

Integration of Dependability Features
in a Synchronous Application

Frédéric Boulanger1

Abstract – We present here an overview of a new approach with associated tools, to implement
dependability strategies for applications that follow the reactive synchronous approach. Starting
from the description of an application as a graph of interconnected components, we model
dependability policies as transformations of this graph. The transformed graph describes a new
version of the application that integrates dependability features such as multiple copies of some
components, voters that compare the outputs from copies of a component, or behavior checkers that
compare the behavior of a component to an expected behavior. The graph transformations rely
explicitly on the assumption that the components obey a synchronous execution model.
The design of the dependability policies is not addressed. Our goal is only to provide dependability
experts with a language for describing such policies and for integrating them into an application.
The integration is done off-line and generates a new application with a structure that won't change
at runtime. However, runtime changes in the structure of an application are possible and are
discussed at the end of this article.
Keywords: Architecture description language, Dependability, Model transformation

I. Introduction
Dependability is a complex property that covers

reliability, availability, safety and security [1]. When
designing a system, dependability should be taken into
account from the beginning [2], along with the functional
aspects of the application. However, experts on the
application domain of the system may not be experts on
reliability, and a given system may be targeted to several
implementations with different reliability requirements.
Therefore, it is useful to consider dependability as a non-
functional aspect of a system, and to weave dependability
aspects into the design of the main functionality of an
application. This paper does not address the design of
dependability policies, nor the scheduling and the
placement of the components on a given architecture, as
discussed in [3]. Our approach provides means to
describe dependability policies and to apply them to an
application. Therefore, what is proposed here is not an
aspect-oriented approach to dependability as presented
in [4], but a tool for integrating dependability features
into an application.

In our component based approach, an application is
considered as a set of components that communicate
through input and output signals using a synchronous
execution model. The use of a synchronous execution
model is essential because it guarantees the consistency
of the flows of data between the components. Moreover,
a subset of components that interact in a synchronous
way may be considered as a single synchronous
component, allowing for hierarchical abstraction.

For instance, figure 1 shows the original graph of a
simple application on the left, and the graph obtained
after applying the dependability policy: “replace
component M2 by three copies of it and insert a voter to
check the consistency of their outputs” on the right. In
such a transformation, we rely on the synchronous
execution model to guarantee that at each instant,
components M21, M22 and M23 receive the same input
from M1 and that the voter works on samples that are
computed from the same input.

Fig 1. Example of graph transformation

If the execution platform is distributed, ensuring the
synchronicity of the behaviors of the components has a
cost. However, there exist efficient distributed execution
techniques for synchronous systems as shown in [5].

Dependability features are described as
transformations of the graph of an application. These
transformations include: changing the connections
between component signals, adding components, and
replacing a component by a sub-graph that has the same
inputs and outputs. This approach is related to the
approach used in the Hydra tool [6][7], with the

Frédéric Boulanger, Integration of Dependability Features in a Synchronous Application

constraint that the components obey a synchronous
model of execution. However, our approach supports
more general transformations of the application than the
replication of components.

II. BDL: a Block Description Language
The description of the graph of an application relies on

the description of the interface of its components, or
blocks, and on the description of the connections between
the signals of these blocks. In our approach, these
descriptions are made in BDL, short for Block
Description Language, an architecture description
language designed specially for this purpose. This
language can be compiled into C++ to produce an
executable application. The choice of C++ was made
because we rely on object-oriented features to instantiate
and connect blocks, and because it is possible to bind
code written in other programming languages like C,
Fortran or ADA in C++. Each block used in an
application must therefore be encapsulated in a C++
class. We have developed tools to produce such classes
from Esterel [8] modules and Lustre [9] nodes. Runtime
support for the synchronous execution model assumed by
BDL is provided by the libSync library that was
developed in previous work [10].

II.1. Description of a block

For each block, BDL gives:
• the source of the description of the block, which

may be created manually or generated
automatically from the source code of the block;

• the name of the C++ file that contains the class of
the block;

• the definitions used by the class (types, other
classes, libraries);

• the parameters of the block if any;
• type equivalences that match types in different

programming languages or operating systems;
• the interface of the block: its inputs and outputs,

with their types. An output may be declared as not
depending instantaneously on the inputs of the
block. This property is used to check that loops in
the graph of an application are not instantaneous
and that the activation of the blocks can be
scheduled.

For instance, let us consider a block that checks the

equivalence of two pure signals inp1 and inp2. When
one of the input signals is present while the other is not,
the block emits an output named failure. As soon as
failure has been produced, another output named
has_failed is emitted at each instant. The interface of
such a block could be described as:
#source "CheckEQUIV.strl"
#c++ "CheckEQUIV.H"

CheckEquiv {
 input:
 inp1,
 inp2;
 output:
 failure,
 has_failed;
}

This description declares a block named CheckEquiv
and states that this block is defined in Esterel in the
source file CheckEQUIV.strl, and that the CheckEQUIV
C++ class is declared in the file CheckEQUIV.H. This
block has two pure (not valued) inputs named inp1 and
inp2 and two pure outputs named failure and
has_failed.

II.2. Block templates

Most dependability features depend only on the
topology of the application, not on the exact type of the
data that goes from a block to another. To avoid the need
to declare a specific version of a dependability block for
each type of data, BDL supports templates, or
parameterized blocks. The mechanism and the syntax are
borrowed from C++, and the parameters of a block may
be either types or values. For instance, one can describe
a comparator that compares any number of inputs of the
same type and tells whether they are equal or not as
follows:
Comparator<T><int N> {// N inputs of type T
 input : T[N] // array of inputs
 output : boolean equal; // boolean output
}

Then, if we need to compare 10 integers, we can just
declare:
Comparator<int><10> a_ten_int_comparator;

II.3. Description of an application

An application is a set of interconnected blocks. It is
therefore itself a block and its interface is described in
BDL in the same way as for a block. After the description
of the interface comes the declaration of the blocks that
compose the application, and then the connections
between the inputs and outputs of the blocks. The inputs
and outputs of the application are aliased to inputs and
outputs of blocks of the application. The difference
between the connection of an input to an output and the
aliasing of two signals is that in the former case, one
signal (the output) produces data for the other signal (the
input). Aliasing two signals just states that a signal of the
application is indeed a signal of one of its block.
Therefore, it is only possible to alias an input to an input
and an output to an output.

Let's consider an ABS brake system composed of a
brake and an ABS controller. The brake and the ABS
controller are described as follows:

Frédéric Boulanger, Integration of Dependability Features in a Synchronous Application

Brake {
 input : int command; // user input
 output: int pressure; // hydraulic command
}
ABS {
 input : int raw_cmd; // raw command
 input : skidding; // tire is skidding
 output: int ref_press;// regulated command
}

The complete ABS brake system is built from a brake
and an ABS controller:
#use Brake // include description of brake
#use ABS // and of ABS controller

ABSBrake {
 input : int command; // user input
 input : skidding; // tire is skidding
 output: int pressure; // hydraulic command

 Brake brake; // an instance of Brake
 ABS controller; // and of ABS controller

 // the input of the brake is the 'command'
 // input of the application
 brake.command = command;
 // the 'skidding' input of the controller
 // is the one of the application
 controller.skidding = skidding;
 // the output of the application is
 // the output of the ABS controller
 pressure = controller.ref_press;

 // connect the 'raw_cmd' input of the
 // controller to the output of the brake.
 controller.raw_cmd << brake.pressure;
}

The alias (=) operator is used to alias signals, while the
connect (<<) operator is used to connect an input to an
output.

Fig. 2. Structure of the ABS brake system

The structure of the resulting ABS brake system is

shown on figure 2.

III. Dependability statements
The syntax for describing blocks and connecting them

to build applications or new blocks has now been
presented, and the following shows how BDL allows a
designer to modify the topology of an application to
implement dependability policies.

BDL has operations for:
• adding new blocks and signals to an application,
• replacing blocks,
• changing the connections and aliases between

signals,
• getting information about the structure of the

application,
• controlling how operations are performed.

III.1. Adding blocks or signals

The implementation of a dependability policy may
require that new inputs or outputs are added to the
application, for instance when hardware redundancy is
used. New signals are declared using the input: and
output: statements, like in the description of a block. In
the same way, new blocks can be added to the application
by declaring them with the same syntax as in the
definition of a block.

However, a dependability policy is implemented as a
procedure and may be applied in different contexts where
the names of the new signals and blocks are not known
when the procedure is defined. Therefore, BDL has a ##
binary operator that builds names by concatenating its
first argument (which must be an identifier) and its
second argument (which may be an identifier or an
integer). This allows the use of syntactical arrays, which
are not actual arrays, but sets of identifiers that are built
from consecutive integers. Syntactical arrays have the
advantage that they can contain objects of different types,
contrary to real arrays that are homogenous, and that each
item of the array can be initialized individually. This is
of particular interest for arrays of voters since each voter
has a type that depends on the type of the signals it
processes.

III.2. Replacing blocks

An important operation when transforming an
application is the replacement of a block by a subgraph
of interconnected blocks. This operation is transparent
for blocks that were connected to the replaced block
because the subgraph which replaces the block has the
same interface and is connected in the same way as the
original block. However, the replacing graph may have
additional signals to exchange diagnostic information
with other parts of the application.

The syntax for replacing a block is:
someblock #becomes someproc(arg1, arg2, ...)

Frédéric Boulanger, Integration of Dependability Features in a Synchronous Application

where someblock is the block to replace, and someproc
is the procedure that builds the subgraph that replaces the
block. The practical uses of #becomes will be exposed
later.

The connections between blocks can be changed using
the connect (<<) and alias (=) operators. When
expressing transformations of an application, the same
signal can be aliased or connected several times: only the
last alias or connection is taken into account. This allows
the use of generic procedures that apply a global policy
to all signals, followed by special processing of some
signals.

III.3. Getting information about the application

In order to transform the graph of an application, it is
necessary to get information about its structure. The
following operations can be applied to a block:
• type()yields the type of the block. This type can

be used to declare other blocks of the same type;
• nbInputs()returns the number of inputs of the

block;
• nbOutputs()returns the number of outputs of

the block;
• inputs(i) returns the ith input of the block;
• outputs(i) returns the ith output of the block;
The following information operations can be applied

to a signal:
• type()yields the type of the signal;
• source()yields the signal to which an input is

connected (it can be applied to inputs only).

The source of an input is generally an output.
However, if the input is aliased to an input of the
application, the source is an input. When defining
dependability policies, the context in which they will be
applied is not known yet, so the designer doesn’t know
whether source() will return an input or an output. To
solve this issue, the behavior of the << and = operator is
special when their second argument is of the form
signal.source(): << behaves like = if the source is an
input, and = behaves like << if the source is an output.

III.4. Control statements

BDL has statements to control the application of
operations and procedures:
#iterate(var, bound) {
 commands;
}

executes commands with var varying from 1 to bound.
The var variable is local to the block delimited by
{ and }.

#if(type1 ~ type2) {
 commands_if_same_type;

}{
 commands_if_different_types;
}

checks if type1 and type2 are equals. The special value
0 can be used to denote the type of pure signals. Pure
signals carry events that don't have a value.
#if(int1 = int2) {
 commands_if_equal;
}{
 commands_if_different;
}

checks for equality of int1 and int2.

III.5. Dependability policies

Dependability policies are defined using primitive
statements of BDL and other dependability policies. The
syntax of the definition of a dependability policy is:
#def policy(arguments) {definition};

As an example, let us consider the definition of a
policy that replaces a block by n copies of this block, with
voters to merge the outputs of the copies:
#def nplication(block, n) {
 CopyInputs(block);
 // declare n instances of the block
 #iterate(i, n) {
 block.type() B##i;
 }
 // add a voter for each output
 #iterate(i, block.nbOutputs()) {
 #if(block.outputs(i).type() ~ 0) {
 // pure voter with n inputs
 PureVoter<n> V##i;
 }{
 // typed voter with n inputs
 Voter<block.outputs(i).type()><n> V##i;
 }
 // connect voter inputs
 #iterate(j, n) {
 V##i.inputs[j] << B##j.outputs(i);
 }
 // alias voter output
 block.outputs(i) = V##i.output;
 }
}

Such a policy may be used to replace a block with 3
copies of this block:
block #becomes nplication(block, 3);

as shown on figure 3. The first statement calls a
procedure to insert blocks that copy their input to their
output. This is necessary because we can alias only one
signal to a signal of the application. Since the three copies
of the block must read their inputs from the inputs of the
original block, we have to copy these inputs in case they
are inputs of the application. The synchronous execution
model of the application allows the insertion of such
blocks without changing the behavior of the application
because the outputs of the blocks are available at the
same instant as their inputs. The same property is used to
guarantee that the voters do not introduce a delay in the
processing of the outputs of the copies of the replicated
block.

Frédéric Boulanger, Integration of Dependability Features in a Synchronous Application

 Fig. 3. Replication of a block

IV. The synchronous execution model
The BDL language, and the associated BDLC

compiler which translates the description of an
application and the dependability policies into C++, rely
on a synchronous execution model to ensure the
consistency of signals in the transformed application.
This execution model assumes that:
• the blocks of an application communicate

through signals, there are no shared variables;
• there is a notion of logical instant, shared by all

the blocks of an application, and at each instant,
the value and status of interconnected signals is
the same;

• blocks react instantaneously: they produce their
outputs at the same instant as they read their
inputs.

This execution model allows us to replace a block by
a set of interconnected blocks without modifying the
synchronization of data flows in the application because
inserting a block along the path between an output and
an input does not introduce any delay in the processing
of data. It also guarantees that multiple copies of a block
receive the same data at the same instants, so that their
behaviors can be compared safely, any discrepancy in
their outputs being due to a failure in their processing,
and not to the fact that they work on different inputs.

However, this implies that any loop in the graph of
the application is instantaneous. For such a loop to be
causal, there must be, at each instant, a unique value of
the signals that obeys the semantics of the blocks. Since
BDL considers the blocks of an application as black
boxes, their semantics is unknown, and the causality of
an instantaneous loop cannot be checked. Therefore,
instantaneous loops are forbidden in BDL, and the

BDLC compiler checks for instantaneous loops, as well
as for unconnected signals.

Non instantaneous loops are allowed, but for BDLC
to see that a loop is not instantaneous, the pure “black
box” approach must be relaxed to say which outputs of
a block do not depend instantaneously on its inputs. This
is done with the #nodep statement, as illustrated by the
following description of a delay block:
#c++ "Delay.H"
// a one tick delay for signals of type T
Delay<T> {
 input : T;
 output : T;
 #nodep output;
}

In a delay, the output depends only on the state of the
block. The current input gives the next output, not the
current one, so the output does not depend
instantaneously on the input of the delay.

IV.1. Clocks

In an application, each block belongs to a clock which
defines the instants at which the block will react to its
inputs and produce its outputs. There may be several
clocks in an application, one for each connected
subgraph of the application. For each clock, BDLC
computes the partial order induced by the connections
between signals and computes a schedule (a total order
of activations) that is compatible with this partial order.
Several schedules may be compatible with the causal
partial order, and all should yield the same results
because the value and status of a signal are unique at
each instant: a signal cannot be seen absent and then
present in the same instant. However, if some blocks
have side effects, like writing data to a file, the order in
which blocks are activated at each instant may influence
the observable behavior of the application.

Fig. 4. Reconfiguration methods

One possibility to solve this issue is to add dummy

inputs to some blocks and to connect them to the outputs
of the blocks after which they should be activated. These
dummy connections will turn the partial order into a
more complete order that is compatible with the
expected behavior of the application, side-effects
included. These dummy connections are a hand-coded
representation of the dependencies between the side
effects. A better solution is to have only side-effect free
blocks, or, if necessary, to group all side-effects in one
block which processes them in the right order.

IV.2. Asynchronous communication

Blocks which belong to the same clock communicate
synchronously, but they must be able to communicate
asynchronously with the external world, or with blocks
which belong to other clocks and therefore do not share
the same logical instants. Communication from a clock
toward the asynchronous outside is not a problem: a
synchronous event becomes an asynchronous event
when observed from the outside of the clock. However,
creating a synchronous event from an asynchronous one
may be more difficult.

The simplest solution is to memorize the occurrence
of an asynchronous event when it occurs, and to generate
the corresponding synchronous event at the next instant
of the clock. However, this solution may not give a
coherent view of the asynchronous world to the
synchronous clock. For instance, let's consider two
asynchronous events: ms occurs every millisecond, and
s occurs every second. From a synchronous point of
view, each time s occurs, ms should also occur at the
same instant since every second is made of a whole
number of milliseconds. However, non-deterministic
processes in the implementation of an application may
lead to an occurrence of s with no simultaneous
occurrence of ms. In this case, when s is detected, a
synchronous event for s should be produced at the next
instant where ms has also been detected. Moreover, the

thousandth occurrence of ms should be simultaneous
with an occurrence of s.

As we can see, building synchronous events from
asynchronous ones depends on the semantics of the
signals and cannot be done automatically. In our
execution model, synchronous events are built from
asynchronous ones by interface blocks. Such blocks can
communicate with a clock to create new instants when
needed. Therefore, synchronous clocks can be built from
the stimuli of the application as well as from a periodic
activation loop.

IV.3. Dynamicity

BDL has no support for dynamicity. It rewrites the
graph of an application statically, at compile-time, what
makes it possible to check for instantaneous loops,
unconnected signals and so on. However, the
synchronous execution model used to execute the
application supports dynamicity. It is possible for a
block, as part of its reaction to an event, to destroy or
create other blocks and to change the connections
between signals. These changes are not instantaneous:
they are applied after all the components that belong to
the same clock have reacted to the instant when the
change is requested. See [11] for a discussion on the
reconfiguration of data-flow models. Such dynamic
reconfigurations of an application force the clocks to
recompute a schedule for their blocks, and may lead to
a runtime exception if the new configuration of the
application cannot be scheduled.

Dynamicity may be useful to optimize the use of the
available resources of the execution platform. By
creating blocks only when they are needed, one can
reduce the memory footprint of an application.
However, the risk of running into a lack of memory
when a block must be created, or to fall into a
configuration that has not been statically checked for
correction is often too high to be worth the gain in
statically allocated resources.

Frédéric Boulanger, Integration of Dependability Features in a Synchronous Application

Figure 4 shows three methods to handle the
reconfiguration of an application, from the most
dynamic on the left to the totally static approach used by
BDLC on the right. The first method goes from the
upper configuration to the lower by destroying block B,
creating block C and reconnecting the input of C to the
output of A. The second method, in the middle, goes
from the upper configuration to the lower one by
disconnecting the input of B from the output of A, and
connecting the input of C instead. With this method,
blocks B and C exist during the whole lifetime of the
application.

With the last method, on the right, no block is
destroyed or created and no connection is changed. In
the upper configuration, the switch block S copies its
input to its upper output toward B. In the lower
configuration, it copies its input to its lower output
toward C. The main drawback of this method is that the
graph of the application does not show explicitly that
only one of B and C is active at any time.

V. Conclusion
By considering an application as a set of

interconnected black boxes that obey a synchronous
reactive model, BDL allows the description of
dependability policies as transformations of the graph of
the application. The synchronous execution model
makes these transformations safe because blocks react
instantaneously to their inputs, and signals have a unique
value at each instant, which is propagated
instantaneously along connections. Therefore,
introducing new blocks in a flow of data does not delay
the data.

This approach releases the tight coupling between
functional properties of an application and
dependability, and makes it possible to produce several
implementations of an application by applying different
dependability policies to the initial description of the
application. It can be considered as an aspect-oriented
approach to dependability.

Several dependability blocks, like voters, behavior
checkers and behavior predictors have been
implemented, along with the dependability policies that
integrate them in the graph of an application. Interface
blocks are used to make the application communicate
with its environment.

Improving the dependability of an application should
not change its functional properties. When all the
components of an application are designed using a
synchronous language, it is possible to use formal
verification tools to check that critical properties that
hold on the original application still hold on the
dependable application.

Future works will address the issue of the placement
of the blocks on different processing units. Today, the

synchronization of processing chains that run on
different processors is made using interface blocks that
implement inter-processor communications.

References
[1] A. Avizienis, J.C. Laprie, B. Randell and C. Landwehr, Basic

concepts and taxonomy of dependable and secure computing.
IEEE Transactions on Dependable and Secure Computing, 1(1),
pp. 11-33, 2004

[2] A. Bondavalli, M.D. Cin, D. Latella and A. Pataricza, High-level
Integrated Design Environment for Dependability. Fifth
International Workshop on Object-Oriented Real-Time
Dependable Systems, WORDS 1999, Monterey, USA,
November 1999

[3] A. Girault, H. Kalla and Y. Sorel, A Scheduling Heuristics for
Distributed Real-Time Embedded Systems Tolerant to Processor
and Communication Media Failures. International Journal of
Production Research, 42(14), pp. 2877–2898, July 2004

[4] R. France, I. Ray, G. Georg and S. Gosh, Aspect-oriented
approach to early design modeling. IEE Proceedings - Software,
vol. 151, pages 173–185, August 2004

[5] P. Caspi, A. Girault and D. Pilaud, Distributing Reactive
Systems. Seventh International Conference on Parallel and
Distributed Computing Systems, PDCS'94, Las Vegas, USA,
October 1994

[6] P. Chevochot and I. Puaut, Scheduling Fault-Tolerant
Distributed Hard Real-Time Tasks Independently of the
Replication Strategies, 6th International Workshop on Real-
Time Computing and Applications Symposium (RTCSA '99),
Hong Kong, China, December 1999

[7] P. Chevochot and I. Puaut, An Approach for Fault-Tolerance in
Hard Real-time Distributed Systems. 18th IEEE Symposium on
Reliable Distributed Systems, Lausanne, Switzerland, October
1999

[8] G. Berry, The foundation of Esterel (MIT Press, Robin Milner
edition, 1998)

[9] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, The
synchronous dataflow programming language Lustre.
Proceedings of the IEEE, vol. 79, nr. 9. September 1991

[10] G. Vidal-Naquet and F. Boulanger, Integration of Synchronous
Modules in an Object-Oriented Language. Information Systems
- Correctness and Reusability, selected papers from the IS-
CORE Workshop, editors: R.J. Wieringa and R.B. Feenstra,
World Scientific 1995, pages 279–291

[11] S. Neuendorffer and E.A. Lee, Hierarchical Reconfiguration of
Dataflow Models. Invited paper, Conference on formal methods
and models for codesign, MEMOCODE, San Diego, California,
June 22-25 2004

Authors’ information
1Supelec – Département Informatique, France.

Frédéric Boulanger is a professor at Supelec,
a major French grande école. He got his
engineering degree from Supelec in 1989, and
a PhD in Computer Science from Paris-Sud
University in 1993. His current interest is in
heterogeneous modeling and the precise
definition of the interactions between models of
computation.

