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Abstract – We present here an overview of a new approach with associated tools, to implement 
dependability strategies for applications that follow the reactive synchronous approach. Starting 
from the description of an application as a graph of interconnected components, we model 
dependability policies as transformations of this graph. The transformed graph describes a new 
version of the application that integrates dependability features such as multiple copies of some 
components, voters that compare the outputs from copies of a component, or behavior checkers that 
compare the behavior of a component to an expected behavior. The graph transformations rely 
explicitly on the assumption that the components obey a synchronous execution model. 
The design of the dependability policies is not addressed. Our goal is only to provide dependability 
experts with a language for describing such policies and for integrating them into an application. 
The integration is done off-line and generates a new application with a structure that won't change 
at runtime. However, runtime changes in the structure of an application are possible and are 
discussed at the end of this article. 
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I. Introduction 
Dependability is a complex property that covers 

reliability, availability, safety and security [1]. When 
designing a system, dependability should be taken into 
account from the beginning [2], along with the functional 
aspects of the application. However, experts on the 
application domain of the system may not be experts on 
reliability, and a given system may be targeted to several 
implementations with different reliability requirements. 
Therefore, it is useful to consider dependability as a non-
functional aspect of a system, and to weave dependability 
aspects into the design of the main functionality of an 
application. This paper does not address the design of 
dependability policies, nor the scheduling and the 
placement of the components on a given architecture, as 
discussed in [3]. Our approach provides means to 
describe dependability policies and to apply them to an 
application. Therefore, what is proposed here is not an 
aspect-oriented approach to dependability as presented 
in [4], but a tool for integrating dependability features 
into an application. 

In our component based approach, an application is 
considered as a set of components that communicate 
through input and output signals using a synchronous 
execution model. The use of a synchronous execution 
model is essential because it guarantees the consistency 
of the flows of data between the components. Moreover, 
a subset of components that interact in a synchronous 
way may be considered as a single synchronous 
component, allowing for hierarchical abstraction. 

For instance, figure 1 shows the original graph of a 
simple application on the left, and the graph obtained 
after applying the dependability policy: “replace 
component M2 by three copies of it and insert a voter to 
check the consistency of their outputs” on the right. In 
such a transformation, we rely on the synchronous 
execution model to guarantee that at each instant, 
components M21, M22 and M23 receive the same input 
from M1 and that the voter works on samples that are 
computed from the same input. 

 
Fig 1. Example of graph transformation 

If the execution platform is distributed, ensuring the 
synchronicity of the behaviors of the components has a 
cost. However, there exist efficient distributed execution 
techniques for synchronous systems as shown in [5]. 

Dependability features are described as 
transformations of the graph of an application. These 
transformations include: changing the connections 
between component signals, adding components, and 
replacing a component by a sub-graph that has the same 
inputs and outputs. This approach is related to the 
approach used in the Hydra tool [6][7], with the 
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constraint that the components obey a synchronous 
model of execution. However, our approach supports 
more general transformations of the application than the 
replication of components. 

II. BDL: a Block Description Language 
The description of the graph of an application relies on 

the description of the interface of its components, or 
blocks, and on the description of the connections between 
the signals of these blocks. In our approach, these 
descriptions are made in BDL, short for Block 
Description Language, an architecture description 
language designed specially for this purpose. This 
language can be compiled into C++ to produce an 
executable application. The choice of C++ was made 
because we rely on object-oriented features to instantiate 
and connect blocks, and because it is possible to bind 
code written in other programming languages like C, 
Fortran or ADA in C++. Each block used in an 
application must therefore be encapsulated in a C++ 
class. We have developed tools to produce such classes 
from Esterel [8] modules and Lustre [9] nodes. Runtime 
support for the synchronous execution model assumed by 
BDL is provided by the libSync library that was 
developed in previous work [10]. 

II.1. Description of a block 

For each block, BDL gives: 
• the source of the description of the block, which 

may be created manually or generated 
automatically from the source code of the block; 

• the name of the C++ file that contains the class of 
the block; 

• the definitions used by the class (types, other 
classes, libraries); 

• the parameters of the block if any; 
• type equivalences that match types in different 

programming languages or operating systems; 
• the interface of the block: its inputs and outputs, 

with their types. An output may be declared as not 
depending instantaneously on the inputs of the 
block. This property is used to check that loops in 
the graph of an application are not instantaneous 
and that the activation of the blocks can be 
scheduled. 

 
For instance, let us consider a block that checks the 

equivalence of two pure signals inp1 and inp2. When 
one of the input signals is present while the other is not, 
the block emits an output named failure. As soon as 
failure has been produced, another output named 
has_failed is emitted at each instant. The interface of 
such a block could be described as: 
#source "CheckEQUIV.strl" 
#c++ "CheckEQUIV.H" 

CheckEquiv { 
  input: 
    inp1, 
    inp2; 
  output: 
    failure, 
    has_failed; 
} 
 

This description declares a block named CheckEquiv 
and states that this block is defined in Esterel in the 
source file CheckEQUIV.strl, and that the CheckEQUIV 
C++ class is declared in the file CheckEQUIV.H. This 
block has two pure (not valued) inputs named inp1 and 
inp2 and two pure outputs named failure and 
has_failed. 

II.2. Block templates 

Most dependability features depend only on the 
topology of the application, not on the exact type of the 
data that goes from a block to another. To avoid the need 
to declare a specific version of a dependability block for 
each type of data, BDL supports templates, or 
parameterized blocks. The mechanism and the syntax are 
borrowed from C++, and the parameters of a block may 
be either types or values. For instance, one can describe 
a comparator that compares any number of inputs of the 
same type and tells whether they are equal or not as 
follows: 
Comparator<T><int N> {// N inputs of type T 
  input  : T[N]       // array of inputs 
  output : boolean equal; // boolean output 
} 
 

Then, if we need to compare 10 integers, we can just 
declare: 
Comparator<int><10> a_ten_int_comparator; 

II.3. Description of an application 

An application is a set of interconnected blocks. It is 
therefore itself a block and its interface is described in 
BDL in the same way as for a block. After the description 
of the interface comes the declaration of the blocks that 
compose the application, and then the connections 
between the inputs and outputs of the blocks. The inputs 
and outputs of the application are aliased to inputs and 
outputs of blocks of the application. The difference 
between the connection of an input to an output and the 
aliasing of two signals is that in the former case, one 
signal (the output) produces data for the other signal (the 
input). Aliasing two signals just states that a signal of the 
application is indeed a signal of one of its block. 
Therefore, it is only possible to alias an input to an input 
and an output to an output. 

Let's consider an ABS brake system composed of a 
brake and an ABS controller. The brake and the ABS 
controller are described as follows: 
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Brake { 
  input : int command;  // user input 
  output: int pressure; // hydraulic command 
} 
ABS { 
  input : int raw_cmd;  // raw  command 
  input : skidding;     // tire is skidding 
  output: int ref_press;// regulated command 
} 
 

The complete ABS brake system is built from a brake 
and an ABS controller: 
#use Brake    // include description of brake 
#use ABS      // and of ABS controller 
 
ABSBrake { 
  input : int command;  // user input 
  input : skidding;     // tire is skidding 
  output: int pressure; // hydraulic command 
   
  Brake brake;      // an instance of Brake 
  ABS   controller; // and of ABS controller 
   
  // the input of the brake is the 'command' 
  // input of the application 
  brake.command = command; 
  // the 'skidding' input of the controller  
  // is the one of the application 
  controller.skidding = skidding; 
  // the output of the application is  
  // the output of the ABS controller 
  pressure = controller.ref_press; 
   
  // connect the 'raw_cmd' input of the 
  // controller to the output of the brake. 
  controller.raw_cmd << brake.pressure; 
} 
 

The alias (=) operator is used to alias signals, while the 
connect (<<) operator is used to connect an input to an 
output. 

 
Fig. 2. Structure of the ABS brake system 

 
The structure of the resulting ABS brake system is 

shown on figure 2. 

III. Dependability statements 
The syntax for describing blocks and connecting them 

to build applications or new blocks has now been 
presented, and the following shows how BDL allows a 
designer to modify the topology of an application to 
implement dependability policies. 

BDL has operations for: 
• adding new blocks and signals to an application, 
• replacing blocks, 
• changing the connections and aliases between 

signals, 
• getting information about the structure of the 

application, 
• controlling how operations are performed. 

III.1. Adding blocks or signals 

The implementation of a dependability policy may 
require that new inputs or outputs are added to the 
application, for instance when hardware redundancy is 
used. New signals are declared using the input: and 
output: statements, like in the description of a block. In 
the same way, new blocks can be added to the application 
by declaring them with the same syntax as in the 
definition of a block. 

However, a dependability policy is implemented as a 
procedure and may be applied in different contexts where 
the names of the new signals and blocks are not known 
when the procedure is defined. Therefore, BDL has a ## 
binary operator that builds names by concatenating its 
first argument (which must be an identifier) and its 
second argument (which may be an identifier or an 
integer). This allows the use of syntactical arrays, which 
are not actual arrays, but sets of identifiers that are built 
from consecutive integers. Syntactical arrays have the 
advantage that they can contain objects of different types, 
contrary to real arrays that are homogenous, and that each 
item of the array can be initialized individually. This is 
of particular interest for arrays of voters since each voter 
has a type that depends on the type of the signals it 
processes. 

III.2. Replacing blocks 

An important operation when transforming an 
application is the replacement of a block by a subgraph 
of interconnected blocks. This operation is transparent 
for blocks that were connected to the replaced block 
because the subgraph which replaces the block has the 
same interface and is connected in the same way as the 
original block. However, the replacing graph may have 
additional signals to exchange diagnostic information 
with other parts of the application. 

The syntax for replacing a block is: 
someblock #becomes someproc(arg1, arg2, ...) 
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where someblock is the block to replace, and someproc 
is the procedure that builds the subgraph that replaces the 
block. The practical uses of #becomes will be exposed 
later. 

The connections between blocks can be changed using 
the connect (<<) and alias (=) operators. When 
expressing transformations of an application, the same 
signal can be aliased or connected several times: only the 
last alias or connection is taken into account. This allows 
the use of generic procedures that apply a global policy 
to all signals, followed by special processing of some 
signals. 

III.3. Getting information about the application 

In order to transform the graph of an application, it is 
necessary to get information about its structure. The 
following operations can be applied to a block: 
• type()yields the type of the block. This type can 

be used to declare other blocks of the same type; 
• nbInputs()returns the number of inputs of the 

block; 
• nbOutputs()returns the number of outputs of 

the block; 
• inputs(i) returns the ith input of the block; 
• outputs(i) returns the ith output of the block; 
The following information operations can be applied 

to a signal: 
• type()yields the type of the signal; 
• source()yields the signal to which an input is 

connected (it can be applied to inputs only). 
 

The source of an input is generally an output. 
However, if the input is aliased to an input of the 
application, the source is an input. When defining 
dependability policies, the context in which they will be 
applied is not known yet, so the designer doesn’t know 
whether source() will return an input or an output. To 
solve this issue, the behavior of the << and = operator is 
special when their second argument is of the form 
signal.source(): << behaves like = if the source is an 
input, and = behaves like << if the source is an output. 

III.4. Control statements 

BDL has statements to control the application of 
operations and procedures: 
#iterate(var, bound) { 
  commands; 
} 

executes commands with var varying from 1 to bound. 
The var variable is local to the block delimited by 
{ and }. 
 
#if(type1 ~ type2) { 
  commands_if_same_type; 

}{ 
  commands_if_different_types; 
} 

checks if type1 and type2 are equals. The special value 
0 can be used to denote the type of pure signals. Pure 
signals carry events that don't have a value. 
#if(int1 = int2) { 
  commands_if_equal; 
}{ 
  commands_if_different; 
} 

checks for equality of int1 and int2. 

III.5. Dependability policies 

Dependability policies are defined using primitive 
statements of BDL and other dependability policies. The 
syntax of the definition of a dependability policy is: 
#def policy(arguments) {definition}; 
 

As an example, let us consider the definition of a 
policy that replaces a block by n copies of this block, with 
voters to merge the outputs of the copies: 
#def nplication(block, n) { 
  CopyInputs(block); 
  // declare n instances of the block 
  #iterate(i, n) { 
    block.type() B##i; 
  } 
  // add a voter for each output 
  #iterate(i, block.nbOutputs()) { 
    #if(block.outputs(i).type() ~ 0) { 
      // pure voter with n inputs 
      PureVoter<n> V##i; 
    }{ 
      // typed voter with n inputs 
      Voter<block.outputs(i).type()><n> V##i; 
    } 
    // connect voter inputs 
    #iterate(j, n) { 
      V##i.inputs[j] << B##j.outputs(i); 
    } 
    // alias voter output 
    block.outputs(i) = V##i.output; 
  } 
} 

Such a policy may be used to replace a block with 3 
copies of this block: 
block #becomes nplication(block, 3); 

as shown on figure 3. The first statement calls a 
procedure to insert blocks that copy their input to their 
output. This is necessary because we can alias only one 
signal to a signal of the application. Since the three copies 
of the block must read their inputs from the inputs of the 
original block, we have to copy these inputs in case they 
are inputs of the application. The synchronous execution 
model of the application allows the insertion of such 
blocks without changing the behavior of the application 
because the outputs of the blocks are available at the 
same instant as their inputs. The same property is used to 
guarantee that the voters do not introduce a delay in the 
processing of the outputs of the copies of the replicated 
block. 
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  Fig. 3. Replication of a block 

 

IV. The synchronous execution model 
The BDL language, and the associated BDLC 

compiler which translates the description of an 
application and the dependability policies into C++, rely 
on a synchronous execution model to ensure the 
consistency of signals in the transformed application. 
This execution model assumes that: 
• the blocks of an application communicate 

through signals, there are no shared variables; 
• there is a notion of logical instant, shared by all 

the blocks of an application, and at each instant, 
the value and status of interconnected signals is 
the same; 

• blocks react instantaneously: they produce their 
outputs at the same instant as they read their 
inputs. 

This execution model allows us to replace a block by 
a set of interconnected blocks without modifying the 
synchronization of data flows in the application because 
inserting a block along the path between an output and 
an input does not introduce any delay in the processing 
of data. It also guarantees that multiple copies of a block 
receive the same data at the same instants, so that their 
behaviors can be compared safely, any discrepancy in 
their outputs being due to a failure in their processing, 
and not to the fact that they work on different inputs. 

However, this implies that any loop in the graph of 
the application is instantaneous. For such a loop to be 
causal, there must be, at each instant, a unique value of 
the signals that obeys the semantics of the blocks. Since 
BDL considers the blocks of an application as black 
boxes, their semantics is unknown, and the causality of 
an instantaneous loop cannot be checked. Therefore, 
instantaneous loops are forbidden in BDL, and the 

BDLC compiler checks for instantaneous loops, as well 
as for unconnected signals. 

Non instantaneous loops are allowed, but for BDLC 
to see that a loop is not instantaneous, the pure “black 
box” approach must be relaxed to say which outputs of 
a block do not depend instantaneously on its inputs. This 
is done with the #nodep statement, as illustrated by the 
following description of a delay block: 
#c++ "Delay.H" 
// a one tick delay for signals of type T 
Delay<T> { 
  input : T; 
  output : T; 
  #nodep output; 
} 

In a delay, the output depends only on the state of the 
block. The current input gives the next output, not the 
current one, so the output does not depend 
instantaneously on the input of the delay. 

IV.1. Clocks 

In an application, each block belongs to a clock which 
defines the instants at which the block will react to its 
inputs and produce its outputs. There may be several 
clocks in an application, one for each connected 
subgraph of the application. For each clock, BDLC 
computes the partial order induced by the connections 
between signals and computes a schedule (a total order 
of activations) that is compatible with this partial order. 
Several schedules may be compatible with the causal 
partial order, and all should yield the same results 
because the value and status of a signal are unique at 
each instant: a signal cannot be seen absent and then 
present in the same instant. However, if some blocks 
have side effects, like writing data to a file, the order in 
which blocks are activated at each instant may influence 
the observable behavior of the application. 



 
 

 

 
Fig. 4. Reconfiguration methods 

 
One possibility to solve this issue is to add dummy 

inputs to some blocks and to connect them to the outputs 
of the blocks after which they should be activated. These 
dummy connections will turn the partial order into a 
more complete order that is compatible with the 
expected behavior of the application, side-effects 
included. These dummy connections are a hand-coded 
representation of the dependencies between the side 
effects. A better solution is to have only side-effect free 
blocks, or, if necessary, to group all side-effects in one 
block which processes them in the right order. 

IV.2. Asynchronous communication 

Blocks which belong to the same clock communicate 
synchronously, but they must be able to communicate 
asynchronously with the external world, or with blocks 
which belong to other clocks and therefore do not share 
the same logical instants. Communication from a clock 
toward the asynchronous outside is not a problem: a 
synchronous event becomes an asynchronous event 
when observed from the outside of the clock. However, 
creating a synchronous event from an asynchronous one 
may be more difficult. 

The simplest solution is to memorize the occurrence 
of an asynchronous event when it occurs, and to generate 
the corresponding synchronous event at the next instant 
of the clock. However, this solution may not give a 
coherent view of the asynchronous world to the 
synchronous clock. For instance, let's consider two 
asynchronous events: ms occurs every millisecond, and 
s occurs every second. From a synchronous point of 
view, each time s occurs, ms should also occur at the 
same instant since every second is made of a whole 
number of milliseconds. However, non-deterministic 
processes in the implementation of an application may 
lead to an occurrence of s with no simultaneous 
occurrence of ms. In this case, when s is detected, a 
synchronous event for s should be produced at the next 
instant where ms has also been detected. Moreover, the 

thousandth occurrence of ms should be simultaneous 
with an occurrence of s. 

As we can see, building synchronous events from 
asynchronous ones depends on the semantics of the 
signals and cannot be done automatically. In our 
execution model, synchronous events are built from 
asynchronous ones by interface blocks. Such blocks can 
communicate with a clock to create new instants when 
needed. Therefore, synchronous clocks can be built from 
the stimuli of the application as well as from a periodic 
activation loop. 

IV.3. Dynamicity 

BDL has no support for dynamicity. It rewrites the 
graph of an application statically, at compile-time, what 
makes it possible to check for instantaneous loops, 
unconnected signals and so on. However, the 
synchronous execution model used to execute the 
application supports dynamicity. It is possible for a 
block, as part of its reaction to an event, to destroy or 
create other blocks and to change the connections 
between signals. These changes are not instantaneous: 
they are applied after all the components that belong to 
the same clock have reacted to the instant when the 
change is requested. See [11] for a discussion on the 
reconfiguration of data-flow models. Such dynamic 
reconfigurations of an application force the clocks to 
recompute a schedule for their blocks, and may lead to 
a runtime exception if the new configuration of the 
application cannot be scheduled. 

Dynamicity may be useful to optimize the use of the 
available resources of the execution platform. By 
creating blocks only when they are needed, one can 
reduce the memory footprint of an application. 
However, the risk of running into a lack of memory 
when a block must be created, or to fall into a 
configuration that has not been statically checked for 
correction is often too high to be worth the gain in 
statically allocated resources. 
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Figure 4 shows three methods to handle the 
reconfiguration of an application, from the most 
dynamic on the left to the totally static approach used by 
BDLC on the right. The first method goes from the 
upper configuration to the lower by destroying block B, 
creating block C and reconnecting the input of C to the 
output of A. The second method, in the middle, goes 
from the upper configuration to the lower one by 
disconnecting the input of B from the output of A, and 
connecting the input of C instead. With this method, 
blocks B and C exist during the whole lifetime of the 
application. 

With the last method, on the right, no block is 
destroyed or created and no connection is changed. In 
the upper configuration, the switch block S copies its 
input to its upper output toward B. In the lower 
configuration, it copies its input to its lower output 
toward C. The main drawback of this method is that the 
graph of the application does not show explicitly that 
only one of B and C is active at any time. 

V. Conclusion 
By considering an application as a set of 

interconnected black boxes that obey a synchronous 
reactive model, BDL allows the description of 
dependability policies as transformations of the graph of 
the application. The synchronous execution model 
makes these transformations safe because blocks react 
instantaneously to their inputs, and signals have a unique 
value at each instant, which is propagated 
instantaneously along connections. Therefore, 
introducing new blocks in a flow of data does not delay 
the data. 

This approach releases the tight coupling between 
functional properties of an application and 
dependability, and makes it possible to produce several 
implementations of an application by applying different 
dependability policies to the initial description of the 
application. It can be considered as an aspect-oriented 
approach to dependability. 

Several dependability blocks, like voters, behavior 
checkers and behavior predictors have been 
implemented, along with the dependability policies that 
integrate them in the graph of an application. Interface 
blocks are used to make the application communicate 
with its environment. 

Improving the dependability of an application should 
not change its functional properties. When all the 
components of an application are designed using a 
synchronous language, it is possible to use formal 
verification tools to check that critical properties that 
hold on the original application still hold on the 
dependable application. 

Future works will address the issue of the placement 
of the blocks on different processing units. Today, the 

synchronization of processing chains that run on 
different processors is made using interface blocks that 
implement inter-processor communications. 
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