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Abstract
Synchronous languages allow a high level, concurrent,

and deterministic description of the behavior of reactive
systems. Thus, they can be used advantageously for the
programming of embedded control systems. The runtime
requirements of synchronous code are light, but several crit-
ical properties must be fulfilled.

In this paper, we address the problem of the software im-
plementation of synchronous programs. After a brief intro-
duction to reactive systems, this paper formalizes the no-
tion of “execution machine” for synchronous code. Then,
a generic architecture for centralized execution machines is
introduced. Finally, several effective implementations are
presented.

1 Introduction
1.1 Reactive Systems

Reactive systemsare computer systems that react contin-
uously to their environment, at a speed determined by the
latter [19]. This class of systems contrasts withtransfor-
mational systemsandinteractive systems. Transformational
systems are classical programs whose inputs are available
at the beginning of their execution, and which deliver their
outputs when terminating: for instance compilers. Interac-
tive systems are programs which react continuously to their
environment, but at their own speed: for instance operat-
ing systems. Among reactive systems are most of the in-
dustrial real-time systems: control, supervision, and signal-
processing systems. These systems must meet the following
requirements:

1. Safety requirements. This is perhaps their most im-
portant feature since these systems are often critical
ones. For instance, the consequences of a software er-
ror in an aircraft automatic pilot or in a nuclear plant
controller are disastrous. Therefore these systems re-
quire rigorous design methods and languages as well
as formal verification and validation of their behavior.

2. Temporal requirements. This concerns both the in-
put rate and the input/output response time. To check
their satisfaction on the implementation, it is necessary
to know bounds on the execution time of each compu-
tation as well as on the maximal input rate.

3. Concurrency requirements. It is convenient and nat-
ural to design such systems as sets of components that
cooperate to achieve the intended behavior. Here we
distinguish between thespecificationparallelism and
theexecutionparallelism. The latter is sometimes re-
quired by the implementation, while the former helps
the programmer in specifying his system clearly and
concisely.

4. Determinism. These systems, or at least their most
critical parts, always react the same way to the same
inputs. This property makes their design, analysis and
debugging easier. It must therefore be preserved by the
implementation.

A programming language well suited to the design of
reactive systems should therefore be parallel and determin-
istic, and allow formal behavioral and temporal verification.

1.2 The Synchronous Approach
Synchronous languages have been introduced in the 80’s

to make the programming of reactive systems easier [7].
The purpose of these languages is to give the designer ideal
temporal primitives, thus reducing the chance of program-
ming misconceptions. Instead of the interleaving paradigm,
they are based on the simultaneity principle: all parallel
activities share the same discrete time scale. Concretely,
this means that the parallel statementa‖b is viewed as the
“package”ab wherea andb are simultaneous. Each activ-
ity can then be dated on the discrete time scale; this has the
following advantages:

• Time reasoning is made simpler.

• Interleaving-based non-determinism disappears,
which makes program debugging, testing, and
validating easier.

Concerning the implementation, the idea is to project this
discrete time scale onto the physical time. As the scale is
discrete,nothingoccurs between two consecutive instants:
everything must happen as if the processor running the pro-
gram were infinitely fast. This is thesynchrony hypothesis.

Of course, such an infinitely fast processor does not ex-
ist, but it suffices that any input be treated before the next
one. In order to verify this condition, one only needs to
know the minimal input period, and an upper bound on the



execution time of the object program. For this purpose, syn-
chronous languages have deliberately restricted themselves
to programs that can be compiled into a finite deterministic
interpreted automaton, a control structure whose transitions
are deterministic sequential programs operating on a finite
memory. Each transition, whose execution time is statically
computable, corresponds to the system reaction to an input.

There are numerous languages based upon the synchrony
hypothesis: ESTEREL [9], L USTRE [17], SIGNAL [20],
STATECHARTS [18], SML [14], SYNCCHARTS [1],
ARGOS[21], and SR [16].

Synchronous languages have recently seen a tremen-
dous interest from leading companies developing automatic
control software for critical applications, such as Schnei-
der Electric, Dassault Aviation, Aérospatiale, Snecma,
Cadence, Texas Instrument, Thomson, . . . For instance,
LUSTRE is used to develop the control software for nuclear
plants [6] and AIRBUS planes [13]. ESTEREL is used to de-
velop DSP chips for mobile phones [5], to design and ver-
ify DVD chips, and to program the flight control software of
RAFALE fighters [8]. And SIGNAL is used to develop digital
controllers for airplane engines. The key advantage pointed
by these companies is that the synchronous approach has
a rigorous mathematical semantics which allows the pro-
grammers to develop critical software faster and better.

Finally, all synchronous languages can import and ma-
nipulate external objects (constants, variables, procedures,
and functions), specified in ahost language, e.g., ADA,
C, . . . The compiling model adopted for the various syn-
chronous languages consists then in compiling the source
program towards an intermediate format where parallelism,
preemptions, local communications, and so on, have been
transformed into sequential deterministic code. This inter-
mediate format consists of several tables and a control part.
The tables describe the input/output signals, the constants,
the types, the variables, and so on. The control part is either
a deterministic finite state automaton (the internal OC for-
mat), or a system of Boolean equations with registers (the
internal DC or SSC format). In both cases, the intermediate
code program is compiled into atransformational function
in the host language.

1.3 Problem Statement
When executing synchronous programs, one must deal

with the big difference between the program and its envi-
ronment. Indeed, the program is synchronous while its en-
vironment is intrinsically asynchronous, i.e., its evolutions
are notgoverned by the synchrony hypothesis.

As we have said, a reactive system must react contin-
uously to its environment, at a speed imposed by the lat-
ter. Concretely, the program communicates with its envi-
ronment through input/output signals. Input and output sig-
nals are respectively sensed and emitted by the program.

We distinguish two kinds of sensors, and accordingly two
kinds of inputs:

• State sensors: They measure a physical value either
continuous (e.g. the temperature) or discrete (e.g. an
on/off limit switch). They give the current state of
the physical value, sampled in the case of a continu-
ous one.

• Event sensors: They measure both the state changes of
a physical value (e.g., moving above a threshold) and
the discrete events (e.g., an alarm). A state change is
by essence discrete, fleeting, and must therefore be ex-
pected specifically in order to be observed. We include
in this part messages possibly coming from other sub-
systems. In the case of a large scale system, the design-
ers often divide it into several subsystems that are pro-
grammed separately. Thus, each subsystem receives
inputs from the environment as well as from other sub-
systems, via a local bus (CAN, VAN, FIP, home made
bus, and so on). This was the case of the CO3N4 nu-
clear plant controller made by Schneider Electric.

The program is synchronous. From the implementation
point of view, this means that it transforms instantaneously
a tuple of inputs into a tuple of outputs. Aninstantof the
synchronous program corresponds therefore to the recep-
tion of a new input tuple, the reaction to these inputs, and
the emission of a new output tuple. As a consequence:

• the inputs of a same instant are synchronous since they
belong to the same tuple,

• the outputs are synchronous with the inputs since the
reaction of the program is instantaneous.

It follows an intrinsic mismatch between the syn-
chronous program and the asynchronous environment. Any
implementation, be it software or hardware, must solve
this discrepancy, through asynchronous/asynchronous in-
terface, whose precise purpose remains to be stated.

1.4 Paper Outline

We address in this paper the problem of implementing
synchronous programs. There are two ways of implement-
ing such programs: either software or hardware. We focus
here on their software implementation. We formalize our
problem in Section2 by studying the interactions between
the program, the interface, and the environment. Then we
present in Section3 some practical implementations, before
concluding in Section4.

Implementations can be either centralized, or distributed.
This presentation focuses on the former. The distribution of
synchronous programs raises other issues that are beyond
the scope of this paper.



2 Formalization

2.1 The Execution Machine

The purpose of the execution machine is to actually ex-
ecute a synchronous program in an asynchronous environ-
ment, that is, to observe the current state of the environment
(sensing phase), to decide what to do (execution phase), and
to act upon the environment (acting phase). Figure1 states
these interactions and emphasizes the necessary input and
output treatments.

sensors actuators

Environment to be controlled

image of theimage of the
environment

state
commands towards

the environment

execution of the reaction

synchronous program

Execution machine

Figure 1. Interactions between the execution
machine and the environment

We define an execution machine as the combination of
a reactive machine, a transformational machine, and a con-
troller [2]:

• The reactive machine is made of the object program
obtained after compiling the synchronous program, the
interface functions for inputs and outputs, and the run-
time specific to the target processor.

• The transformational machine implements the con-
stants, types, procedures, and functions external to the
synchronous program in the chosen host language (for
instance C).

• The controller coordinates everything together.

As said in Section1.2, a synchronous program is com-
piled into a function in the host language. This function,
which belongs to the above reactive machine is itselftrans-
formational and not reactive. This means that it must be
explicitly invoked, possibly with inputs, and that it termi-
nates, possibly with some results. The role of the exe-
cution machine is precisely to give a reactive behavior to
this transformational function. To this end, the controller
must trigger the reactions of the program to make it reactive
to its environment. Hence the controller must include an
execution loopin charge of invoking the transformational
function. Each invocation corresponds to aninstantof the
synchronous program. We present in the next section two
strategies for this execution loop.

Finally, the transformational function has strictly speak-
ing neither inputs nor outputs. The program inputs are im-
plicit in the sense that they are updated by dedicated func-
tions. Concretely, to each input signal corresponds a func-
tion in charge of updating the value of the signal (except if
the signal is pure, in which case it conveys no value, i.e.,
only its presence or absence is of interest) and marking the
signal as present. These update functions must be invoked
by the execution machine. Concerning the program outputs,
they are explicitly emitted by output functions invoked by
the transformational function. These output functions must
be written by the programmer.

No execution machine, no matter how fast, can react in
zero time. This fact may seem crippling for the execution
of synchronous programs. This paper shows how to remove
this obstacle and achieve synchrony in non zero time.

2.2 The Execution Loop

We distinguish two models for the execution loop: the
generalmodel and theperiodicmodel:

• In the general model, each input event triggers a new
reaction of the program:

for_each event
read more inputs
compute next state
emit outputs

end_for_each

• In the periodic model, the program reactions are trig-
gered at each “tick” of a real-time periodic clock:

for_each tick
read inputs
compute next state
emit outputs

end_for_each

In each case, several tasks must be taken into account
besides the program:

• In the general model:

– the sensors for the inputs coming from the envi-
ronment,

– the local bus for inputs coming from the other
subsystems.

• In the periodic model:

– the real-time periodic clock,
– the sensors for the inputs coming from the envi-

ronment,
– the local bus for inputs coming from the other

subsystems.



For commodity reasons, we call such tasksinterface
tasks. Each interface task is executed concurrently with the
program, and has a higher priority. Their implementation
will be explained in the sequel.

Each interface task, except the real-time periodic clock,
invokes the update function of the corresponding input. It
is important to distinguish between the sensor reading task
and the sensor itself. As we have seen in Section1.3, contin-
uous inputs are sampled by a sensor. This sampling can be
periodic, triggered by the program (polling), or even trig-
gered by the sensor itself (smart sensor). Concerning the
discrete inputs, we have said that they are fleeting and must
be expected specifically: this is exactly the purpose of the
interface tasks executed concurrently with the program.

All these tasks can interrupt the execution loop, which
raises two problems: the consistency between inputs and the
validity of the synchrony hypothesis. We will study these
two problems in the following sections.

Finally, let us mention the fact that the most commonly
used model in industry applications is the periodic one. It is
for instance the case of the nuclear plant controller CO3N4
of Schneider Electric, as well as the flight controller of the
A IRBUS A340 of Aérospatiale.

2.3 Consistency Between Inputs
The problem of the consistency between inputs in a given

instant comes from the possibility for a given input to be
updatedduring the program transition, that is during the
compute next state phase of the execution loop. For
instance, during a reaction, an ESTERELprogram may read
twice the value of an input signal. If, due to an interruption
of the interface task of this input sensor, the input value is
updated, there will be an inconsistency.

Programmable logic controllers already encounter this
problem. In order to prevent the risk of a value change dur-
ing their reaction, they set all the input values at the begin-
ning of a reaction and keep them during the whole reaction.

We adopt a similar solution for execution machines. All
the inputs received since the previous instant are memo-
rized into buffers, and then, during the reaction each sig-
nal is read at most once from the buffers. Inputs are
thus read exclusively during theread more inputs or
read inputs phase of the execution loop. Besides, the
program has a vector of buffers, one for each of its inputs.
Each buffer contains a value of the entry type and a Boolean
indicating whether or not the input has been received since
the previous instant. As a result, the inputs are received by
the program in the following way:

• When an interface task interrupts the execution loop
because a new input has been received, it writes this
value in the corresponding buffer and sets the Boolean
to true . Any further interruption of the same inter-
face task writes a new value in the buffer (overwriting

the previous value) and lets the Boolean totrue . If
the considered input is continuous, then the loss of the
overwritten value makes sense since it is preferable to
work with the newest value. If the considered value is
discrete, then the loss of the overwritten value means
the loss of an event: we address this problem in the
following section.

• When the program runs theread more inputs or
read inputs phase, it scans the buffer vector, and
for each Boolean set totrue , it invokes the corre-
sponding update function with the value of the buffer.
At the same time, all the Booleans are set tofalse .
This scanning of the buffer vector must be executed
within a critical section, so as to be impossible to in-
terrupt. It is the only part of the execution loop that
must be so.

Figure 2 illustrates this behavior. Here, the function
MODULE_I_Xis the update function of the input signalX.
Arrows represent the control, not the data flow.
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Figure 2. The read inputs phase

2.4 Validity of the Synchrony Hypothesis
Validating the synchrony hypothesis means proving that

the program isfaster than its environment. This is aphys-
ical interpretation of theideal notion of instantaneity. This
property ensures in particular that no input event can belost.
The importance of this property comes from the fact that
some input events are fleeting. Without the interface task
mechanism presented in Section2.3, in order to prove that
the program is faster than its environment, it would require
to prove that the reaction time of the program is system-
atically lower than the time lag between any two succes-
sive input events. In any case, it is not possible to establish
necessary conditions that validate the synchrony hypothe-
sis. The conditions that we establish in this section are thus
sufficient conditions.

Let us define formally the program reaction time as well
as the input clocks:
• The programbasic reaction timeis the maximal time

for running the sequential code obtained after compil-
ing the program for the target processor. Since this
code is sequential and deterministic, it is possible to
find an upper bound of this time from the characteris-
tics of the target processor. This upper bound is what
we call the basic reaction time.



• The programtotal reaction timeis the sum of the basic
reaction time plus the execution time of all interface
tasks during one period of the real-time clock.

• The clock of an input, be it discrete or continuous,
is the infinite sequence of the instants when the input
events occur.

• Theminimal periodof an input is the minimal period
of its clock.

In order to compute the execution time of all interface
tasks, it is necessary to know the minimal period of each
input. These frequencies must therefore be given in the sys-
tem specification.

Within the periodic model, it suffices to satisfy two con-
ditions to be certain that the software implementation sat-
isfies the synchrony hypothesis. The first one is that the
real-time clock period be greater than the program total re-
action time: this ensures that the program has enough time
to run between two successive ticks of the real-time clock.
The second one is that the smallest of all the inputs minimal
periods be strictly greater than the real-time clock period:
this ensures that no input event is lost1.

Within the general model, a first approach consists in re-
quiring that the minimal period of theunion of all input
clocks be greater than the program basic reaction time. The
union clock is the infinite sequence of the instants ofall
the input events. A first relaxation consists in excluding the
continuous inputs from the clocks union, and thus in trigger-
ing a sampling of each continuous input during theread
more inputs phase of the execution loop. Still with this
approach, the period of the union clock can be very small.
A second relaxation consists in considering the infinite se-
quence of time slots whereat most oneevent may occur
for each input signal. This increases the minimal period
of the sampling clock by grouping events from several sig-
nals on a single logical instant. The chosen sampling period
defines the temporal resolution of the system: two events
closer than this period will be considered as simultaneous.

In conclusion, the general case is much more constrain-
ing to validate than the periodic case. This is one of the
reasons why the periodic model is the most employed in
industry.

3 Practical Implementations
3.1 Introduction

We present in this section some techniques for imple-
menting synchronous execution machines. Besides the for-
mal aspects seen in Section2, these techniques allow the

1In order to determine by what margin the smallest of all the inputs
minimal periods must be strictly greater than the real-time clock period, it
is actually necessary to take into account the characteristics of the sensor
hardware: time needed to prepare and maintain the sensed value, minimal
time between two successive acquisitions, . . .

taking into account of the practical aspects of the implemen-
tation, that depend on the programming model, the hard-
ware environment, and the context where the synchronous
program is used.

First, we explain how to satisfy the constraints estab-
lished in Section2. It consists of a finer description level
where we describe usable mechanisms and techniques. We
also draw the attention on possible problems. Such dysfunc-
tions must be considered as warnings to the reader willing
to design his/her own synchronous execution machine. Fi-
nally, we present some effective implementations, restricted
to centralized solutions.

Concerning the practical implementations, few detailed
documents are available. The documentation of ESTEREL–
V5 [10], given along with the compiler distribution, in-
cludes low level information on the C/ESTEREL inter-
face. Of course, these only concern ESTEREL. Yet, while
the problem of the synchronous execution machine is not
specifically treated there, this documentation is very useful
for designers.

3.2 Architecture of an Execution Machine
The architectural description makes it possible to under-

stand what are the main functional components of the exe-
cution machine, and their interactions.

3.2.1 Information Flows
An execution machine is a reactive system whose purpose is
to react to incoming information by generating output infor-
mation. This role has been explained in Section2.1. These
information flows have to becontrolled: the control signals
in Figure3 are in charge of this. Possible dysfunctions of
the execution machine are indicated by exceptions signals.

Execution
machine

exceptions

control

inputs outputs

Figure 3. Information Flows

The set of control signals includes:

• An input signalbegin of instant(BoI ), which is com-
pulsory. Its occurrence triggers a new reaction of the
execution machine.

• An output signalend of instant(EoI ), which is also
compulsory. Its occurrence indicates the end of the
current reaction.

• Optional control signals, which are used for fine con-
trol of the execution machine. They are especially use-
ful for hierarchical execution machines. They can stop,
suspend, resume, and re-initialize the execution.



In this section, we consider only the first two signals.
BoI marks the beginning of a logical instant. Its role is
to make sure that all reactive machines that are under the
control of a same execution machine see the same values
for the inputs of the external world.EoI marks the end of a
logical instant, when the outputs of the system are valid and
can be propagated outside the execution machine.

The respective dates of occurrence ofBoI andEoI must
be such that the synchrony hypothesis is satisfied (see Sec-
tion 2.3). The simplest case is the periodic activation:BoI
signals are periodically emitted by an external clock. Of
course, theEoI associated with aBoI must be emittedbe-
fore the end of the clock period started byBoI .

All events from outside the system occurring between
two occurrences ofBoI are seen as simultaneous events
sampled on the secondBoI . So, if the outputs of the system
are fed back to it, they will be taken into account only at the
next logical instant since they are available onEoI : instan-
taneous communication between reactive machines only oc-
curs if they are handled by the same execution machine.

3.2.2 Monitoring
Observerscan be used to monitor the execution machine.
In the case of an abnormal behavior of the machine (not of
the program), an exception signal is emitted.

These exception signals are, above all, warnings sent to
the user of the execution machine. Clearly, raising an ex-
ception signal means that the implementationis no longer
running under the synchronous hypothesis. The usermust
be kept informed of this problem.

In more sophisticated execution machines (e.g., fault-
tolerant execution machines), exception signals can be han-
dled by a higher-level execution machine. The upper ma-
chine can then force actions in the lower machine through
the optional above-mentioned control signals. The user
must be cautious with this kind of “control loop” in exe-
cution machines: the handling of an exception may cause
the execution machine to violate timing constraints. The
cure will be worse than the disease!

Below, we list some typical dysfunctions; this list is not
exhaustive:

1. Violation of a relation. Suppose that the user has de-
clared in his/her program thatA andB are two exclu-
sive signals (i.e., never simultaneously present). This
assertion may be violated during a reaction. The rea-
son for this violation may be either a lack of knowl-
edge about the environment, or a sensor failure. The
latter is a chance event that can be detected only while
the system is operating. The former is a misconception
and should be avoided by rigorous design methodolo-
gies. In both cases, since violations may lead to unpre-
dictable executions, the execution machinemust not
ignore this violation. A possible conservative strat-
egy is to “filter” faulty signals, so that onlyaccept-

ableevents are considered for executions. There exist
several filtering techniques; none is fully satisfactory.
Whatever the recovering policy adopted, all violations
must be reported by the execution machine.

2. Lasting transition. An execution machine can arm a
watchdog at each beginning of a reaction. If the tran-
sition is not terminated before the deadline, an excep-
tion is raised. This exception can be due to a transient
overloading of the system or to errors in the user’s pro-
gram. The latter is often due to executions of the trans-
formational parts of the program (e.g., calls to external
functions or procedures). It is the responsibility of the
designer to ensure that external transformational parts
of his/her program have a bounded and known dura-
tion. When this property cannot be guaranteed, asyn-
chronous executions must be considered for this data
processing (through the use of “asynchronous tasks”
in ESTEREL [11]).

3. Data overwriting. Observers can be attached to acqui-
sitions and actuations. Overwriting a value means that
the application is no longer run in real-time.

3.2.3 Structure
The various functionalities of the execution machine can be
assigned to dedicated modules (Figure4). Dashed lines are
flows of control, whereas solid lines are data flows.I is the
input tuple presented to thesynchronous kernel. The kernel
computes the reaction and generates the output tupleO.

synchronous

kernel

I O
Input Output

exceptions

control

inputs outputs

controller

observers

Figure 4. Execution Machine: Structure

Thecontrollerensures the correct synchronous behavior:
atomic reaction and bounded reaction time. In its simplest
form, the controller is a sequencer whose behavior can be
expressed by the following ESTEREL-like pseudo-code:

initialization;
every BoI do

read inputs; build I;
react;
build O; write outputs;

end_every

This pseudo-code is compatible with the one presented
in Section2.2. Auxiliary variables have been introduced



and some phases refined. For instance, theread inputs
phase of the execution loop is refined into a sub-phase of in-
put acquisition (read inputs ) and a sub-phase of input
tuple construction (build I ).

3.2.4 Inputs / Outputs
The consistency of inputs has been analyzed in Section2.3.
ModulesInput andOutput in Figure4 make the nec-
essary interfacing between the synchronous kernel and the
environment. They are, themselves, reactive systems with
their own control flows and data flows. Figure5 shows a
possible refinement of the input module.

• Modules A are interface tasks described in Sec-
tion 2.2. They may be interruption handlers or periph-
eral drivers. A signalR (for “Reading”) triggers the
sending of a valuea.

• This information is consumed by an optional filtering
moduleF that produces signals (with the synchronous
language meaning of this word). These filtering mod-
ules are useful for imperative synchronous languages
since they give greater importance to events than to
values. Consider for instance an ESTEREL program.
Let a be the logical level 0 or 1 at a push button. When
pressed, the button changes from 0 to 1. Now, suppose
the ESTEREL program has a pure input signal called
Button_Pressed . In this case, the filtering module
will generate the signalButton_Pressed at instant
k, if and only if a was 0 at instantk − 1 and 1 at in-
stantk (i.e., the Boolean expressionak−1 ∧ ak). For
a declarative language like LUSTRE, this “edge detec-
tion” would have to be done by the program itself.

• The tuple builder module consumes possibly
filtered signals and generates the current input tupleI .
This generator, in the simplest cases, does a concate-
nation of signals. In the case of a relation violation, it
can also perform extra filtering operations.

inputs

tuple I

builder

a
A

R
F

a
A

R
F

Figure 5. Execution Machine: Input Module

3.2.5 Some Implementations
An execution machine can be small yet very efficient.
This is the case for micro-controller-based implementa-
tions. For instance, an execution machine for ESTEREL

programs has been implemented on the Harris’ RTX2000
micro-controller [3]. Implementations on PC usually relies
on some real-time operating system (RTOS). The authors

have developed applications running under RTC (Real-
Time Craft) and CHORUS [4]. More generic machines, but
for soft real-time applications are presented in Boufaïed’s
thesis [11]. With these machines, easy configuration of in-
puts/outputs and module reuse, are the main concern.

The next section develops the implementation of a cen-
tralized execution machine composed ofseveralreactive
machines.

3.3 Centralized Execution Machines

As seen in Section2.1, an execution machine is com-
posed of a reactive machine, a transformational machine
and of a controller that coordinates their operation. Acen-
tralized execution machine is an execution machine with
only one controller. This controller manages the syn-
chronous code, input and output operations, and the trans-
formational code. Adistributedexecution machine has sev-
eral controllers that work together for synchronously exe-
cuting several reactive machines.

The centralized execution machine is the simplest to im-
plement since it has global control over input, output, and
synchronous code. Two cases arise:

• the execution machine hasonly onereactive machine:
it must provide it with a clock and inputs, and must
drive its outputs to the outer world (see Section3.2.4);

• the synchronous code is composed ofseveralreactive
machines: it must provide them with a mechanism for
communicating synchronously.

The second case is the most general and encompasses the
first one. It allows, with some restrictions, to link several
synchronous modules that were compiled separately. We
discuss in this section the case of several reactive machines.

There are two limitations when using several reac-
tive machines (for instance, several separately compiled
ESTEREL modules or LUSTRE nodes). The first limitation
is that instantaneous communication loops between reac-
tive machines areforbidden. Such loops can be handled by
the synchronous compiler since it knows the internal details
of each module and is able to determine whether the loops
are causal or not, and if so, to compute the behavior of the
synchronous system. However, from the point of view of
an execution machine, a reactive machine is a black box,
and it is not possible to know if an instantaneous commu-
nication loop between several reactive machines is causal
without more information about the internals of the boxes.
The second limitation is that the topology of the connec-
tions between the reactive machines must bestatic, that is it
is not possible to create dynamically new reactive machines
or new connections. We address first the basic case (no in-
stantaneous loops and no dynamic reconfigurations), before
relaxing these two limitations in Sections3.3.6and3.3.7.



3.3.1 Logical Instants
A logical instant is defined to be the reaction of the execu-
tion machine to a tuple. This leads to the following:

• At the beginning of a logical instant, every signal has
the same value and is in the same state for all the reac-
tive machines.

• At the beginning of a logical instant, each reactive ma-
chine is in a completely determined state. There is no
state transition during a logical instant, only the com-
putation of the next state of the machine.

3.3.2 Sequential Execution of Reactive Machines
When there is no instantaneous communication loop be-
tween the synchronous compilation units, there always ex-
ists a partial order induced by the dependencies between the
corresponding reactive machines. Thus, the execution ma-
chine is able to choose an activation schedule that is com-
patible with this partial order. The execution machine must
also propagate the signals that were emitted during the reac-
tion of a reactive machine so that they are seen in the same
instant by the reactive machines that follow it in the sched-
ule.

The schedule is determined once for all the instants since
the connections between the machines do not change. At
each instant, the execution machine sends theBoI control
signal to each reactive machine so that they are all in the
same logical instant. When the machines are ready to pro-
cess the new instant, the execution machine activates them
according to the schedule. The activation of a reactive ma-
chine consists of three steps: build its input tuple, com-
pute its state for the next instant, and build its output tuple.
Last, when all the reactive machines have been activated,
the execution machine sends them theEoI control signal
that marks the end of the instant.

The input and output tuples are built during the activa-
tions because some inputs of a machine may be produced
by another machine which is activated earlier in the sched-
ule, so the input tuple of each machine cannot be built at the
beginning of the instant.

The inputs and outputs of the system must be handled
separately because, to preserve the synchronous semantics,
the reactive machines must have the same view of the outer
world: if a signal is present at a given instant, it must be
present at this same instant for all the reactive machines.
Therefore, we cannot allow each reactive machine to sample
the inputs of the system during its activation. The inputs of
the system are sampled on theBoI signal, and the outputs
are propagated to the external world on theEoI signal.

3.3.3 Input / Output Machines
One method of ensuring the consistency of the inputs for
all the reactive machines in a system while preserving this
execution model, is to use reactive machines to handle the

inputs and the outputs of the system. From the point of
view of the execution machine, an input reactive machine
has only outputs, so its does not depend on any other ma-
chine and will be executed at the beginning of the schedule.
Conversely, an output reactive machine has only inputs, so
no other machine depends on it and it will be at the end of
the schedule.

These input/output machines are a way to implement the
Input andOutput modules of Figure4. Although they
are reactive, these machines are seldom written in a syn-
chronous language but rather in the implementation lan-
guage of the execution machine. They are similar to drivers
in an operating system: they provide an abstract view of
the environment of the synchronous system in the form of
tuples.

3.3.4 Behavior of a Reactive Machine
The behavior of a reactive machine can be seen as made of
three phases: processing the beginning of the instant, acti-
vation, and processing the end of the instant.

Processing the beginning of the instant is generally a
matter of setting the outputs absent. But for an input ma-
chine, the outputs are set according to the data coming from
the interface tasks (A modules in Figure5). Similarly, a
“delay” reactive machine will set its output according to the
input it has received at the previous instant.

During the activation, the machine builds its input tuple,
then determines its next state and the output tuple. For an
input machine, the output tuple was built when processing
the beginning of the instant. However, such a machine may
compute its next state if its method for generating tuples
depends on the data it receives from the interface tasks.

In most cases, processing the end of the instant is merely
setting the state of the machine to the state that was com-
puted during the activation. For output machines, process-
ing the end of the instant consists in propagating the output
of the system to the outer world.

3.3.5 Iterating Reactive Machines
If the execution machine knows some information concern-
ing the dependencies between the outputs and the inputs
of the reactive machines, and if these machines are able to
compute some of their outputs without knowing all their in-
puts, instantaneous communication loops between reactive
machines may be allowed. For this, we need to consider
two kinds of reactive machines:

• strict machines, that need to know all their inputs to be
able to compute any of their outputs,

• non-strictmachines, that may compute some of their
outputs without knowing all their inputs.

When all reactive machines are strict, instantaneous
loops are forbidden, and the execution machine uses se-
quential execution as discussed above.



When some reactive machines are non-strict, they are al-
lowed to appear in instantaneous loops. Edwards proved
that if these machines aremonotonic, that is if they compute
more of their outputs when they are provided with more of
their inputs, the behavior of the synchronous system is the
unique fixed point reached by iterating the reaction of the
machines [16]. Moreover, the number of iterations and the
sequence of the activations in each iteration can be statically
determined from the topology of the synchronous system.

The key idea is to consider the tuple of all inputsi and
outputso of the system, and to consider the system as a
function that produces a new tuple(i,o) from the one it
receives, as shown on Figure6:
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Figure 6. Loop and equivalent tuple system

Let us represent a not yet determined signal by⊥, a
present signal byP and an absent signal byA. These values
are partially ordered, the corresponding partial order being
shown in Figure7 (left). Such a partial order can be ex-
tended to two signals, as shown in Figure7 (right): accord-
ing to this order,(A,P ) is more determined than(⊥, P ),
but (A,P ) may not be compared to(P,⊥). By general-
izing to n signals, it is possible to sort the possible values
of the (i,o) tuple from the less determined to the most
determined.

⊥P P⊥ A⊥ ⊥A

PAAPPP

⊥⊥

AA

⊥

P A

Figure 7. Partial orders on signal tuples
When reactive machines are considered as functions that

compute signal tuples, the condition for the existence and
uniqueness of the fixed point is that these functions are
monotonic for the partial order on signal tuples. This prop-
erty merely ensures that only undetermined signals may
change during a partial reaction of the machine. It implies
also that the value of a valued signal cannot be changed once
it is determined.

The main difference between this execution model and
the sequential model is that the output tuple is built in sev-
eral steps, and the next state of a machine cannot be com-
puted before the end of the instant.

This iterative execution model is used in the “Syn-
chronous Reactive” (SR) and “Synchronous Reactive C
Code Generation” (SRCGC) domains of the PTOLEMY

Classic2 system developed at the EECS department of the
University of California at Berkeley.

2http://ptolemy.eecs.berkeley.edu

3.3.6 Generic Execution Machines

An execution machine may be designed specifically for a set
of reactive machines, but it is possible to design a generic
execution machine that may execute any set of reactive ma-
chines with known properties: is the system dynamic? are
there instantaneous communication loops? ... We have de-
veloped in [12] such a generic execution machine.

This scheme requires a standard interface for the reactive
machines so that the execution machine may manage them
without knowing their internal details: we need an abstract
notion of a reactive machine.

Object oriented languages allow the definition of abstract
entities and the refinement of their behavior for more con-
crete entities. Once we have defined the abstract reactive
machine as a class, we are able to implement a particular
reactive machine as a subclass. Such subclasses are named
“synchronous classes”, and instances of these classes are
“synchronous objects” [12].

Any synchronous class must be able to process the begin-
ning of the instant, the activation, and the end of the instant.
It may be useful to be able to get the list of signals and the
dependencies between outputs and inputs for such a class.
Each synchronous class implements these services accord-
ing to its intended behavior, but what is important is that
the execution machine does not need to know the details: it
is enough for it to know that a synchronous objet will an-
swer its request to process the beginning of the instant for
instance.

The execution machine is a class library that provides
the reactive machines with everything they need to run:
scheduling, definition of the logical instants, communica-
tions between reactive machines, and input/output.

3.3.7 Dynamic Synchronous Behaviors

A generic execution machine may allow the creation and/or
destruction of reactive machines, as well as changes in
the interconnection of the machines during their execution.
This allows synchronous systems to bedynamic: their re-
action to an input tuple can lead to a reconfiguration of the
system. Dynamic reconfiguration may be used to switch
from a full featured system to a basic system in case a fail-
ure makes some resource unavailable.

However, a dynamic synchronous system is still a syn-
chronous system, so it cannot changeduring an instant.
Therefore, the execution machine must record the requests
for changes and process them between the end of the current
instant and the beginning of the next instant. Such changes
may invalidate the schedule, so the execution machine must
compute a new schedule each time it processes reconfigu-
ration requests between two instants. It may then discover
that the reconfiguration leads to an invalid system for which
no schedule can be found. This should be signaled through
the exception mechanism discussed in Section3.2.2.



4 Conclusion
We have addressed in this paper the problem of executing

a synchronous program in an intrinsically asynchronous en-
vironment. The main issue concerns the satisfaction of the
synchrony hypothesis by the implementation. We have pro-
posed an implementable model, calledexecution machines,
to solve this problem. The purpose of an execution machine
is to ensure that the synchronous program performs atomic
reactions and meets the imposed real-time constraints.

We have shown that for control oriented applications,
centralized solutions can be achieved easily and efficiently.
We have stated several constraints on the rate of inputs and
the reaction time of the synchronous program that must be
satisfied by the implementation.

For applications where the real-time constraints are less
strict, we have presented more sophisticated solutions that
allow, for instance, the execution of several synchronous
modules that have been compiled separately, even in the
presence of instantaneous communication loops and dy-
namic reconfiguration.

This presentation does not pretend to be exhaustive. For
instance, the class of distributed implementations of syn-
chronous programs has not been discussed. There exist
such implementations of distributed execution machines.
The interested readers may refer to already published pa-
pers [15, 22].
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