
A Generic Execution Framework for Models of Computation

Cécile Hardebolle Frédéric Boulanger Dominique Marcadet Guy Vidal-Naquet

Supélec – Computer Science Department
3 rue Joliot-Curie, 91192 Gif-sur-Yvette cedex, France

{firstname.name}@supelec.fr

Abstract

The Model Driven Engineering approach has had an im-
portant impact on the methods used for the conception of
systems. However, some important difficult points remain
in this domain. In this paper, we focus on problems related
to the heterogeneity of the computation models (and there-
fore of the modeling techniques) used for the different as-
pects of a system and to the validation and the execution of
a model. We present here a language for describing com-
putation models, coupled with a generic execution platform
where different computation models as well as their compo-
sition can be interpreted. Our goal is to be able to describe
precisely the semantics of the computation models underly-
ing Domain Specific Languages, and to allow the interpre-
tation of these models within our platform. This provides
for a non ambiguous definition of the behavior of heteroge-
neous models of a system, which is essential for validation,
simulation and code generation.

1. Introduction

From the Model Driven Engineering (MDE) point of
view, the design of a system can be considered as a sequence
of modeling stages. The process starts with high level spec-
ifications and then refines and transforms the models until
they are executable on the target platform, leading to an im-
plementation. These models describe the properties and the
possible behaviors of the designed system. They can be
used for analysis, simulation, execution or validation of the
system.

We consider the design of complex systems, that calls
for several technical fields. Each technical field has its own
design techniques and modeling languages, that are suitable

This work is partially financed by the SYSTEM@TIC
PARIS-REGION Competitiveness Cluster.

for its specific needs. For instance, the design of the control
of an industrial plant and the design of an image processing
algorithm may use different modeling languages. However,
if the plant uses video cameras to inspect and sort out defec-
tive products, such image processing algorithms are part of
the global model of the plant. Therefore, several models of
the system, which cover different technical aspects and use
different modeling languages, can be used at the different
stages of the design process.

When changes are made to these models without auto-
matic synchronization, different problems arise. First of all,
it is difficult to keep these models coherent, mainly because
they use different formats and are managed in different plat-
forms. Furthermore, if these models are unconnected at the
level of abstraction to which they belong, their integration
into the global model of the system can occur only at a lower
level that does not capture the design choices that have been
made in these models. This integration is typically done
using a programming language instead of a modeling lan-
guage. The problem is that programming languages tell
how things are done, not what they are supposed to do and
why we chose to do them that particular way. Integration
of high level models in a low level language deprives us of
useful alternatives that should have been preserved until the
implementation stage.

Moreover, when problems are detected in the most re-
fined system model, the identification of what should be
changed in the models of the subsystems to solve these
problems can be a very complex task. Heterogeneous mod-
eling techniques allow to describe the whole system as a
composition of subsystems described with different lan-
guages, thus avoiding that kind of issues.

Component oriented modeling languages, which are in-
creasingly used for reusability and testability reasons, nat-
urally allow heterogeneous modeling. In this context, we
studied Lee’s work on the association of component based
techniques and hierarchical heterogeneity [7]. Lee defines
a concept that is fundamental in our approach: the concept
of Model of Computation (MoC).



A model of computation is a formal description of the
behavioral aspect of a modeling method. In the context
of component oriented modeling languages, the model of
computation allows to define the behavior of the model of
a system by composing the behaviors of the models of its
components. In other words, it is the set of rules that allows
to compute the behavior resulting from the composition of
the individual behaviors of the components.

Due to the variety of technical fields and related mod-
eling techniques, there are plenty of specialized models of
computations, such as Synchronous Dataflow (SDF), Com-
municating Sequential Processes (CSP), Petri-Nets or Finite
State Machines (FSM) for instance.

Natural language is generally used to define such models
of computation. This method is simple but leads to ambi-
guities, especially on the meaning of the MoC for model-
ers, but also for programmers or for analysts who use for-
mal tools. For instance, several programmers in charge of
the implementation of a component may not understand the
model the same way. Similarly, lack of precision in the un-
derstanding of the MoC that underlies a model of a system
may lead to an inaccurate analysis. When described in nat-
ural language, MoCs cannot be executable in a reliable way.
This makes any computation of the behavior of the system
impossible, thus preventing simulation or validation for ex-
ample.

We call model of execution an operational specialization
of a model of computation. Several models of execution
may exist for the same model of computation. For instance,
there are different ways of solving differential equations
representing the behavior of a system: one may use either
Euler’s method or Runge-Kuta’s (even though these meth-
ods only approximate the behavior defined by the differen-
tial equations). Describing the execution of a model of com-
putation with a well designed language therefore removes
possible ambiguities.

In previous works ([2], [3]), we studied hierarchy and
component encapsulation in the perspective of handling het-
erogeneity. In this paper, we are interested in the hetero-
geneity of models of computation in the domain of predic-
tive modeling, which aims at predicting and validating the
behavior of a system. The approach we present here targets
the execution of models that use different models of compu-
tation at different levels of their hierarchy. It comprises two
complementary parts: a vocabulary for describing models
of systems and a set of primitive execution operations for
models of computation. The semantics of these generic op-
erations is described using our vocabulary.

The remainder of this paper is structured as follows. Sec-
tion 2 summarizes some of the related work in this area.
We expose the major concepts of our approach in section 3.
Section 4 describes the semantics of our primitive execution
model. We detail all the operations of our execution model

in section 5. Section 6 presents an example of use of our
framework on a modal system. We conclude in section 7.

2. Related work

Many specific models of computation have been individ-
ually studied and formalized. More recently, a few attempts
have been made in order to find unified (and sometimes for-
mal) approaches that allow to describe different models of
computation with a unique set of concepts. These works all
take the internal mechanisms of components into account
when defining the composition of their behaviors.

As a foundation of these approaches, Willems provides
in his Behavioral Approach [15] a formal framework for
modeling and analyzing dynamic systems.

But the very first general framework allowing to study
and compare different models of computation is the Tagged
Signal Model [11] of Lee and Sangiovanni-Vincentelli. The
Tagged Signal Model is a formal semantic framework that
uses a mathematical and denotational formalism based on
the domain theory.

The work on Trace Algebras begun by Burch [5] in his
thesis at Stanford brings a powerful general environment
in which it is possible to guarantee the properties of the
combination of heterogeneous models of computation. In
the context of this approach, a trace represents a behavior
among all the possible behaviors of a system.

The latest approach we have seen is Rosetta [8], a sys-
tem specification language created by Kong and Alexander.
Rosetta has a formal semantics. It allows to combine mod-
els of computation either in order to assemble components
or to model different aspects of one component using facets.
A facet models a particular aspect of a component, e.g. its
behavior or its energy consumption.

But in spite of the potential of the facet concept, Rosetta
cannot be used for predictive modeling since a Rosetta spec-
ification is not executable. This is a common feature of the
approaches we have examined. This lack of executability is
mainly due to the fact that all these approaches use the de-
scription of the internal mechanisms of components in order
to describe their composition. Our work differs from these
approaches by considering that it is neither necessary nor
desirable to take the internal mechanisms of components
into account for the description of a model of computation.
Indeed, as detailed in section 3, our approach is based on
the observation of the behaviors of components, not on the
description of the internal working of components.

The study of these approaches allowed us to identify im-
portant concepts that underlie models of computation. One
of the most important concepts we listed is the concept of
time. Time is a key notion in most of the models of com-
putation but it is used in various ways. The Discrete Events
MoC (DE) and the Synchronous Data Flow MoC (SDF) il-



lustrate our point: in the DE model every piece of informa-
tion exchanged between components is stamped with a date
given by a global clock, whereas in the SDF model, data is
strictly ordered only between pairs of communicating com-
ponents. Communication modes, synchronization modes
and concurrency are other important concepts we pointed
out.

Regarding the executability issue, we studied the way
heterogeneous modeling tools address it. In particular, we
studied Ptolemy II [4], which is developed within a project
led by E. A. Lee and conducted at the University of Berke-
ley. It is one of the richest tools in terms of number of imple-
mented models of computation. Ptolemy II is an actor ori-
ented experimental framework coded in Java. In Ptolemy II,
multiple models of computation (which are implemented
by the notion of “Domain”) can be used in a same model
thanks to the concept of composite actors. Ptolemy models
are executable. However, Ptolemy II is not yet mathemati-
cally founded and that makes formal analysis or validation
quite impossible. Furthermore, the only tool that can be
used to add a model of computation to the framework is a
programming language (Java) and the reference definition
of a model of computation is its implementation. Similarly,
the semantics of the composition of models of computation
and of inter-domain interactions are implicitly coded in the
core of Ptolemy.

Other teams in the meta-modeling community tried to
build a general meta-model that would cover most of the
models of computation while preserving the executable as-
pect. The Triskell team from INRIA chose such an ap-
proach to create the Kermeta language [13]. Kermeta can
be seen as a “meta-programming language”. It offers a
generic mechanism based on the weaving of models to
allow the extension of existing meta-modeling languages
(MOF and Essential MOF – EMOF – in particular) with
the ability to manage actions. Other similar approaches ex-
ist: for instance Xactium and the eXecutable Modelling Fa-
cility (XMF) framework, implemented in the XMF-Mosaic
tool [6].

These latter works are important in the context of our
study because they address Domain Specific Languages
(DSLs) executability and consequently MoCs executability
(since the semantics of any DSL is described by a MoC).
However, both Kermeta and XMF are described as exe-
cutable meta-languages that are meant to help the creation
of new executable DSLs while our goal is not to create but
to combine DSLs in a same executable model of a system.

3. Major concepts of our framework

Executing a model involves the computation of the evo-
lution of observable parameters of the model in response to
the evolution of input data representing the system environ-

ment. In our context, the execution of a model is a digital
operation. It is thus discrete and composed of a sequence of
computation steps.

Generally speaking, the computation operations under-
lying a model of computation can be put in two categories:
generic computation operations and computation operations
specific to the semantics of the MoC. In our approach, we
determine and factorize the generic computation operations
(that is, operations that are shared by most models of com-
putation) and we provide support for the definition of the
specific operations. In order to guarantee the genericity and
the modularity of our approach, we based our work on two
paradigms: the black box paradigm and the stroboscope
paradigm.

The black box principle relies on two key ideas. First of
all, a component of a system is considered as a closed ele-
ment: its functioning is independent from its environment
(i.e. from the system). Secondly, we do not care about how
it works, it is sufficient to observe what it generates for its
environment. This principle ensures the modularity of our
execution platform: the replacement of a component by an-
other with the same interface does not change the way its
behavior is composed with the behavior of its siblings.

The stroboscope paradigm is used in physics for the
study of movements and in the study of distributed algo-
rithms (see [14]). The mechanism is the following: first,
one takes a series of instantaneous photographs of the mov-
ing object at chosen times, then, the superimposition of
these different photographs makes it possible to analyze the
movement. In our approach, we use a similar principle for
the execution of a model. We call our instantaneous pho-
tographs snapshots. The exclusive use of snapshots, i.e.
pure observations, ensures the genericity of our approach
since any system can be observed.

In the context of a component-based approach, the obser-
vation of a system at a chosen instant is made from the ob-
servation of each of its components at the same instant. The
notion of “same instant” depends on the models of compu-
tation involved in the model of the system and of its com-
ponents. Moreover, without knowledge of the machine that
will compute the execution of the model and in order to
be as generic as possible, we assume that a scheduling of
the observations of the different components is necessary.
Now, just as taking the picture of a landscape is different
from taking the picture of a moving person, the schedul-
ing of the snapshots of the system’s components depends
on the model of computation used in the model of the sys-
tem. An advantage of our approach is that it provides a
generic framework to define precisely how to compute the
snapshots.



Figure 1. Roles of our modeling objects

4. Modeling vocabulary

To represent a model of a system, we use a set of ele-
mentary objects. These objects compose what we call our
modeling vocabulary. They support basic operations allow-
ing, for instance, to read/write their parameters, to access
objects they contain and most importantly to execute them.
The role of these objects is illustrated on figure 1. We use
the following objects:

Model What we call a model is the description of the be-
havior of a system. In our point of view, a model is
both structural and functional: it includes a structural
description of the system in the form of a set of blocks
(or components) and, since each block realizes a par-
ticular function, the whole is a functional description
of the system. A model contains objects called blocks
and has pins for interaction with its environment.

Model of Computation A model of computation is asso-
ciated to every model in order to provide semantics for
the combination of the behaviors of the blocks of the
model. The model of computation implements execu-
tion primitives (see section 5).

Block Blocks are elementary elements used in the descrip-
tion of the behavior of a system. They can represent
components (in the general meaning of the word) but
also other basic concepts such as the concept of state.
Blocks interact through their pins. The behavior of a
block may be described using a model (hierarchical
composition). In this case, the block is said to be com-
posite. Otherwise, its behavior may be described using
a formalism outside of our framework. It is then said
to be atomic. In both cases, a block must have the
same set of execution operations defined in section 5.3
below.

Pin Pins can represent the notion of port, of interface or
even of control nodes. The direction of pins can be

specified (in, out or both). Other attributes may qualify
them according to the MoC, for instance to be able to
distinguish data pins from control pins.

Relation Relations connect block pins. The semantics of
relations depends on the model of computation accord-
ing to which the model is interpreted.

Token A token represents a piece of information ex-
changed between blocks. The elementary amount of
information as well as its type and its properties de-
pends on the model of computation involved.

The UML diagram of figure 2 shows the relations be-
tween the different objects we introduced along with the
operations that they support. The operations related to the
platform, the models of computation and the blocks are de-
scribed in section 5. Notice that pins have specific opera-
tions allowing to put tokens, to read and to consume avail-
able tokens.

The set of objects we have presented in this section along
with their operations is the basis of our model of computa-
tion description language.

5. Execution operations

The various existing models of computation have differ-
ent rules for transporting data between components, speci-
fying causal dependencies between inputs and outputs and
specifying how data is produced and when it is available.
For instance, in the Synchronous Data Flow [10] model of
computation, data is produced a fixed number of tokens at a
time and instantaneously propagated between components.
The causal dependencies are therefore statically deduced
from the connections between components. On the con-
trary, in the Discrete Events [12] model of computation, the
production of a data token by a component denotes the oc-
currence of an event. Such an event has a time-stamp that
specifies when the data will be available. Data propagation
is done according to a global clock that determines when an
event has to be delivered to its target. Therefore, causal de-
pendencies are dynamical because they depend both on the
connections between components and on the timestamps of
the events.

Our generic model of computation has been designed in
order to allow the detailed specification of such rules. We
have identified three sets of primitive operations that we de-
tail below.

5.1. Platform operations

The execution platform operations form the backbone of
our framework. The platform is in charge of the overall



Figure 2. UML diagram representing our modeling concepts

execution of the model. It implements the loop that com-
putes successive snapshots in order to obtain a complete
execution. The number of snapshots to build is specified,
explicitly or implicitly (with a constraint for example), by
the modeler who wants to simulate the system.

The operations that structures the platform engine, rep-
resented on figure 3, are the followings:

setup() The setup operation is a pre-initialization op-
eration that includes checking the structure of the
model which has to be correct with respect to the
model of computation it involves.

startOfSnapshot() This operation prepares the
model for execution. That may include, for instance,
initialization of variables.

snapshot() The snapshot operation builds one ob-
servation of the system behavior. The computation is
delegated to the snapshot operation of each model
of computation.

endOfSnapshot() The observation ends in the
endOfSnapshot operation. The state of the model
is then considered as stable.

newSnapshot() The newSnapshot operation checks
if, with respect to the parameters given by the mod-
eler for execution, it is necessary to proceed with
a new snapshot. If so, the platform loops on the
startOfSnapshot operation, else it carries on to
the wrapup operation.

wrapup() The wrapup operation is the final step of ex-
ecution. During this step, simulation results are dis-

played and objects remaining in the memory are de-
stroyed.

5.2. Model of computation operations

The MoC operation set is depicted on figure 4. This set
is generic since it is absolutely the same for all models of
computation. By contrast, the content of each execution
operation depends on the model of computation.

The setup, the sartOfSnapshot, the
endOfSnapshot and the wrapup operations are
the MoC counterparts of the homonym platform opera-
tions. For instance, the static check of the model structure
that is realized in the setup operation differs totally
according to the model of computation.

The snapshot operation builds the observation of the
system behavior. Its successive steps form two loops that
are repeated until the observation is considered to be com-
plete:

acquire() The acquisition of the environment of the
model is realized during operation acquire. Then,
acquired data is considered as stable until the end of
the snapshot and is present on the model pins: the
goal of the snapshot is to determine the behavior of
the model based on the acquired data. Consequently,
if the data change during the computation, the snapshot
would be inconsistent.

compute() The compute operation is the most impor-
tant operation: it computes the observation of the
model. It is composed of different sub-operations de-
scribed below, which can be roughly classified in two
classes: scheduling operations and data propagation
operations.



Figure 3. Platform
operations

Figure 4. MoC operations

Figure 5. Hierarchical execution sequence



reset() The goal of the reset operation is to reset
the observable state of the objects. For example,
outputs may be reset to an “unknown” status, etc.
The way of performing the reset depends on the
model of computation.

preSchedule() The preSchedule operation is
part of the scheduling operations. Its role is to
determine the order in which blocks have to be
observed depending on the status of the model
and the data available on its pins.

modelToBlocks() This operation propagates data
over relations connecting model input pins to
block input pins. The way it operates may de-
pend on the preSchedule operation which
may have restricted the number of blocks con-
cerned by the propagation.

update() During this operation, blocks are asked to
update their output pins.

inSchedule() inSchedule is a scheduling op-
eration. It takes into account new data on output
pins.

propagate() propagate propagates observable
output data from blocks to the input pins of
blocks they are connected to.

postSchedule() postSchedule is a schedul-
ing operation. It takes into account new data on
input pins.

blocksToModel() blocksToModel propa-
gates observable output data from blocks to the
model output pins they are connected to.

done() The done operation checks if the observa-
tion is complete (what depends on the model of
computation). If it is the case, it carries on with
the validate operation. Else, it loops on the
preSchedule operation.

validate() During the validate operation, blocks
have to validate the computed observation. Thanks to
this operation, blocks can influence the course of the
computation. This is particularly useful in the case of
systems depending on models of computation that re-
quire a progressive readjustment of parameters in or-
der to obtain the most precise observation possible. A
signal crossing detector is a perfect example of that
kind of systems. The detector samples an input sig-
nal at periodic times. If it finds out that the signal
has crossed the fixed threshold but is not able to de-
termine the date of that event with enough precision, it
can require a new computation of the observation with
a smaller sampling step until the date of the event is
precise enough.

The semantics of each of these operations is described in
our modeling language (see section 4) for every model of
computation one wants to work with. As soon as the plat-
form has such a description of a model of computation, it is
able to execute any model that uses it.

5.3. Block operations

Every block must support the execution operations re-
quired by the platform. That means that if the behavior of a
block is defined using a formalism different from ours (us-
ing C++ or Esterel for example), its code has to be wrapped
in an interface that maps its behavior to our operations. If
some of the required operations are not defined in the code
of the block, they can be added using our language.

First of all, every block must have the setup, the
startOfSnapshot, the endOfSnapshot and the
wrapup operations which have the same meaning in the
platform. Every block also must have an update opera-
tion. It is the most important operation because it triggers
the update of the output pins of the block. Note that a block
may be active at any time, even when we do not observe it.
However, when we invoke its update operation, it must
provide us with a coherent view of its outputs, that will
be taken into account by other blocks. Last, every block
must have a validate operation that allows it to act on
the overall execution of the model.

5.4. Hierarchy

In accordance with our observation principle, we de-
signed the three sets of operations we described above so
as to allow the execution of complex hierarchical models
while ensuring a minimum dependency between a model
and the models of its components. Let us consider the sim-
ple hierarchical model example of figure 1: its behavior is
described by a root model using a root MoC and composed
of at least one composite block whose behavior is described
by an internal model using an internal MoC (possibly dif-
ferent from the root MoC) and composed of atomic blocks.
Figure 5 shows the sequence of execution operations on this
example.

6. Example: a simple modal system

We have executed different kinds of models using our
framework in order to test it. The example presented in
this section is the model of a simple modal system. A sys-
tem is modal if its behavior can be decomposed into several
modes. Mode changes happen when conditions on the val-
ues of the inputs, the outputs or the parameters of the system
are satisfied. A modal model can be seen as a more general
kind of hybrid model, in which modes define a behavior that



Figure 6. Example modal model and its representation in our framework

Figure 7. Expected behavior of the modal
system

is continuous in time. Many systems are modal. Satellites,
for example, are modal systems that generally have at least
three different modes: a “launch” mode used for moving the
satellite to its orbit; a “nominal” mode used when the satel-
lite is ready to accomplish its mission, like taking pictures of
the Earth; and a “safe” mode that allows the satellite to wait
for new orders safely. These modes are generally refined
into sub-modes and the conditions of change are strictly de-
fined and checked so that the behavior of the satellite is pre-
dictable in any situation. Any malfunction would lead very
likely to the loss of the satellite. . .

In this example, we are interested in the model of compu-
tation of the *charts approach [9] because it is particularly
suitable for representing modal systems. In *charts, a modal
model is hierarchical. The root model is a finite state ma-
chine with states that represent modes and describe different
behaviors of the system. The behavior of the system in each
mode is described by a sub-model that can be based on any
model of computation. For instance, a sub-model can be a
finite state machine and in this case the overall model is a

hierarchical finite state machine, or it can be a continuous
timed model and the overall model is then a hybrid model.

Our modal model example is shown on figure 6.The be-
havior of the system in each mode is the emission of a con-
stant valued signal. Notice that even if the behavior of the
system had been more complex, the global way the execu-
tion of the model is made would not have changed. Indeed,
the computation is based exclusively on observations and is
not modified by the way observations are computed.

The modal system receives a signal on its input, called
IN, and emits another signal on its output, called OUT. It
has two modes: in mode A it emits the value 1 on its output
and in mode B it emits -1 on its output. The system swaps
modes when the received signal crosses a given threshold.
Transitions between modes are preemptive: they specify a
behavior (just like a mode does) that has to be executed in-
stead of the behavior specified by the target mode. The ini-
tial mode of the system is mode A. The figure 7 shows how
the system should behave in response to an example of input
signal.

Figure 6 shows the internal structure of the modal model
in our framework. Modes are represented with blocks. Each
block is connected to the input and the output of the model
because only one block at a time can represent the be-
havior of the system. It is as if the model of one of the
blocks was substituted to the model of the system at each in-
stant. Blocks have data pins for input and output signals and
control pins that allow relations to represent the sequence
of mode changes. Transitions are represented by specific
blocks with attributes that indicate if they are preemptive
and what is their guard. Preemptive transitions have to be
broken in two distinct blocks: one representing the behav-
ior of the system when taking the transition and another, of



which the guard is always true, representing the behavior of
the system right after the transition has been taken.

The execution operations for the *charts model of com-
putation are detailed below. The algorithm requires three
global variables and one constant. The constant, repre-
sented by the initMode attribute of the model, is used
to save the initial mode of the system. The three global
variables are attributes of the model of computation. The
currentMode variable holds the current mode of the sys-
tem, the nextMode variable is used to store the future
mode of the system and the hist variable is used to re-
member if the system has to begin with the initial mode
or with the current mode. Below, we only detail the sub-
operations of the compute operation. We describe briefly
the role of the others here. The setup operation has
to check if the finite state machine is deterministic. The
startOfSnapshot operation initializes the variable rep-
resenting the current mode. If hist is false, that means that
the model has never been executed and currentMode is
initialized with the value of initMode. Else, it is initial-
ized with the value of nextMode (which has been deter-
mined in a previous snapshot). The validate operation
is quite simple to implement since only one block can be
active at a time. Thus, only the active one can validate the
computation. Last, in the endOfSnapshot operation, the
value of hist is forced to false since the model may not be
in the initial mode in the next snapshot and the model pins
are made observable. In the following algorithms, pins have
a “known” attribute that indicates if the value of the token
of the pin has been determined in the current snapshot or
not. We also use a special Expression type with an eval
operation that evaluates any expression in the context of a
model.
reset()

// Reset outputs (blocks and model)
foreach Pin p in self.model.pins such that p.direction = OUT and
p.type = DATA do

p.known← FALSE;
endfch
foreach Block b in self.model.blocks do

foreach Pin p in b.pins do
p.known← FALSE;

endfch
endfch

preSchedule()

// Take enabled preemptive transitions
foreach Pin p in self.currentMode.pins such that p.type = CTRL do

foreach Relation r in p.relations do
foreach Block t in r.target.owningBlock such that
t.preemptive = TRUE and Expression.eval(t.guard,
self.model) = TRUE do

self.currentMode← r.target.owningBlock;
endfch

endfch
endfch

modelToBlocks()

// Propagate data from model to current mode
foreach Pin pmodel in self.model.pins such that pmodel.direction
= IN and pmodel.type = DATA do

foreach Relation r in pmodel.relations such that
r.target.owningBlock = currentMode do

foreach Pin pblock in r.target.owningBlock.pins such that
pblock.direction = IN and pblock.type = DATA do

pblock.setToken(pmodel.readToken());
endfch

endfch
endfch

update()

// Update on current mode
self.currentMode.update();

inSchedule()

// No purpose for this MoC

propagate()

// No purpose for this MoC

postSchedule()

// Take enabled transitions
self.nextMode← self.currentMode;
foreach Pin p in self.currentMode.pins such that p.type = CTRL do

foreach Relation r in p.relations do
foreach Block t in r.target.owningBlock such that
Expression.eval(t.guard, self.model) = TRUE do

self.nextMode← r.target.owningBlock;
endfch

endfch
endfch

blocksToModel()

// Propagate data from current mode to model
foreach Pin pblock in self.currentMode.pins such that
pblock.direction = OUT and pblock.type = DATA do

foreach Relation r in pblock.relations do
foreach Pin pmodel in r.target.owningBlock.pins such
that pmodel.direction = OUT and pmodel.type = DATA
do

pmodel.setToken(pblock.readToken());
endfch

endfch
endfch

done() : Boolean

// Check if model outputs are known
Boolean done← TRUE;
foreach Pin p in self.model.pins such that p.direction = OUT and
p.type = DATA do

if p.known = FALSE then
done← FALSE;

endif
endfch
return done;



7. Conclusion

We have presented a generic and modular approach for
heterogeneous and executable modeling of systems. Our
previous experience shows that it is particularly useful for
embedded systems where problems are related not only to
the design process but also to the very nature of these sys-
tems that must be reliable, concurrent and reactive, to cite
only a few properties. Our approach includes a language for
describing models of computation and a generic execution
platform that computes the behavior of heterogeneous hier-
archical models according to the description of their models
of computation.

Currently, we are improving our execution model and
verifying its ability to handle any model of computation.
We are defining the semantics of our language and the exe-
cution operations precisely, the next step being a mathemat-
ical formalization in a framework that has not been chosen
yet. One of our goals is to be able to integrate our platform
with analysis and model-checking tools.

The concrete syntax of our language is not chosen yet,
but we will probably use an existing language such as OCL
— which allows to navigate models easily and to work ef-
ficiently with sets — and extend it with the primitive oper-
ations of our execution model. We are also studying how
to specify with precision what happens at the interface be-
tween heterogeneous models. For example, when a discrete
time model and a continuous time model exchange data, we
must tell how continuous signals are sampled and how dis-
crete samples are integrated into continuous signals. An-
other important work in progress relates to the concept of
“Time”. It is a key notion in the domain of embedded sys-
tems, in particular for real time systems. In our framework,
the only built-in notion of time is the sequence of snapshots
that constitute the observation of a system. Each model of
computation can define its own notion of time by associ-
ating a date to each snapshot (and eventually duration be-
tween dates). We are working on the definition of relations
between the times of different models of computation based
on concepts that should be available in the MARTE pro-
file [1].

We foresee numerous extensions to our approach. For
example, since it is possible to associate several models to
the same block, we could interpret these models as different
facets of the system, just like in Rosetta. This way, a block
could not only have a behavioral model but also an energy
consumption model, a mechanical model, etc. Another per-
spective is to integrate model refinement techniques into our
approach in order to execute under-specified models, for in-
stance to validate architecture choices. We are considering
the use of abstract data types, as well as symbolic execution
techniques which allow to determine the tree of all possible
executions of a model. Eventually, our language will come

with a set of transformations allowing to turn a model de-
scribed in a given formalism (with a known meta-model)
into a model described in our language that will be exe-
cutable by the platform.

References

[1] UML profile for modeling and analysis of real-time
and embedded systems (MARTE) RFP, january 2005.
http://www.omg.org/cgi-bin/doc?realtime/2005-2-6.

[2] F. Boulanger, M. Mbobi, and M. Feredj. An approach for do-
main polymorph component design. In IEEE International
Conference on Information Reuse and Integration 2004 (IRI
2004), 2004.

[3] F. Boulanger, M. Mbobi, and M. Feredj. Flat heterogeneous
modeling. In IPSI 2004 conference, 2004.

[4] C. Brooks, E. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and
H. Zheng. Heterogeneous concurrent modeling and design
in Java, (Volume 1, introduction to Ptolemy II). Technical
Report 21, EECS Dept., UC Berkeley, July 2005.

[5] J. Burch, R. Passerone, and A. L. Sangiovanni-Vincentelli.
Overcoming heterophobia: Modeling concurrency in het-
erogeneous systems. acsd, 00:13, 2001.

[6] T. Clark, A. Evans, P. Sammut, and J. Willans. Applied
metamodelling: A foundation for language driven develop-
ment. Xactium, september 1978.

[7] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Lud-
vig, S. Neuendorffer, S. Sachs, and Y. Xiong. Taming het-
erogeneity – the Ptolemy approach. In Proceedings of the
IEEE, Special Issue on Modeling and Design of Embedded
Software, volume 91, pages 127–144, January 2003.

[8] C. Kong and P. Alexander. The Rosetta meta-model frame-
work. In Proceedings of the IEEE Engineering of Computer-
Based Systems Symposium and Workshop (ECBS’03), april
2003.

[9] B. Lee. Specification and design of reactive systems. Tech-
nical Report UCB/ERL M00/29, EECS Department, Uni-
versity of California, Berkeley, 2000.

[10] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.
In Proceedings of the IEEE, volume 75, september 1987.

[11] E. A. Lee and A. L. Sangiovanni-Vincentelli. A frame-
work for comparing models of computation. IEEE Trans.
on CAD of Integrated Circuits and Systems, 17(12):1217–
1229, 1998.

[12] L. Muliadi. Discrete event modeling in Ptolemy II. Techni-
cal Report UCB/ERL M99/29, EECS Department, Univer-
sity of California, Berkeley, may 1999.

[13] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving exe-
cutability into object-oriented meta-languages. In Proceed-
ings of MODELS/UML 2005, 2005.

[14] G. Tel. Introduction to Distributed Algorithms, 2nd edition.
Cambridge University Press, 2000.

[15] J. C. Willems. Models for dynamics. Dynamics Reported,
vol.2, 1989.


