
TESL: a Model with Metric Time for Modeling1

and Simulation2

Hai Nguyen Van3

Université Paris-Saclay, CNRS, LRI, 91405, Orsay, France4

perso.crans.org/nguyen-van5

Frédéric Boulanger6

Université Paris-Saclay, CNRS, LRI, CentraleSupélec, 91405, Orsay, France7

frederic.boulanger@lri.fr8

Burkhart Wolff9

Université Paris-Saclay, CNRS, LRI, 91405, Orsay, France10

burkhart.wolff@lri.fr11

Abstract12

Real-time and distributed systems are increasingly finding their way into critical embedded systems.13

On one side, computations need to be achieved within specific time constraints. On the other side,14

computations may be spread among various units which are not necessarily sharing a global clock.15

Our study is focused on a specification language – named TESL – used for coordinating concurrent16

models with timed constraints. We explore various questions related to time when modeling systems,17

and aim at showing that TESL can be introduced as a reasonable balance of expressiveness and18

decidability to tackle issues in complex systems. This paper introduces (1) an overview of the TESL19

language and its main properties (polychrony, stutter-invariance, coinduction for simulation), (2)20

extensions to the language and their applications.21

2012 ACM Subject Classification Theory of computation → Timed and hybrid models22

Keywords and phrases Timed Systems, Semantics, Models, Simulation23

Digital Object Identifier 10.4230/LIPIcs.TIME.2020.1224

Supplementary Material Artifacts and source code available at github.com/heron-solver/heron.25

1 Introduction26

Designing and modeling systems nowadays still raise open problems. A very expressive27

language or framework can be useful to model a complex system where events are not trivially28

interleaved. On the opposite, an excessively expressive language is the reason for prohibitive29

slow-downs or even undecidability. As such, a reasonable balance between expressiveness30

and decidability needs to be found. In the current industrial trend for critical embedded31

systems, grows an increasing need for two kinds of systems:32

Real-Time Systems where an external input is followed by an output delivered within a33

specified time, named deadline. The correct behavior of such systems must be ensured at34

both logical and temporal levels.35

Distributed Systems where autonomous nodes communicate and cooperate to perform a36

common computation.37

A distributed real-time system (DRTS) [34, 14] belongs to both categories and consists38

in autonomous computing nodes where specific timing constraints must be met. DRTS are39

essential as they describe more closely common real-time applications by providing fault40

tolerance and load sharing [35, 34, 14]. An example of a DTRS is a modern car using CAN41

buses [14]. In such a setting, a middle gateway connects two CAN buses. One of them is42

high-speed and connects the engine, the suspension and the gearbox control. The other one43

© Hai Nguyen Van, Frédéric Boulanger and Burkhart Wolff;
licensed under Creative Commons License CC-BY

27th International Symposium on Temporal Representation and Reasoning (TIME 2020).
Editors: Emilio Muñoz-Velasco, Ana Ozaki, and Martin Theobald; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0585-1651
https://perso.crans.org/nguyen-van
https://orcid.org/0000-0003-3185-2807
mailto:frederic.boulanger@lri.fr
mailto:burkhart.wolff@lri.fr
https://doi.org/10.4230/LIPIcs.TIME.2020.12
https://github.com/heron-solver/heron
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 TESL: a Model with Metric Time for Modeling and Simulation

is low-speed and connects the lights, seat and door control units. The aviation industry also44

exhibits an increasing need for DTRS as shown by recent developments in interoperable45

gateways ED-247 [21].46

On the side of formal modeling, various environments have emerged to tackle the issue of47

modeling and verifying complex systems. Some are industrial products, such as Matlab/Sim-48

ulink [15], Wolfram SystemModeler [33], SCADE [7]. Some others are academic experiments,49

such as Ptolemy II [13], TimeSquare [12], ModHel’X [20]. Our study is centered around50

the inner formalisms that drive these environments, and in particular the TESL language.51

The main question this paper addresses is: Can we provide a uniform framework to model52

distributed and real-time systems?. The paper is organized as follows: Section 2 introduces the53

TESL language which we believe can answer the main problem. Section 3 introduces its main54

properties, in terms of polychronous clocks, stutter-invariance and coinductive unfolding.55

Finally, in Section 4 we present some extensions and aim at showing their relevance in the56

scope we address.57

2 The TESL language58

The Tagged Events Specification Language (TESL) [8] originates from the idea of coordinating59

the execution of heterogeneous inner-parts of a model as components of the ModHel’X60

modeling and simulation environment. The language is inspired by CCSL [16, 26], the61

Tagged Signal Model [25] and from the constructive semantics of Esterel [6, 5] for the original62

simulation solver. In this setting, an event is modeled by a clock, with an associated time scale.63

Considering a continuous system, its behavior is discretized into a sequence of observation64

instants. At each instant, a clock admits a timestamp (also called tag), that stands for the65

metric time measured on this clock. Besides, a clock also admits a tick which indicates an66

occurrence of the event at this instant. The domain for timestamps can possibly be any67

totally ordered set. We emphasize the fact that the language handles chronometric time68

constraints, which are different from logical time constraints. Chronometric time constraints69

are given on durations measured between timestamps. Two forms of constraints may be70

specified in TESL:71

Event-triggered causality. Events may occur due to the occurrence of other events. For72

instance “I have a coffee because my office mate prepares some coffee”.73

Time-triggered causality. Events may occur because a time threshold has been reached.74

For instance “I have a coffee because it is 9am”.75

2.1 Illustrating the Language76

Let us model in TESL the simple behavior of a radiotherapy machine used in cancer treatment.77

The patient has a prescription of 2 Gy of radiation in low-dose-rate of 1.5 Gy.h−1.78

Listing 1 Radiotherapy machine
79

1 rational-clock hr // Time unit in hours80

2 rational-clock gy // Radiation unit in Gray81

3 unit-clock start sporadic () // Start emitting rays82

4 unit-clock stop // Stop emitting rays83

5 unit-clock emstop // Emergency stop84

6 time relation gy = 1.5 * hr85

7 start time delayed by 2.0 on gy implies stop86

8 emstop implies stop8788

H. Nguyen Van, F. Boulanger, B. Wolff 12:3

hr

gy

start

stop

emstop

0.0

0.0

()

1.33

2.0

()

0 1
(a) Normal situation

hr

gy

start

stop

emstop

0.0

0.0

()

0.5

0.75

()

()

1.33

2.0

()

0 1 2
(b) Emergency stop

Figure 1 Two partially satisfying runs

Lines 1 to 5 declare clocks hr and gy with rational timestamps, and clocks start, stop89

and emstop with the unit timestamp (so there is no chronometric scale associated to them).90

The constraint sporadic enforces the occurrence of a tick on start. Line 6 specifies that91

time on hr flows 1.5 times as fast as on gy. Line 7 specifies that each time clock start ticks,92

clock stop will tick after a delay of 2.0 measured on the time scale of clock gy. Line 893

requires that each time the emstop clock ticks, the stop clock instantaneously ticks as well.94

The syntax of such expressions is detailed in Subsection 2.3.95

Two behaviors are illustrated in Figure 1. They show possible execution traces or runs96

satisfying the TESL specification. A run consists in a sequence of synchronization instants97

(vertical dashed line with blue numbers). Each of them contains ticks (in red) along with98

timestamps (in green) on the time-scales of the clocks hr, gy, start, stop and emstop.99

2.2 Clocks, runs and timestamps100

I Definition 1. Let K be the set of clocks, B the set of booleans and T the ordered domain101

of timestamps. The set of runs is denoted Σ∝ and defined by102

Σ∝ = N→ K→ (B× T)103

Additionally, we define two projections that extract the components of an event occurrence:104

ticks(ρ n K) ticking predicate of clock K in run ρ at instant n (first projection)105

time(ρ n K) time value on clock K in run ρ at instant n (second projection)106

I Example 2. Let ρFig.1a be the run shown in Figure 1a, we have ticks(ρFig.1a 0 start) = true107

and time(ρFig.1a 1 gy) = 2.0.108

2.3 Quick overview of the syntax109

We briefly introduce some expressions of the language which serve the purpose of this paper.110

The reader may refer to the official website of TESL1 for an exhaustive description of all the111

features of the language. A TESL specification Φ is described by the following grammar:112

1 https://wdi.centralesupelec.fr/software/TESL/

TIME 2020

https://wdi.centralesupelec.fr/software/TESL/

12:4 TESL: a Model with Metric Time for Modeling and Simulation

Φ ::= 〈atom〉 ∧ . . . ∧ 〈atom〉113

〈atom〉 ::= 〈clock〉 sporadic 〈timestamp〉 on 〈clock〉114

| 〈clock〉 implies 〈clock〉115

| time relation (〈clock〉, 〈clock〉) ∈ 〈relation〉116

| 〈clock〉 time delayed by 〈duration〉 on 〈clock〉 implies 〈clock〉117
118

where 〈clock〉 ∈ K, 〈timestamp〉 ∈ T, 〈duration〉 ∈ T and 〈relation〉 ⊆ T× T.119

To provide a quick understanding, we briefly and informally explain the semantics:120

K sporadic τ on Kmeas requires a tick on clock K at an instant where the timestamp121

on Kmeas is τ ;122

Kmaster implies Kslave models instantaneous causality by specifying that at each instant123

where Kmaster ticks, Kslave ticks as well ;124

time relation (K1, K2) ∈ R relates the time frames of clocks K1 and K2 by specifying125

that at each instant, the timestamps on K1 and K2 have to be in relation R ;126

Kmaster time delayed by δτ on Kmeas implies Kslave stands for delayed causality by127

duration. At each instant k where Kmaster ticks, it requires a tick on Kslave at an instant128

where the timestamp on Kmeas is τ ′, with τ ′ the sum of δτ and the timestamp on Kmeas129

at instant k. In other words, it states that each tick on Kmaster must be followed by a130

tick on Kslave after a delay δτ measured on the time scale of Kmeas.131

3 Properties of the language132

3.1 Polychronous clocks and time islands133

One of the most prominent properties of the TESL language lies in polychronous clocks [23],134

a global clock does not necessarily drive the system. In the context of distributed systems,135

there exists as many clocks as there are computing nodes: all run at different rates and their136

clocks may possibly drift along. This is why, an additional mechanism of synchronization is137

necessary to coordinate these subworkers to achieve a common desired computation.138

Metric level. There are similarities with time dilation as in special relativity [19] where139

time seems to flow more slowly for a stationary observer than for a moving observer. The140

drift increases with the speed of the moving observer. For instance, GPS satellites suffer141

from time drifting and it is necessary to take into account these effects.142

Temporal level. Modern computing also exhibits this idea where temporal cycles may143

speed up or slow down. Current predominant processors adjust their clock speed with144

respect to environmental variables (energy, heat, noise), this is called throttling. Today’s145

multicore processors consist of multiple computing units which may run faster or slower146

for these reasons, while possibly being used to achieve a distributed computation.147

We illustrate this statement with the running example by adding an independent comput-148

ing unit used for auxiliary computation needs. Whenever its computation is finished, it will149

trigger an event to indicate that it is ready. Let us simply declare a clock aux whenever this150

computing unit yields its signal. Besides, we can also create a scenario where we require this151

to occur at timestamp 0.5. The following line can be added to the specification in Listing 1:152

153
rational-clock aux sporadic 0.5154155

H. Nguyen Van, F. Boulanger, B. Wolff 12:5

In this setting, clocks hr and gy are said to belong to the same time island as their156

timeframes are arithmetically related. On the other hand, clock aux belongs to another157

independent time island. There may also be other clocks living around as the specification is158

permissive and allows other clocks to exist even though they were not specified.159

aux
× 1.5 gyhr

Figure 2 Graphic representation of time islands

Let us consider the specification in Listing 1, with the additional aux clock as declared160

above. Figure 3 depicts three runs which satisfy this specification. For presentation purposes,161

only three clocks hr, gy and aux are displayed. On the leftmost figure, we observe that aux162

ticks at 0.5 when it is 0.0 on hr. On the center figure, aux ticks at 0.5 when it is between163

0.0 and 0.5 on hr. On the rightmost figure, aux ticks at 0.5 when it is 0.5 on hr. We see164

therefore that there exists an infinite number of satisfying runs as the timeframe on clock aux165

is left completely unrelated to the other time frames. However, we developed a simulation166

solver for TESL that supports symbolic runs, and hence captures this infinity of runs in a167

finite number of symbolic runs using symbolic timestamps.168

hr

gy

aux

0.0

0.0

0.5

0.5

0.75

1.33

2.0

0 1 2

hr

gy

aux

0.0

0.0

0.5

0.5

0.75

1.33

2.0

0 1 2 3

hr

gy

aux

0.0

0.0

0.5

0.75

0.5

1.33

2.0

0 1 2

Figure 3 Examples of satisfying runs with additional clock aux in an independent time island

3.2 Stutter Invariance169

A fundamental concept of concurrent and distributed systems is stutter invariance. In170

finite-state model checking, it is an essential requirement for partial-order reduction tech-171

niques. When composing automata, the addition of stutter, or silent instants, allows the172

accommodation for their different alphabets. From a point of view in language theory, the173

membership of any word in a language shall be preserved even if a letter is duplicated. In174

our setting to model and compose submodels, we need stutter invariance in order to provide175

compositionality. For instance, when composing two specifications, we may have to add176

observation instants to a run that satisfies a specification in order to observe events on177

clocks that belong to the other specification. In other words, stuttering in necessary to refine178

specifications [22]. Stutter invariance also allows one to observe a model more often than179

necessary without changing its behavior.180

In TESL, composing specifications is simply performed by the conjunction of TESL-181

formulae. To illustrate the idea of stutter-invariance with the running example, let us assume182

that we require the system to trigger some refresh mechanism every 10 minutes. We would183

add the following lines to the specification:184

TIME 2020

12:6 TESL: a Model with Metric Time for Modeling and Simulation

185
refresh sporadic 0.0 on hr186

refresh time delayed by <10/60 > on hr implies refresh187188

If we consider the run from Figure 1b and wish to compose it with this refreshing189

mechanism, a satisfying run is shown in Figure 4. The top of the figure shows the original190

run as in Figure 1b, whereas the bottom depicts a run where new instants have been added.191

A one-to-one correspondence is observed between run instants in the top and the bottom192

figure. Both runs exhibit the same first instant where start is triggered, with refresh193

additionally ticking in the second run. However, the second instant of the second run exists194

due to the refreshing requirement at 0.166 on clock hr, which is not present on top.195

Stutter-invariance is illustrated by the fact that a run may be dilated and new instants196

added while still satisfying the specification.197

hr

gy

start

stop

emstop

refresh

0.0

0.0

()

0.166

0.25

0.333

0.5

0.5

0.75

0.666

1.0

0.833

1.25

1.0

1.5

1.166

1.75 2.0

1.333

1 2 3 4 5 6 7 80

hr

gy

start

stop

emstop

0.0

0.0 0.0

0.75 2.0

1.333

0 1 2

()

() () () () () () () ()

()

()

()

()

()

()

()

Figure 4 The example of radiotherapy run dilated

3.3 Unfolding Specifications198

The language allows the specification of runs that can be constructed and described by199

operational rules. In [29], we introduced an operational semantics of the language whose200

main ideas are summarized in Figure 5. The general concept of the operational semantics201

revolves around a 3-component pattern past-present-future. The past component contains202

the run we are constructing (which we also call the run context), the present component203

contains TESL-formulae to consume for the construction of the current instant, while the204

future component contains TESL-formulae to consume for future instants. The system205

considers each TESL formula as a consumable resource, and its consumption produces a206

“smaller” resource, which allows to constructively build the past component. Finally, the past207

component is a symbolic run and contains logical primitives which are sent to a SMT-solver208

in order to decide the satisfiability of the constructed run. Put differently, we reduced the209

problem of solving a TESL specification to a simpler constraint solving problem.210

H. Nguyen Van, F. Boulanger, B. Wolff 12:7

OPERATIONAL
RULES

PAST PRESENT FUTURE

satisfying run
non-satisfying run

CONSTRAINT
SOLVING

Figure 5 Usage of the operational semantics

4 Extensions211

In this section, we propose two extensions of the language. From the original implementation212

of TESL, we have experimentally broadened its scope by adding two features on formulae and213

clocks. The addition of such has increased the language expressiveness without compromising214

constraint solving. To provide an insight, we illustrate them with an application example.215

We designed and experimented their semantics by implementing them into an experimental216

solver, named Heron2 [29]. This implementation is a path-exhaustive multicore simulation217

solver built with MLton/MPL [36, 37]. It directly implements the operational semantics and218

the presented extensions. It can also be used for system testing and monitoring.219

4.1 Precedence formula (and timed automata)220

The first extension we propose is built around the precedence operator as found in CCSL.221

A appreciable motivation lies in modeling Synchronous Dataflows [24, 26]. In this model,222

each component provides an interface with inputs and outputs, and respectively a number of223

input tokens (to be read) and another of output tokens (to be written). When wiring two224

components, it is necessary that the n-th output writing event will precede the n-th input225

reading event. Precedence allows to specify this kind of indexed requirement over the order226

of event occurrence.227

We extend the syntax of TESL as shown in Subsection 2.3 with228

〈atom〉 ::= . . .229

| 〈clock〉 weakly precedes 〈clock〉230

| 〈clock〉 strictly precedes 〈clock〉231
232

Informally, K1 weakly precedes K2 means that each tick on clock K2 may be uniquely233

mapped to a tick on K1 in the past or current instants (as a one-to-one correspondence).234

K1 strictly precedes K2 is analogous but maps to instants that are strictly in the past.235

I Remark 3. Mallet et al. showed that the decidability of this type of formula could be236

handled with counter automata [27]. In our framework, we modeled this formula in a similar237

way by embedding run contexts with arithmetic constraints containing counter expressions.238

Again, we reduced this problem to a constraint solving problem.239

2 https://github.com/heron-solver/heron

TIME 2020

https://github.com/heron-solver/heron

12:8 TESL: a Model with Metric Time for Modeling and Simulation

To illustrate our interest in this operator, we consider timed automata [2, 1] as introduced240

by Alur and Dill. An additional and distinct mechanism made of clocks (also referred as241

chronometers) is used to store and specify metric timing constraints. On the implementation242

side, they extend classical finite-state automata with timing constraints. This formalism243

allows time to progress inside states while transitions are instantaneous, meaning that244

transitioning from one state to another is fast enough to be abstracted. In this subsection, we245

describe how this model of computation can be encoded with TESL extended with precedence.246

Let us give in Figure 6 a simple timed automaton (extracted from [4]) which models a system247

in which an alarm is triggered whenever the delay between receiving two messages is less248

than 5 seconds.249

initstart verif alarm
msg, c := 0

c ≥ 5, msg, c := 0

c < 5, msg

Figure 6 An example of timed automata from [4]

To model the timed automaton in Figure 6, we declare TESL-clocks that will simulate250

the events occurring at a lower level (suffixed by _enter and _leave). Other clocks are also251

declared for transitions.252

253
// Set of states : {init , verif , alarm}254

unit-clock state_init_enter255

unit-clock state_init_leave256

unit-clock state_verif_enter257

unit-clock state_verif_leave258

unit-clock state_alarm_enter259

unit-clock state_alarm_leave260261

We also need to declare TESL-clocks related to the behavior of TA-clocks, in particular262

when resetting them.263

264
// Set of clocks : {c}265

unit-clock c_reset266

rational-clock c sporadic 0.0267268

Likewise, we need a TESL-clock to model the reading of a symbol (so-called action).269

270
// Set of actions : {msg}271

unit-clock read_msg272273

We proceed by encoding in TESL each transition of the timed automaton. We model the274

first transition from init to verif, which must read symbol msg and reset clock c, as:275

276
// Transition t1 = init -> verif: msg , c:= 0277

state_init_leave when read_msg implies trigger_t1278

trigger_t1 implies state_verif_enter279

trigger_t1 implies c_reset280281

The second transition from verif to itself can be triggered when reading msg if time on282

clock c is greater than or equal to 5, which will eventually lead to resetting c. This means283

that the transition can be triggered if more than 5.0 units of time have elapsed on c since284

H. Nguyen Van, F. Boulanger, B. Wolff 12:9

the last time c has been reset. When using this transition, one will remain in state verif285

while resetting c to 0 each time a message has been read.286

287
// Transition t2 = verif -> verif: c>=5, msg , c:= 0288

c_reset time delayed by 5.0 on c with reset on trigger_t3289

implies trigger_t2_min290

trigger_t2_min weakly precedes trigger_t2291

state_verif_leave ∧ read_msg implies trigger_t2 ∨ trigger_t3292

trigger_t2 implies state_verif_enter293

trigger_t2 implies c_reset294295

The third transition from verif to alarm is triggered when a new message has been296

received before 5.0 units of time have elapsed. We model this as:297

298
// Transition t3 = verif -> alarm: c<5, msg299

c_reset time delayed by 5.0 on c with reset on trigger_t2300

implies trigger_t3_max301

trigger_t3 strictly precedes trigger_t3_max302

state_verif_leave ∧ read_msg implies trigger_t2 ∨ trigger_t3303

trigger_t3 implies state_alarm_enter304305

Figure 7 shows a run prefix exhibiting the behavior of our encoding of the timed automaton.306

At instant 0, time on clock c is 0.0 and we enter in state init. At instant 1, 5.0 units of time307

have elapsed. At instant 2, 5.0 additional units of time have elapsed and read_msg has been308

triggered, thus the transition is triggered (trigger_t1). The TA-clock c is reset and leaves309

state init to enter verif. Also, a minimum limit has been set on triggering transition t2 as310

it can only be fired after elapsing at least 5.0 units of time (as depicted by trigger_t2_min311

at instant 4). At instant 4, symbol msg is read and transition t2 is triggered to re-enter in312

the same state verif. Finally, at instant 5, the symbol msg is read again and transition t3 is313

triggered to enter alarm. A tick on trigger_t3 is possible as it precedes trigger_t3_max.314

Likewise, trigger_t3_max defines a maximum limit to ensure any t3-transition triggering315

only before.316

4.2 Previous operator (and PID controllers)317

Another useful operator is pre with similar syntax and semantics as in Lustre [18]. This318

operator simply allows to refer to the previous timestamp on a clock. Hence, a substantial319

part of feedback systems can be modeled accurately as they require registers to store previous320

values. The power of computation is significantly augmented and allows us to model more321

complex systems, such as mathematical sequences and series (e.g., Fibonacci), differential322

calculus (derivatives, Euler’s integrator), or digital filters.323

Since this operator refers to the value of a signal at a previous instant, we generalized324

TESL clocks as flows. A flow is a clock where timestamps are no longer required to be325

monotonic. As a matter of fact, these “timestamps” are simply called values.326

We extend the syntax of TESL as shown in Subsection 2.3, with:327

〈clock〉 ::= K ∈ K328

| pre 〈clock〉329
330

This extension is useful at modeling feedback systems. Let us illustrate this with the331

ubiquitous algorithm of automatic control theory: the Proportional-integral-derivative (PID)332

controller [39]. In this theory, a PID controller delivers a control signal to a process in order333

TIME 2020

12:10 TESL: a Model with Metric Time for Modeling and Simulation

c

c_reset

state_init_enter

state_init_leave

state_verif_enter

state_verif_leave

state_alarm_enter

state_alarm_leave

read_msg

trigger_t1

trigger_t2_min

trigger_t2

trigger_t3

trigger_t3_max

0.0 5.0 10.0 15.0 17.0 20.0 22.0

0 1 2 3 4 5 6

Figure 7 A satisfying run prefix to encode a timed automaton

to bring a process output closer to a reference setpoint (e.g., cruise control in cars, autopilots334

in airplanes).335

PID Controller

Σ
err

Σ
setpt out meas

×(−1)

Proportional

Integral

Derivative

Plant

Figure 8 General diagram of a process using a PID controller

The block diagram in Figure 8 shows the structure of the controller. Basically, the system336

receives as input the error signal err, i.e. the difference between the reference setpoint337

setpt and the process output out, and computes a control signal based on the sum of a term338

proportional to the error, an integral term and a derivative term. Each of the three terms339

is parameterized by a multiplying factor, respectively Kp, Ki and Kd, which are commonly340

called gains. Thereafter, the controller output enters a transfer function which translates341

the control signal out into the process output meas. For instance in automotive control342

theory, this occurs when converting the position of the gas pedal into the generated car343

velocity. This new output will be used to feed the error back at the next computing cycle. It344

H. Nguyen Van, F. Boulanger, B. Wolff 12:11

is possible to describe this system straightforwardly in TESL as in Listing 2.345

Listing 2 The PID controller
346

// Time347

time relation dt = 1.0348

time relation t = [0.0] -> (pre t) + dt349

// Gain350

time relation Kp = 0.1351

time relation Ki = 0.2352

time relation Kd = 0.2353

// Setpoint354

time relation setpt = 40.0355

// Control signal356

time relation err = setpt - meas357

time relation integr = [0.0] -> (pre integr) + (err * dt)358

time relation derivat = [0.0] -> (err - (pre err)) / dt359

time relation out = (Kp * err) + (Ki * integr) + (Kd * derivat)360

// Simple actuation361

time relation meas = [0.0] -> (pre meas) + (pre out)362363

When running this example, the solver yields the output shown by the extract in Listing 3.364

Listing 3 An extract of the satisfying run found by Heron of the PID controller
365

Solver has successfully returned 1 model366

Simulation result [0 x1ADAB]:367

meas err integr derivat out368

[1] 0.0 40.0 0.0 0.0 4.0369

[2] 4.0 36.0 36.0 -4.0 10.0370

[3] 14.0 26.0 62.0 -10 .0 13.0371

[4] 27.0 13.0 75.0 -13 .0 13.0372

[5] 40.0 -1.0 74.0 -14 .0 12.0373

...374375

Additionally, the values of the flows meas, err and out are plotted in Figure 9. As376

expected, we observe that the process output meas is brought closer to the reference setpoint377

setpt = 40.0. Besides, the error signal and the control signal out gradually decrease to 0.0378

as the need to damp out oscillations progressively decreases.379

0 20 40 60 80 100

0

20

40

60
meas

0 20 40 60 80 100

−20

0

20

40 err
out

Figure 9 Plotting values for meas, err and out

5 Related Work380

In the family of synchronous programming languages [3], Lustre [18], Esterel [6, 5] and381

Signal [17] are known to provide polymorphic time (time domains of various type). However,382

TIME 2020

12:12 TESL: a Model with Metric Time for Modeling and Simulation

their time model is purely logical, which is not suited when dealing with modeling non-383

discretizable systems. Prelude [32] and Zélus [9] overcome this with continuous dynamics.384

All these previous models derive clocks from a global root clock, which constrains models385

to flow from a single reaction clock. Polychrony (clocks possibly living in various independent386

timeframes) overcomes this restriction by allowing specifications with more relaxed and387

concurrent execution of systems. This feature can be observed in the Signal language or388

polychronous automata [23]. Compared to TESL, they do not allow metric time constraints.389

TESL is also inspired by CCSL which supports asynchronous constraints on events. It390

admits an executable [38] and denotational semantics [11, 28]. However, time in CCSL is391

purely logical and durations are counted as a number of ticks on a clock.392

On a more theoretical-side, timed automata [2, 1] support both discrete events and metric393

time. However, clocks are global and uniform, they necessarily progress at the same rate.394

All in all, TESL attempts to overcome these limitations and provides a general-purpose395

specification language of synchronous and asynchronous constraints with clocks over poly-396

morphic time while supporting polychrony, and mixing logical and metric time.397

6 Future work398

The outcome of our study leads us to various future opportunities:399

An effort is currently running towards a machine-checkable formalization of the operational400

and denotational semantics into the Isabelle/HOL proof assistant [31, 30]. We successfully401

proved that the operational semantics was correct and complete with respect to the402

denotational semantics. Proving both extensions of the paper is a future direction.403

Numerous questions about model-checking remain unanswered. In our experiments, we404

have observed that unfolded specifications could be refolded with abstract interpretation405

techniques. This would offer a finite-representation of these infinite-state systems, thereby406

providing means to decide safety and liveness properties of such systems.407

In addition, the TESL language seems to be suited for modeling and simulation of systems408

with time of various kind. With the new extensions we propose and their implementation409

in an existing efficient solver, we believe TESL can become a relevant asset as a simulation410

engine for simulation platforms, such as the GEMOC Studio [10].411

7 Conclusion412

This study introduces a language – named TESL – suited for the modeling and simulation413

of complex systems with multi-level time considerations. For this purpose, we illustrated414

how the language is suited for various applications of time in models. We first illustrated the415

main properties of the language (absence of a global root clock, stutter invariance). Then,416

we introduced two extensions of the language along with two applications depicted by (1) an417

encoding of timed automata, and (2) an implementation of a PID controller.418

Most of the widely used formalisms suffer from restrictions in their model of time, which419

we attempt to address. Some consider time as purely logical and may not be suited for420

real-time systems as computing cycles may not necessarily flow at a fixed rate. Some other421

consider time as global which is restrictive towards distributed systems where time does not422

flow at the same rate in the different components, and may not be synchronized. We believe423

our approach is complementary to state-of-the-art environments and may help to circumvent424

their drawbacks by considering time in its whole nature.425

H. Nguyen Van, F. Boulanger, B. Wolff 12:13

References426

1 Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron Peled, editors, Computer427

Aided Verification, pages 8–22, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.428

2 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Sci-429

ence, 126(2):183 – 235, 1994. URL: http://www.sciencedirect.com/science/article/pii/430

0304397594900108, doi:https://doi.org/10.1016/0304-3975(94)90010-8.431

3 A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The432

synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64–83, 2003.433

4 Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit, Laure434

Petrucci, Philippe Schnoebelen, and Pierre McKenzie. Systems and Software Verification.435

Springer Berlin Heidelberg, 2001. URL: https://doi.org/10.1007%2F978-3-662-04558-9,436

doi:10.1007/978-3-662-04558-9.437

5 G. Berry. The constructive semantics of pure Esterel, 1996.438

6 Gérard Berry. The foundations of Esterel. In Gordon Plotkin, Colin Stirling, and Mads Tofte,439

editors, Proof, Language, and Interaction, pages 425–454. MIT Press, Cambridge, MA, USA,440

2000.441

7 Gérard Berry. SCADE: Synchronous design and validation of embedded control software. In442

S. Ramesh and Prahladavaradan Sampath, editors, Next Generation Design and Verification443

Methodologies for Distributed Embedded Control Systems, pages 19–33, Dordrecht, 2007.444

Springer Netherlands.445

8 Frédéric Boulanger, Christophe Jacquet, Cécile Hardebolle, and Iuliana Prodan. TESL: a446

language for reconciling heterogeneous execution traces. In Twelfth ACM/IEEE International447

Conference on Formal Methods and Models for Codesign (MEMOCODE 2014), pages 114–123,448

Lausanne, Switzerland, Oct 2014. URL: http://ieeexplore.ieee.org/xpl/articleDetails.449

jsp?arnumber=6961849, doi:10.1109/MEMCOD.2014.6961849.450

9 Timothy Bourke and Marc Pouzet. Zélus: A synchronous language with odes. In Proceedings451

of the 16th International Conference on Hybrid Systems: Computation and Control, HSCC452

’13, page 113–118, New York, NY, USA, 2013. Association for Computing Machinery. doi:453

10.1145/2461328.2461348.454

10 Benoit Combemale, Betty H.C. Cheng, Robert B. France, Jean-Marc Jezequel, and Bernhard455

Rumpe. Globalizing Domain-Specific Languages, volume 9400 of LNCS, Programming and456

Software Engineering. Springer International Publishing, 2015.457

11 Julien Deantoni, Charles André, and Régis Gascon. CCSL denotational semantics. Research458

Report RR-8628, Inria, November 2014. URL: https://hal.inria.fr/hal-01082274.459

12 Julien DeAntoni and Frédéric Mallet. Timesquare: Treat your models with logical time.460

In Carlo A. Furia and Sebastian Nanz, editors, Objects, Models, Components, Patterns -461

50th International Conference, TOOLS 2012, Prague, Czech Republic, May 29-31, 2012.462

Proceedings, volume 7304 of Lecture Notes in Computer Science, pages 34–41. Springer, 2012.463

doi:10.1007/978-3-642-30561-0_4.464

13 J. Eker, J. W. Janneck, E. A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorffer, S. Sachs,465

and Yuhong Xiong. Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE,466

91(1):127–144, 2003.467

14 K. Erciyes. Distributed Real-Time Systems. Springer International Publishing, 2019. URL:468

https://doi.org/10.1007%2F978-3-030-22570-4, doi:10.1007/978-3-030-22570-4.469

15 Sulaymon Eshkabilov. MATLAB®/Simulink® Essentials: MATLAB®/Simulink® for Engin-470

eering Problem Solving and Numerical Analysis. Lulu Publishing Services, 11 2016.471

16 Kelly Garcés, Julien Deantoni, and Frédéric Mallet. A Model-Based Approach for Reconciliation472

of Polychronous Execution Traces. In SEAA 2011 - 37th EUROMICRO Conference on473

Software Engineering and Advanced Applications, Oulu, Finland, August 2011. IEEE. URL:474

https://hal.inria.fr/inria-00597981.475

17 P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. Synchronous data flow programming476

with the language SIGNAL. IFAC Proceedings Volumes, 20(2):359 – 364, 1987. 2nd IFAC477

TIME 2020

http://www.sciencedirect.com/science/article/pii/0304397594900108
http://www.sciencedirect.com/science/article/pii/0304397594900108
http://www.sciencedirect.com/science/article/pii/0304397594900108
https://doi.org/https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007%2F978-3-662-04558-9
https://doi.org/10.1007/978-3-662-04558-9
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6961849
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6961849
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6961849
https://doi.org/10.1109/MEMCOD.2014.6961849
https://doi.org/10.1145/2461328.2461348
https://doi.org/10.1145/2461328.2461348
https://doi.org/10.1145/2461328.2461348
https://hal.inria.fr/hal-01082274
https://doi.org/10.1007/978-3-642-30561-0_4
https://doi.org/10.1007%2F978-3-030-22570-4
https://doi.org/10.1007/978-3-030-22570-4
https://hal.inria.fr/inria-00597981

12:14 TESL: a Model with Metric Time for Modeling and Simulation

Workshop on Adaptive Systems in Control and Signal Processing 1986, Lund, Sweden, 30478

June-2 July 1986.479

18 N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming480

language Lustre. Proceedings of the IEEE, 79(9):1305–1320, September 1991.481

19 Michael J W Hall. Concepts in special relativity. In General Relativity: An Introduction to482

Black Holes, Gravitational Waves, and Cosmology, 2053-2571, pages 1–1 to 1–11. Morgan483

& Claypool Publishers, 2018. URL: http://dx.doi.org/10.1088/978-1-6817-4885-6ch1,484

doi:10.1088/978-1-6817-4885-6ch1.485

20 Cécile Hardebolle and Frédéric Boulanger. Exploring multi-paradigm modeling tech-486

niques. SIMULATION: Transactions of The Society for Modeling and Simulation Interna-487

tional, 85(11/12):688–708, November/December 2009. URL: /software/downloads/ModHelX/488

2009MPMSimulation.pdf, doi:http://dx.doi.org/10.1177/0037549709105240.489

21 Yannick Hildenbrand. Ed-247 (vistas) gateway for hybrid test systems. In Aerospace Systems490

and Technology Conference. SAE International, oct 2018. doi:10.4271/2018-01-1949.491

22 Leslie Lamport. What good is temporal logic? Information Processing 83, R. E. A. Mason,492

ed., Elsevier Publishers, 83:657–668, May 1983. URL: https://www.microsoft.com/en-us/493

research/publication/good-temporal-logic/.494

23 Paul Le Guernic, Thierry Gautier, Jean-Pierre Talpin, and Loïc Besnard. Polychronous495

automata. In TASE 2015, 9th International Symposium on Theoretical Aspects of Software496

Engineering, pages 95–102, Nanjing, China, September 2015. IEEE Computer Society.497

24 E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,498

75(9):1235–1245, 1987.499

25 Edward A. Lee and Alberto Sangiovanni-Vincentelli. A framework for comparing models of500

computation. IEEE Trans. CAD, 17(12), 1998.501

26 Frédéric Mallet, Julien Deantoni, Charles André, and Robert De Simone. The Clock Constraint502

Specification Language for building timed causality models. Innovations in Systems and503

Software Engineering, 6(1-2):99–106, March 2010.504

27 Frédéric Mallet and Robert de Simone. Correctness issues on MARTE/CCSL constraints.505

Science of Computer Programming, 106:78 – 92, 2015. Special Issue: Architecture-Driven506

Semantic Analysis of Embedded Systems. URL: http://www.sciencedirect.com/science/507

article/pii/S0167642315000519, doi:https://doi.org/10.1016/j.scico.2015.03.001.508

28 Mathieu Montin and Marc Pantel. Mechanizing the denotational semantics of the clock509

constraint specification language. In El Hassan Abdelwahed, Ladjel Bellatreche, Mattéo510

Golfarelli, Dominique Méry, and Carlos Ordonez, editors, Model and Data Engineering, pages511

385–400, Cham, 2018. Springer International Publishing.512

29 Hai Nguyen Van, Thibaut Balabonski, Frédéric Boulanger, Chantal Keller, Benoît Valiron,513

and Burkhart Wolff. A symbolic operational semantics for TESL. In Alessandro Abate and514

Gilles Geeraerts, editors, Formal Modeling and Analysis of Timed Systems, pages 318–334,515

Cham, 2017. Springer International Publishing.516

30 Tobias Nipkow and Gerwin Klein. Concrete Semantics: With Isabelle/HOL. Springer Publish-517

ing Company, Incorporated, 2014.518

31 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant519

for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.520

32 Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, and David Lesens. Multi-task521

implementation of multi-periodic synchronous programs. Discrete Event Dynamic Systems,522

21(3):307–338, 2011. URL: https://hal.inria.fr/inria-00638936.523

33 Kirill Rozhdestvensky, Vladimir Ryzhov, Tatiana Fedorova, Kirill Safronov, Nikita Try-524

askin, Shaharin Anwar Sulaiman, Mark Ovinis, and Suhaimi Hassan. Description of525

the Wolfram SystemModeler, pages 23–87. Springer Singapore, Singapore, 2020. doi:526

10.1007/978-981-15-2803-3_2.527

34 Werner Schutz. The Testability of Distributed Real-Time Systems. Kluwer Academic Publishers,528

USA, 1993.529

http://dx.doi.org/10.1088/978-1-6817-4885-6ch1
https://doi.org/10.1088/978-1-6817-4885-6ch1
/software/downloads/ModHelX/2009MPMSimulation.pdf
/software/downloads/ModHelX/2009MPMSimulation.pdf
/software/downloads/ModHelX/2009MPMSimulation.pdf
https://doi.org/http://dx.doi.org/10.1177/0037549709105240
https://doi.org/10.4271/2018-01-1949
https://www.microsoft.com/en-us/research/publication/good-temporal-logic/
https://www.microsoft.com/en-us/research/publication/good-temporal-logic/
https://www.microsoft.com/en-us/research/publication/good-temporal-logic/
http://www.sciencedirect.com/science/article/pii/S0167642315000519
http://www.sciencedirect.com/science/article/pii/S0167642315000519
http://www.sciencedirect.com/science/article/pii/S0167642315000519
https://doi.org/https://doi.org/10.1016/j.scico.2015.03.001
https://hal.inria.fr/inria-00638936
https://doi.org/10.1007/978-981-15-2803-3_2
https://doi.org/10.1007/978-981-15-2803-3_2
https://doi.org/10.1007/978-981-15-2803-3_2

H. Nguyen Van, F. Boulanger, B. Wolff 12:15

35 J. A. Stankovic. Misconceptions about real-time computing: a serious problem for next-530

generation systems. Computer, 21(10):10–19, 1988.531

36 Stephen Weeks. Whole-program compilation in mlton. In Proceedings of the 2006 Workshop532

on ML, ML ’06, page 1, New York, NY, USA, 2006. Association for Computing Machinery.533

doi:10.1145/1159876.1159877.534

37 Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. Disentanglement in535

nested-parallel programs. Proc. ACM Program. Lang., 4(POPL), December 2019. doi:536

10.1145/3371115.537

38 M. Zhang and F. Mallet. An executable semantics of Clock Constraint Specification Language538

and its applications. In Formal Techniques for Safety-Critical Systems: 4th International539

Workshop, FTSCS 2015, pages 37–51, Cham, 2016. Springer.540

39 Karl Johan Åström and Richard M. Murray. Feedback Systems. Princeton University Press,541

Princeton, 2010. URL: https://www.degruyter.com/view/title/563028.542

TIME 2020

https://doi.org/10.1145/1159876.1159877
https://doi.org/10.1145/3371115
https://doi.org/10.1145/3371115
https://doi.org/10.1145/3371115
https://www.degruyter.com/view/title/563028

	Introduction
	The TESL language
	Illustrating the Language
	Clocks, runs and timestamps
	Quick overview of the syntax

	Properties of the language
	Polychronous clocks and time islands
	Stutter Invariance
	Unfolding Specifications

	Extensions
	Precedence formula (and timed automata)
	Previous operator (and PID controllers)

	Related Work
	Future work
	Conclusion

