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ABSTRACT

The prototyping of embedded systems being long and ex-
pensive, software models are often defined to be used as a
behavioral reference for better exploration and evaluation
of the systems properties. However, embedded systems be-
ing naturally heterogeneous, they require the coexistence of
several models of computation. In software engineering, the
great challenge is how to specify heterogeneous interfaces
for ensuring well defined communications because various
semantic properties are mixed. Therefore, some existing ap-
proaches use only a set of few models of computation to
reduce this complexity. Some others can use an open set
of models of computation but reduce the complexity by for-
bidding to use different models of computation in the same
hierarchical level.

This paper proposes a modeling approach based on the
meta-modeling of models of computation. It allows to mix
different models of computation by using a meta-model of
computation which provides a common semantic descrip-
tion at a higher abstraction level. This makes easier to
specify the interactions between models of computation.

KEYWORDS: Modeling, Meta-Model, Model of Com-
putation, Model-Driven, Embedded System.

1. INTRODUCTION

In [18] [3], the authors argue that the reasons for a growing
embedded-system market are durable. So, new kinds of em-
bedded systems will appear, existing systems will change,
the services around them will develop, and the number of
familiar objects containing embedded processors will in-
crease in a continuous way in the future. To master this
unceasingly growing market with a shorter and shorter time-
to-market, the “design-development-production” cycle of
components must be shortened. Therefore, researchers and
equipment suppliers are required to deal respectively with
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technical and economic constraints. A detailed presentation
of these constraints is given in [15] [16].

This kind of system being manufactured in large quantities
and the risk of a prejudicial error being to avert, the realiza-
tion “a priori” of a prototype is unavoidable. Furthermore,
this prototyping being long and expensive, software models
are often used as a behavioral reference for better explo-
ration and evaluation of the systems properties. This is why
a preliminary phase of modeling is necessary. From this
phase, software and hardware, communication and com-
putation, control and data are handled separately and are
joined together only in the last phases of prototyping. This
preliminary phase of modeling requires a multidisciplinary
scientific knowledge, from which arises the need for sev-
eral specialists in different scientific and technical domains.
Each team brings its competencies through specific for-
malisms. Since the overall behavior of the system builds on
communications and interactions between all components
which make it up, the pinpoint description of different inter-
faces between these components is crucial. The challenge
is to specify what happens at the boundaries since the com-
ponents may use different physical laws and, consequently,
have different internal semantic properties. Unfortunately,
existing modeling approaches that can use an open set of
MoCs cannot integrate them at the same hierarchical level.
Others can do this integration but only by using a fixed set
of MoCs which are generally the continuous and discrete
signal models for electrical engineering, or state machines
and differential equations for hybrid systems.

This paper comes up with a modeling approach based on the
meta-modeling of models of computation. It allows the in-
tegration of various models of computation by using a meta-
model of computation which provides a common semantic
description to all models of computation. This description
provides a way of specifying any model of computation at
a higher abstraction level. Furthermore, since all models of
computation are described in the same specification frame-
work, the interactions between them can be easily specified
like a heterogeneous element belonging to the meta-model.



2. HETEROGENEOUS MODELING

From an abstract point of view, a model of a system can
be regarded as a set of components which have properties,
and between which relations exist. The various components
of a model can belong to different technical domains such
as analogical or numerical electronics, mechanics, thermo-
dynamics, optics, image and signal processing algorithms,
etc. Therefore, these technical domains do not consider
their respective components and the relations between them
in the same way. They give different meanings to the re-
lations between components in terms of scheduling, com-
munication or dependency. In each domain, the interac-
tions between the components are controlled by a set of
“physical laws” or “axioms” which express constraints on
the components properties according to their relationship.
This set is called a “Model of Computation”, or MoC. Con-
tinuous Time (CT), Discrete Events (DE), Discrete Time
(DT), Communicating Sequential Processes (CSP), Finite
State Machines (FSM), Synchronous Data Flow (SDF),
Kahn Process Networks (PN) etc. are examples of models
of computation that we give some features from [13]. In
the Kahn Process Network MoC, processes interact through
channels that can buffer messages. This MoC is suitable
for loosely coupled distributed agents and data-centric al-
gorithms. In the Continuous Time MoC, functional and
storage components communicate continuous waveforms.
This MoC is used to model the physical environment of a
system, analog circuits or continuous control laws. In the
Discrete Events MoC, components communicate via sig-
nals that carry events placed on a continuous and global
time line. It is used for digital circuits, communication net-
works, querying systems, and embedded software at the in-
put/output level. The Discrete Time MoC also has a global
notion of time, but it is discrete and periodical. Every sig-
nal has a value at every clock tick. It is used in periodically
sampled data systems and cycle-accurate modeling. In the
Finite State Machines MoC, components are states and the
relations between states are interpreted as transitions trig-
gered by events. It is used to model operating modes and
control sequences. A comparative and detailed study of var-
ious models of computation is presented in[9].

The organization of a system and the interactions between
its different subsystems imply a connection of the subsys-
tems that do not use the same model of computation. Such
a system that uses various models of computation is called
a “Heterogeneous System”.

An embedded system is naturally heterogeneous since it
uses several technical domains. Consequently its design
calls for several models of computation. There are two main
techniques for heterogeneous modeling: amorphous hetero-
geneity and hierarchical heterogeneity.

In the amorphous approach [16], modeling and design envi-
ronments generally focus on a fixed set of models of com-

putation. Since they use few models of computation that are
known beforehand, they can easily define the union of them.
Furthermore, the complete knowledge of the interactions
between these MoCs allows to compute the whole behav-
ior of a heterogeneous model. A digital to analogical signal
converter with digital inputs and analog outputs is an exam-
ple of such a system. SIMULINK [17] and VHDL-AMS [7]
are examples of modeling and design environments that use
amorphous heterogeneity.

The advantage of this approach of heterogeneity is the com-
plete integration of the models of computation. However, it
has some weaknesses because the communication protocols
interact in an unforeseeable way with the control flow be-
cause of the lack of a clear separation between the control
flow and communications. Moreover, the design may be
less comprehensible and the set of MoCs is fixed.

The hierarchical approach [10] [11] [8] [15] [5], allows to
support an open set of models of computation, and there-
fore forbids to build the union of these models of computa-
tion because they are not known beforehand. This approach
of heterogeneity requires that each component obey only
one model of computation. Since components that are con-
nected obey the same model of computation, all the compo-
nents that are interconnected must obey the same model of
computation. However, the hierarchical abstraction makes
it possible to use a model of computation to model the in-
side of a component that is different from the outer model
of computation in which the component is used. There-
fore changes of models of computation can only occur at
the hierarchical boundary of a component; el Greco [6],
PTOLEMY II [4] are examples of modeling and design
environments that use the hierarchical heterogeneity ap-
proach.

Although having several advantages, such as the possibility
to cope with the complexity of systems, by abstracting a net-
work of components that obey the same model of compu-
tation in only one component, this approach presents some
disadvantages such as the coupling between the hierarchical
structure of the model and the changes of models of compu-
tation. This coupling can lead to models that have a struc-
ture that do reflect the effective structure of the system.

In [14] [15], we used the actor paradigm to introduce a
new modeling approach called “Non-Hierarchical Hetero-
geneous Modeling”. This approach builds on hierarchical
heterogeneous modeling to provide a way of modeling Het-
erogeneous Systems and has been integrated and validated
by simulation in the Ptolemy II platform. It uses “Hetero-
geneous Interface Components (HIC)” and a “Flat Hetero-
geneous Execution Model”.

This new approach makes it possible to have a “flat” het-
erogeneous model which gives the possibility of changing
models of computation without changing of hierarchical
level. Moreover, the designer has the possibility to spec-



ify exactly what happens when data passes from one model
of computation to another and to control the behavior of a
heterogeneous system at the borders of the models of com-
putation. The weakness of this approach is that it does not
allow heterogeneous loops in the connectivity graph of the
components.

3. TRIHEDRAL DECOMPOSITION OF
MODELS OF COMPUTATION

Embedded software is a software which runs in devices that
are not necessarily computers. This type of software is very
widespread in automobiles, telephones, airplanes, etc. Its
key characteristic is that it interacts with the physical world
from which it must obtain certain properties. For example,
it must take physical time and to consume energy to carry
out its behavior. In embedded system hierarchical model-
ing, hierarchical block diagrams support abstraction and re-
finement. Abstraction allows a block diagram to be com-
pressed into a single block while refinement allows a block
to be expanded into a block diagram [1]. This abstraction
depends on the models of computation which make it up.
For example, in [2], the authors showed that there are two
abstractions for hybrid systems: continuous and discrete.
Moreover, this abstraction must contain temporal exacti-
tude, concurrency, promptness, reactivity and heterogene-
ity. These properties are essential so that the resulting sys-
tem has the expected behavior because it is not sufficient to
ensure the perfect match between arguments and results of
the function of the system. Consequently, the design flow of
a system must take into account the three determining ele-
ments that are time, concurrency and communication. This
is what we call a “trihedral decomposition of a model of
computation” and we symbolize as shown in figure 1.

Communication

Time

Concurrency
Figure 1: Trihedral abstraction of MoC

Generally, whatever the interpretation that we could have of
this diagram, communication operations and concurrency
will depend on time evolution.

3.1. Time

Some models of computation are very explicit and consider
the time as a total order constraint, i.e., a real number which

advances uniformly, and place events on this line of time
or make continuous signals evolve with this time. Other
models of computation consider the time as a partial order
constraint imposed by causality. So, time is about the or-
dering of events [12] and there are two types of systems :
timed and untimed.

A timed system is a system where the set of time 7' is totally
ordered. That is, for any distinct ¢; and ¢5 in 7', either t; <
ty or to < t1 Continuous Time(CT), Discrete Events (DE)
and Discrete Time (DT) are examples of timed models of
computation.

In an untimed system, the set of time 7" can be partially or-
dered. Communicating Sequential Processes (CSP), Kahn
Process Networks (PN), Synchronous Data Flow (SDF) are
examples of untimed models of computation.

Generally, time is considered as a shared value. At different
abstraction levels, it must be modeled to reflect the temporal
behavior of the system. It is important for the designer to
clearly and accurately express the meaning of time used by
the model of computation in each abstraction level, whether
it is a partial or a total order constraint.

3.2. Concurrency

Concurrency or parallelism is the characteristic of a system
to have actions, communications, or both, partially ordered,
rather than completely ordered. Then, two systems are con-
current when they share the same set of time.
If an operation f starts at ¢y and finishes at ¢y _, and an
operation g starts and ends at ¢, and ¢, _ then

o ifty >t, then f precedes g
o ift, >ty then g precedes f
e in all other cases, f and g are concurrent.

The concurrency must be modeled at all abstraction levels
to express the real system behavior.

Communicating Sequential Processes (CSP) is an example
of a concurrent model of computation.

3.3. Communication

In order to have a maximum design flexibility of a hetero-
geneous system, the communication function must be sep-
arated from the whole function of the system and be mod-
eled at different abstraction levels. This function is ensured
by the communication protocol which provides a set of ser-
vices needed to ensure the communication between compo-
nents. This protocol depends on the model of computation,
on its concurrent nature. It may be asynchronous message
passing, rendezvous or synchronous message passing etc.



4. META-MODELING ARCHITECTURE

The embedded software meta-modeling architecture pro-
posed in this paper contains three levels. The meta-model of
computation level, the model of computation level, and the
instance level, as shown in figure 2. Each of them contains
a suitable specification of time, concurrency, and communi-
cation. In the following, we describe those specifications in
the meta-model of computation level.

Meta Model of Computation
Level

[ concurrency] [ time ] [communication

A

Model of Computation
Level

[ concurrency] [ time ] [communicalion]

A

Instance
Level

[ concurrency] [ time ] [communica\ion]

Figure 2: Meta-modeling levels

4.0.1 Meta MoC Level Specification

The meta-model of computation level specifies the model of
computation in terms of time, concurrency, and communi-
cation. It provides a neutral and common description for the
semantic specification of any model of computation. This
description is common in the sense that it includes all de-
termining semantic properties of all the models of compu-
tation. It is neutral because it provides only a template for
models. These are templates because no mechanism is ac-
tually provided for them.

e Time : Any dynamic system operates in a certain no-
tion of time, real, discrete or partially ordered. These
notions are ordered by a refinement relation and the
more refined time is the physical real time. This im-
plies that it contains all others times. This is why,
at this level the time specification corresponds to the
physical real time: continuous. This time, should the
need arise, can be refined in lower levels.

e Concurrency : Since a partial order relation can be
transformed in a total order relation by applying a
topological sort, on this level, any system is supposed
to be concurrent. Likewise, in lower abstraction levels,

should the need arise, this partial order relation will be
easily transformed to obtain a total order relation.

e Communication : Since the message passing protocol
can be serve as a basic type of communication proto-
col, in this level, each system is supposed to use the
message passing protocol.

The basic operations read and write which specify
how to get and to send data are specified in this level.
But these operations are empty because they contain
no implementation.

The lower levels have to describe time, concurrency, and
communication so that models of computation can interop-
erate. This is why on this level, a model of computation
is considered concurrent, using a real physical time and a
message passing protocol. This specification allows easy
modeling of the semantic properties of time, concurrency
and communication in a heterogeneous interaction between
two or several models of computation in the sense of [19]
and are represented as dotted blocks in figure 3:

1. to translate the common semantic properties between
two MoCs

2. to ignore the semantic properties in the first MoC that
are not present in the target MoC

3. to create the semantic properties in the target MoC that
are not present in the first MoC

***** Translation

Timed MoC Timed MoC
r 7z

’ Concurrent MoC Concurrent Mog
r 7z

Communication
i Protocol
r

Communication
Protocol
>

,,,,, Abandon

Timed MoC, Untimed MoC
MoCH1 MoC2
Concurrent MoC Non Concurrent
MoC

77777 Creation

Timed MoC
Untimed MoC

Non Concurrent Concurrent MoC

MoC

Figure 3: Heterogeneous interactions



4.0.2 MoC Level Specification

In this level, models of computation are implemented by
instantiation of the meta-model of computation. The spec-
ification of each model of computation is implemented by
taking into account its own semantic properties. It is here
that the designer is required to implement the real form of
time, concurrency and communication operations and pro-
tocol used by the model of computation. For example in the
Discrete Time model of computation, it is here that the de-
signer will implement a mechanism of time discretization.

4.0.3 Instance Level Specification

The instance level provides the particular instances of each
model of computation by instantiation. It is the level where
the model can be created, used, and killed.

5. TRANSFORMATION OF MOCS

The proposed architecture allows the models computation
to maintain several types of relations such as the transfor-
mation relation where a model of computation M1, instance
of a class C1, can be transformed in a model M2, instance
of a class C2, as shown in the figure 4.

Figure 4: Transformation of MoCs

The success of this transformation is based on the transfor-
mation of the trihedral decomposition presented in 3.

e For untimed and timed systems: introduction or aban-
don of time in accordance with the target system.

e For concurrent or non concurrent systems: transforma-
tion of order relations.

e The basic communications protocol (message passing)
can be enriched or used to build more complex proto-
cols and conversely.

6. TECHNICAL INTEREST AND EXAM-
PLE

To support the heterogeneity that arises from the use of
different technical domains, modeling tools nest different
MoCs that characterize various technical domains. In Em-
bedded systems, the control part sometimes changes more

often than the signal processing part. Heterogeneous mod-
eling and design has improved the design of such systems
by allowing the explicit specification of both control and
data-processing. Without heterogeneity, the only way to
add control to a data-processing application is to hide this
control inside the behavior of the data-processing operators.
In figure 5, we present an example of a modem chip using
four MoCs and some control in the same hierarchical level.
It has digital inputs connected to the bus of a PC and analog
outputs to the receiver/transmitter. The amplitude modula-
tion part is easily modeled in a heterogeneous way using
SDF, DT, DE, CT MoC. It is composed of a Generator G
having a DT output, a Detector D with one SDF input and
two DE outputs and a Amplifier A with two DE inputs and
one CT output.

A digital signal S; goes from the PC to the modem and
obeys SDF semantics. It goes through D. In the modem,
G provides a sinusoid signal S, that obeys DT semantics
and is injected in A. D computes the state (up or down) of
signal Sy and sends an event S,,;, or Sgoun to A. Sy, and
Sdown 0obey DE semantic and operate in mutual exclusion.
A detects the presence of S, or Sqown. If Sy, is present,
it outputs a rectified signal Sy = S * f, where f, > 1. If
Sdown 1S present, it outputs a rectified signal Sy = Sg * f3
where f3 < 1.

Amplifier
(A
Up-down

Detector
el

(©)

SDF ><

Generator
G)

)

Figure 5: Example

7. CONCLUSION

Heterogeneous modeling is very useful for the modeling of
many systems where software is becoming more and more
important, such as telecommunication and navigation sys-
tems. These systems are evolving from almost pure signal-
processing systems toward systems with the complex con-
trol needed to support several operating modes or commu-
nication protocols.

In this paper, we have presented a high level model-based
approach which provides the ability to explicitly specify
the meaning of temporal properties, communication oper-



ations, and concurrency in several models of computation
that communicate. Since all models of computation are
specified using a common semantics description, heteroge-
neous interactions can be specified as a part of a heteroge-
neous system. Moreover, from the point of view of design,
this approach allows the reuse of elementary models taken
from a library of conceptual models of components to pro-
duce conceptual models of more complex components.
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