traces. Indeed, we need to “compute” for a sequence x ∈ Inω all the



outputs o after “performing” any sequence of states (s0, . . . , sk) such that sj is
obtained from sj−1 by x(j − 1). However, we do not know how to characterize
sj with respect to α(sj−1)(x(j − 1)). The problem is that nothing ensures that
elements in α(sj−1)(x(j − 1)) are couples (output, state). Indeed, the monad T
takes the product of a set of output Out and a set of states S and yields another
set which may be different of the structure of Out × S. The mapping η−1

Out×S
maps back to this structure.

In the following, we note η−1
Out×S(α(s)(i))|1 (resp. η−1

Out×S(α(s)(i))|2) the set
composed of all first arguments (resp. second arguments) of couples in α(s)(i).

Definition 5 (Component traces).
Let C be a component over H = T (Out× )In. The Traces from a state s of C is
the whole set of transfer functions Fs : Inω → Outω defined for every x ∈ Inω

such that there exists an infinite sequence of states s0, s1, . . . , sk, . . . ∈ S with
s0 = s and satisfying: ∀j ≥ 1, sj ∈ η−1

Out×S(α(sj−1)(x(j − 1)))|2 and for every

k ∈ ω, Fs(x)(k) = ok such that (ok, sk+1) ∈ η−1
Out×S(α(sk)(x(k)))

Hence, C’s traces are the set of transfer functions Fs0 as defined above.

In the context of our work, we are mainly interested by finite traces. Finite
traces are finite sequences of couples (input|output) defined as follows :

Definition 6 (Component finite traces). Let Fs0 be a trace of a component
C, let n ∈ N. The finite trace of length n Fs0|n

associated to Fs0 is the whole
set of the finite sequence 〈i0|o0, . . . , in|on〉 such that there exists x ∈ Inω where
for every j, 0 ≤ j ≤ n, x(j) = ij, and Fs0(x(j)) = oj .
Then, Trace(C) =

⋃
Fs0

⋃
n∈N
Fs0|n

defines the whole set of finite traces over C.

3 Conformance Testing for Components

In this section, we examine how we can test the conformance of an implemen-
tation of a component to its specification. In order to compare the behavior of
the implementation to the specification, we need to consider both as compo-
nents over a same signature. However, the behavior of the implementation is
unknown and can only be observed through its interface. We therefore need a
conformance relation between what we can observe on the implementation and
what the specification allows.

3.1 Conformance Relation

The specification Spec of a component is the formal description of its behav-
ior given by a coalgebra over a signature H = T (Out × )In. On the contrary,
its implementation SUT (for System under Test) is an executable component,
which is considered as a black box [3, 25]. We interact with the implementa-
tion through its interface, by providing inputs to stimulate it and observing its
behavior through its outputs.



The theory of conformance testing defines the conformance of an implementa-
tion to a specification thanks to conformance relations. Several kinds of relations
have been proposed. For instance, the relations of testing equivalence and pre-
orders [22, 23] require the inclusion of trace sets. The relation conf [4] requires
that the implementation behaves according to a specification, but allows be-
haviors on which the specification puts no constrain. The relation ioconf [26]
is similar to conf, but distinguishes inputs from outputs. There are many other
types of relations [15, 20].

conf and ioconf have received most attention by the community of formal
testing because they have shown their suitability for conformance testing. Since
we are dealing with components with input and output, we choose ioconf and
extend it to fit our framework. There are several extentions to ioconf according
to both the underlying type of transition system and the aspect considered to be
tested [8, 9, 13, 5]. Recently, a denotational version of ioconf [27] was redefined
in the Unifying Theories of Programming (UTP) [10].

Definition 7. Let C = (S, s0, α) be a component. Let tr = 〈i0|o0, . . . , in|on〉 be
a finite trace over C, i.e. an element of Trace(C), and let s be a state of S. We
have the two following definitions:

– (C after tr) =
{
s′ | ∃s1, . . . , sn ∈ S,
∀j, 1 ≤ j ≤ n, (oj−1, sj) ∈ η−1

Out×S
(
α(sj−1)(i(j−1))

)
,

and (on, s
′) ∈ η−1

Out×S
(
α(sn)(in)

)}
is the set of reachable states from the state s0 after executing tr

– OutC(s) =
⋃

i∈In

(
{o | ∃s′ ∈ S, (o, s′) ∈ η−1

Out×S
(
α(s)(i)

)
}
)

is the set of the possible outputs in s.

The set OutC(s) can be extended to any set of states S′ ⊆ S, we have :

OutC(S
′) =

⋃
s′∈S′

(
OutC(s

′)
)

These definitions allow us to define the ioconf relation in our framework:

Definition 8. (ioconf) Let Spec and SUT be two components over the signature
T (Out× )In. The ioconf relation is defined as follows :

SUT ioconf Spec⇐⇒
{
∀tr ∈ Trace(Spec),
OutSUT (SUT after tr) ⊆ OutSpec(Spec after tr)

We should note here that our ioconf definition covers all possible assumptions
that must classically be made in conformance testing practice. For instance, it is
always assumed that implementations are input enabled, that is, at any state, the
implementation must produce an answer for all outputs. This assumption can
naturally be expressed in our framework by considering the transition function
α as total function.



3.2 Finite Computation Tree

In this section, we define the finite computation tree of a component, which
captures all its finite computation paths:

Definition 9. (Finite computation tree of component) Let (S, s0, α) be a com-
ponent over T (Out× )In. The finite computation tree of depth n of C, noted
FCT (C, n) is the coalgebra (SFCT , s

0
FCT , αFCT ) defined by :

– SFCT is the whole set of C−paths. A C−path is defined by two finite se-
quences of states and inputs (s0, . . . , sn) and (i0, . . . , in−1) such that for ev-
ery j, 1 ≤ j ≤ n, sj ∈ η−1

Out×S
(
α(sj−1)(ij−1)

)
|2

– s0
FCT is the initial C−path 〈s0, ()〉

– αFCT is the mapping which for every C−path 〈(s0, . . . , sn), (i0, . . . , in−1)〉
and every input i ∈ In associates T (Γ ) where Γ is the set:

Γ =
{(
o, 〈(s0, . . . , sn, s

′), (i0, . . . , in−1, i)〉
)
| (o, s′) ∈ η−1

Out×S
(
α(sn)(i)

)}
In this definition, SFCT is the set of the nodes of the tree. s0

FCT is the root of the
tree. Each node is represented by the unique C-path 〈(s0, . . . , sn), (i0, . . . , in−1)〉
which leads to it from the root:

s0
i0

s1
i1

. . .
in−2

sn−1

in−1
sn

αFCT gives, for each node p and for each input i, the set of nodes Γ that can be
reached from p when the input i is submitted to the component.

3.3 Test Purpose

In order to guide the test derivation process, test purposes can be used. A test
purpose is a description of the part of the specification that we want to test
and for which test cases are to be generated. In [6] test purposes are described
independently of the model of the specification. On the contrary, following [9],
we prefer to describe test purposes by selecting the part of the specification
that we want to explore. We therefore consider a test purpose as a tagged finite
computation tree of the specification. The leaves of the FCT which correspond
to paths that we want to test are tagged accept. All internal nodes on such paths
are tagged skip, and all other nodes are tagged �.

Definition 10. (Test Purpose) Let FCT (C, n) be the finite computation tree of
depth n associated to a component C. A test purpose TP for C is a mapping
TP : SFCT −→ {accept, skip,�} such that:

– there exists a C−path p ∈ SFCT such that TP (p) = accept

– if TP (〈(s0, . . . , sn), (i0, . . . , in−1)〉) = accept, then:

for every j, 1 ≤ j ≤ n− 1, TP (〈(s0, . . . , sj), (i0, . . . , ij−1)〉) = skip



– TP (〈s0, ()〉) = skip

– if TP (〈(s0, . . . , sn), (i0, . . . , in−1)〉) = �, then:

TP (〈(s0, . . . , sn, s
′
n+1, . . . , s

′
m), (i0, . . . , in−1, i

′
n, . . . , i

′
m−1)〉) = �

for all m > n and for all (s′j)n<j≤m and (i′k)n≤k<m

Example 2. Figure 2 gives a test purpose TP on the finite computation tree of
depth 4 of the coffee machineM whose specification is shown on Figure 1. This
test purpose allows us to ignore the behaviors ofM related to failure and repair
and to concentrate on its interaction with a user. When the machine fails and the
user is refunded, we reach node p3 or p6 which are tagged with �. This indicates
that we are not interested in further behavior from these nodes. p5 is tagged
with accept because it is a leaf which corresponds to an expected behavior. All
nodes leading from the root p0 to this node are tagged with skip because they
are valid prefixes of p5.

p0

p1

p2 p3

p4

p5 p6

coin|⊥

coffee|served coffee|refund

coin|⊥

coffee|served coffee|refund

skip

skip

skip �

skip

accept �

p0 = 〈STDBY, ()〉
p1 = 〈(STDBY,READY),

coin〉
p2 = 〈(STDBY,READY, STDBY),

(coin, coffee)〉
p3 = 〈(STDBY,READY,FAILED),

(coin, coffee)〉
p4 = 〈(STDBY,READY, STDBY,READY),

(coin, coffee, coin)〉
p5 = 〈(STDBY,READY, STDBY,READY,FAILED),

(coin, coffee, coin, coffee)〉
p6 = 〈(STDBY,READY, STDBY,READY, STDBY),

(coin, coffee, coin, coffee)〉

Fig. 2. Test purpose of the coffee machine

In order to build a test purpose on a finite computation tree, we therefore
choose the leaves of the tree which we accept as correct finite behaviors and we
tag them with accept. We then tag every node which represents a prefix of an
accepted behavior with skip. The other nodes, which lead to behaviors that we
do not want to test, are tagged with �.

4 Test generation guided by test purposes

Similarly to [9], we propose an approach for test cases selection according to a
test purpose. In order to test the conformance of the SUT to the specification, we
start from the root of a test purpose, we choose a possible input i and submit it to
the SUT . We observe the outputs o and compare them with the possible outputs
in the finite computation tree. If the outputs do not match the specification, the
verdict of the test is FAIL. Otherwise, if at least one of the nodes which can



be reached with i|o is tagged skip in the test purpose, the test goes on. If the
nodes are tagged �, further behavior is not of interest, so the test is inconclusive
(INCONC verdict). If one of the nodes is tagged accept, the test succeeds (PASS
verdict). It may happen, due to the non-determinism of the specification, that
the implementation behaved correctly, but we cannot determine if we reached
an accept state or an � state. This leads to a WeakPASS verdict.

4.1 Preliminaries

In this section, we introduce some notations and definitions that will be used in
describing our algorithm for generating conformance tests for components.

As mentioned above, a test case is a sequence generated by a test purpose
TP interacting with SUT . This is denoted by [ev0, ev2, . . . , evn][V erdict], where
for all i ∈ [0, . . . , n], evi = i|o is an elementary input-output with i ∈ In ∪ {ε}
and o ∈ Out ∪ {ε}, and V erdict ∈ {FAIL, PASS, INCONC,WeakPASS}.
We added the special symbol ε to the input and output actions to denote a
stimulation of SUT without input and the absence of output for a stimulation.
We note stimobs(i|o) the output o from SUT when stimulating it with input i.

In order to compute the set of reachable states that lead to accept states
after a given input-output sequence, we define a current set of states denoted
by CS that contains a subset of the states of the test purpose. It is initialized
to the initial state of TP . We also introduce three functions to help exploring
TP by selecting paths that lead to accept states. Next(CS, ev) is the set of
directly reachable states from the current set of states CS after executing ev.
NextSkip(CS, ev) is the set of states in Next(CS, ev) from which it is pos-
sible to reach accepting states, and NextPass(CS, ev) is the set of states in
Next(CS, ev) which are labelled by accept.

Definition 11. Let TP : SFCT → {accept, skip,�} be a test purpose for a
component C, ev = 〈i|o〉 an event, and S′ a subset of SFCT :

– Next(S′, ev) =
⋃

s′∈S′
({s | (o, s) ∈ η−1

Out×SFCT
(αFCT (s′)(i))}),

– NextSkip(S′, ev) = Next(S′, ev)
⋂
TP (S′)|skip

,

– NextPass(S′, ev) = Next(S′, ev)
⋂
TP (S′)|accept

.

with TP (S′)|tag
= {s′ ∈ S′ | TP (s′) = tag}

4.2 Inferences rules

We define our test case generation algorithm as a set of inferences rules. Each
rule states that under certain conditions on the next observation of output action
from SUT or the next stimulation of SUT by an input action, the algorithm
either performs an exploration of other states of TP , or stops by generating a
verdict.



We structure these rules as CS
Results cond(ev), where CS is a set of current

states, Results is either a set of current states or a verdict, and cond(ev) is a set of
conditions including stimobs(ev). Each rule must be read as follows : Given the
current set of states CS, if cond(ev) is verified, then the algorithm may achieve
a step of execution, with ev as input-output elementary sequence.

Our algorithm can be seen as an exploration of the finite computation tree
starting from the initial state. It switches between sending stimuli to the im-
plementation and waiting for output of the implementation according to the
inference rules as long as a verdict is not reached. We distinguish two kinds of
inference rules : exploring rules and diagnosis rules. The first kind, is applied to
pursue the computation of the sequence as long as Result is a set of states. The
second kind leads to a verdict and stops the algorithm.

Rule 0 : Initialization rule5: {s0FCT }

Rule 1 : Exploration of other states : the emission o after a stimulation by i on
the SUT is compatible with the test purpose but no accept is reached.

CS

Next(CS, ev)
stimobs(ev), NextSkip(CS, ev) 6= ∅

Rule 2 : Generation of the verdict FAIL : the emission from the SUT is not
expected with regards to the specification.

CS

FAIL
stimobs(ev), Next(CS, ev) = ∅

Rule 3 : Generation of the verdict INCONC : the emission from the SUT is
specified but not compatible with the test purpose.

CS

INCONC
stimobs(ev),

{
Next(CS, ev) 6= ∅,
NextSkip(CS, ev) = NextPass(CS, ev) = ∅

Rule 4 : Generation of the verdict PASS : all next states directly reachable
from the set of current set are accept ones.

CS

PASS
stimobs(ev), NextPass(CS, ev) = Next(CS, ev), Next(CS, ev) 6= ∅

Rule 5 : Generation of the verdict WeakPASS : some of the next states are
labelled by accept, but not all of them.

CS

WeakPASS
stimobs(ev),

{
NextPass(CS, ev) ⊂ Next(CS, ev),
NextPass(CS, ev) 6= ∅

We should now note that each of these rules except rule 0 can be used in
several ways according to the form of ev. When ev = ε|o, o is produced sponta-
neously by SUT . When ev = i|ε, the stimulation of SUT with i does not produce
any output. Finally, when ev = i|o, o is produced by SUT when it is stimulated
with i. These possibilities for ev therefore give rise to a generic algorithm that
can be applied to a wide variety of state-based systems ([6, 9, 16]) by choosing
the appropriate monad T and input and output sets.

5 This rule is involved only once when starting the algorithm.



4.3 Properties

In order to state that, according to our algorithm, the non-existence of a FAIL
verdict leads to conformance (correctness) and that any non-conformance is de-
tected by a test case ending by a FAIL verdict (completeness), we denote by
CS and EV respectively the whole set of current state sets and the whole set
of input-output elementary sequences used during the application of the set of
inference rules on an implementation SUT according to a test purpose TP . We
then introduce a transition system whose states are the sets of current states
and four special states labelled by the verdicts. Two states are linked by a tran-
sition labelled by an input-output elementary sequence. This transition system
is formally defined as follows :

Definition 12. Let TP be a test purpose for a specification Spec, let SUT be
an implementation, let CS be the whole set of current state sets and let EV be the
whole set of input-output elementary sequences. Then, the execution of the
test generation algorithm on SUT according to TP denoted by TS(TP, SUT )
is the coalgebra (STS , αTS) over the signature ( )EVdefined by :

– STS = CS ∪ Verdict where Verdict is the set whose elements are FAIL,
PASS, INCONC and WeakPASS,

– αTS is the mapping which for every CS ∈ CS and for every ev ∈ EV is
defined as follows :

αTS(CS)(ev) =



Next(CS, ev) if NextSkip(CS, ev) 6= ∅, NextPass(CS, ev) = ∅
FAIL if Next(CS, ev) = ∅
INCONC if NextSkip(CS, ev) = NextPass(CS, ev) = ∅

and Next(CS, ev) 6= ∅
PASS if Next(CS, ev) = NextPass(CS, ev)

and Next(CS, ev) 6= ∅
WeakPASS if NextPass(CS, ev)  Next(CS, ev)

and NextPASS(CS, ev) 6= ∅

With this definition, test cases are sets of possible traces which can be ob-
served during an execution of TS(TP, SUT ), and lead to a verdict state.

Definition 13. Let TS(TP, SUT ) = (STS , αTS) be the execution of the test
generation algorithm on SUT according to TP . A test case for TP is a sequence
[ev0, . . . , evn][V erdict] for which there is a sequence of states s

0
, . . . , sn ∈ CS

with ∀j, 0 ≤ j < n, sj+1 = αTS(sj)(evj), and there is a verdict state V erdict ∈
Verdict such that V erdict = αTS(sn)(evn). We note st(TP, SUT ) the set of all
possible test cases for TP .

We can now introduce the notation:

vdt(TP, SUT ) = {V erdict | ∃ev0 . . . evn, [ev0 . . . evn|V erdict] ∈ st(TP, SUT )}

Theorem 1. (Correctness and completeness) For any specification Spec and
any SUT :



– Correctness: If SUT conforms to Spec, for any test purpose TP , FAIL 6∈
vdt(TP, SUT ).

– Completeness: If SUT does not conform to Spec, there exists a test pur-
pose TP such that FAIL ∈ vdt(TP, SUT ).

5 Conclusion

In this paper, we have presented a coalgebraic model, a conformance relation
between implementations and specifications, and a test generation algorithm for
component based systems. This work relies on previous works done in [1, 19]
for defining software components as coalgebras, and in [9] for defining our test
generation algorithm.

The formalism used in this paper to specify both the specification and sys-
tem the under test is abstract enough to subsume most state-based formalisms.
Hence, the conformance theory defined here over this formalism is de facto a
generalization of standard theories found for different state-based formalisms.

The ability of this framework to model and generate tests for components is
a first step toward the testing of complex (software) systems, made from a huge
number of components that interact altogether. This will require the definition
of integration operators to combine the behavior of components. It should then
allow us to check whether an implementation made of conforming components
combined with integration operators is conform to its specification.

In order to fit the required format of the paper, we omitted some details
(detailed explanations, theorems of existence of final coalgebras, proofs of all
theorems) which are available in an extended version of this paper [14].
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