
From Data to Events: Checking Properties on the Control of a System

Christophe Jacquet Frédéric Boulanger Dominique Marcadet

SUPELEC
3 rue Joliot-Curie

91192 Gif-sur-Yvette Cedex
FRANCE

first name.last name@supelec.fr

Abstract

We present a component-based description lan-
guage for heterogeneous systems composed of several
data flow processing components and a unique event-
based controller. Descriptions are used both for gener-
ating and deploying implementation code and for check-
ing safety properties on the system. The only constraint
is to specify the controller in a synchrounous reactive
language. We propose an analysis tool which transforms
temporal logic properties of the system as a whole into
properties on the events of the controller, and hence into
synchronous reactive observers. If checks succeed, the
final system is therefore correct by construction. When
properties cannot be translated exactly into observers
of the control, our tool is capable of generating approx-
imate observers. In this case, the results are subject to
interpretation, but can prove useful and help detect de-
fects or even guarantee the correctness of a system.

1. Introduction

We describe here a method for the design and code
generation of heterogeneous software systems, which al-
lows the specification of safety properties on the system
and their formal verification. We distinguish two as-
pects in the design of a heterogeneous system: the data
processing operations performed to produce the outputs
from the inputs, and the control of the system, which de-
termines the schedule and parameters of the operations.
Data processing can be described by data-flow models,
whereas control is described by state machines or syn-
chronous languages. Designing control independently
from data processing results in a separation of concerns,
which allows the formal verification, re-use and inde-
pendent modification of the parts of the system.

We propose a modular approach, in which data pro-
cessing is modeled by processing components which
communicate through data flows, and control is mod-
eled by a unique control component whose inputs and
outputs are pure events. In this context, an application is
described by a network of interconnected components.

For system designers, meaningful properties are
global properties, that apply to the inputs and outputs of
the application itself. We consider only safety proper-
ties, a subclass of Linear Temporal Logic (LTL) formu-
lae, and we propose an automatic method which trans-
lates these properties into properties expressed on the
control component. The latter properties can be auto-
matically translated into observers written in the formal-
ism used for describing the control component (namely
a synchronous reactive language). In this way, formal
methods can be used to check the control component di-
rectly: what is proved is what is executed.

The paper is organized as follows. Section 2 pro-
vides a short review of related work, and justifies the
choice of a purely event-driven control. Section 3 in-
troduces ADLV, our Architecture Description Language
for Verification, which is used for both the description
of the application and of the safety properties. Then,
we explain how safety properties can be translated, first
into intermediate formulae (section 4), and finally into
observers on the control component (section 5). Section
6 gives conclusions and perspectives for future work.

2. Related Work and Objectives

Most systems are hybrid by nature because they
mix continuous behaviors and discrete transitions at
some points. For example, when the temperature of
an ice cube gradually increases, the laws that determine
its physical parameters are locally continuous, but they

change, first when ice turns into liquid water, and sec-
ond when liquid water evaporates. One can think of this
system as a state machine capable of switching between
states (solid, liquid, gas) within which a continuous de-
scription applies. Differential equations work well when
describing each state independently of the others, but to
describe the system as a whole, qualitative simulation
may prove useful [1]. Qualitative simulation discretizes
continuous parameters into regions delimited by land-
mark values and offers a homogeneous discrete frame-
work for simulating hybrid systems. Work on this topic
has recently been extended to hybrid automata [2, 3].

Manufactured systems are almost always hybrid
systems. Indeed, they often mix traditional continuous
automatic control methods with digital supervision that
switches the system among a number of different states.
This led to the development of hybrid control. Hybrid
control methods can generally be viewed as hierarchic
control, with some transition system at the top level, and
continuous control at lower levels [4]. The system thus
performs transitions between partitions of the continu-
ous state space where its behavior is purely continuous.

The languages most commonly used in the in-
dustry are generally based on discrete transition sys-
tems such as state machines. This is the case of Es-
terel [5], Lustre [6], Signal [7], StateCharts/SyncCha-
rts [8], Grafcet/Sequential Function Chart [9]. However,
these languages generally allow operations on numeri-
cal values as source of events. For instance, if a is a
numerical input, then one can specify the event a < 23.
This convenience has two drawbacks. First, it mixes
“pure” control and data operations inside the controller.
Indeed, whereas complex operations such as FFTs are
naturally thought of as separate blocks, simpler opera-
tions are more likely included in the controller. Second,
model checkers can only operate on purely event-based
controllers. Thus, one must exclude all data operations
from the controller in order to use model checking.

As a consequence, our framework clearly distin-
guishes two parts in a system: (1) an operative sub-
system, consisting of components that communicate
through data flow and possibly events, (2) a control com-
ponents whose inputs and outputs are only events. This
allows formal verification tools to check properties on
the control component. However, if these properties
were to be specified on controller events, the verifica-
tion framework would be cumbersome to use. Indeed,
the primary vocabulary of the designer consists of the
application inputs and outputs, and possibly some inter-
nal signals, and cannot be restricted to controller events.

The approach presented here is original in that it
permits the specification of properties on the system
using natural semantics, for instance “component C is

never active when input E is greater than value V”.
These properties are then translated into the event-based
semantics used by the control component, for instance
“event Y is never emitted between an occurrence of X
and an occurrence of Z”, using the description which is
also used for generating the implementation. This guar-
antees the consistency of the transform applied to the
safety property and of the way implementation code is
generated: this code is correct by construction. The ver-
ification method thus follows the WYPIWYE (what you
prove is what you execute) principle [5].

Our purpose is not to produce a new formal verifica-
tion tool, but to design an analysis tool, capable of trans-
forming properties expressed on the system as a whole
into properties on the control component that can be pro-
cessed by the verification tools available on the market.
In practice, once the properties on the application have
been transformed into properties on controller events,
they can easily be translated into observers [10] written
in the target language. In this way, the actual implemen-
tation code is checked, so the WYPIWYE paradigm is
applied a second time.

3. Architecture Description Language
for Verification

3.1. Description of Embedded Applications

We introduce here a method for describing of em-
bedded applications as a set of processing components
that are activated and connected at the request of a con-
trol component. This description is used both to gener-
ate the actual implementation of the application and to
transform properties expressed on the application into
properties that can be checked on the control compo-
nent. We have designed the ADLV language (Architec-
ture Description Language for Verification) which has
both an abstract syntax and a textual concrete syntax
which extends IDL3. This section is an informal intro-
duction to ADLV through the example of a cruise con-
trol system depicted on Figure 1. In this diagram, the
following symbols are used for input and output ports:

event sink data flow input
event source data flow output

Processing components can either be “black boxes”
described in specific formalisms such as Simulink (e.g.
the Regulator component) or “internal” components di-
rectly described in ADLV (e.g. the three leftmost
components). In the former case, only the interface
of the component is described in ADLV, while inter-
nal components are completely described in ADLV,
and their behavior is known to the ADLV analysis

regul on
regul off

brakes

current speed

accelerator

throttle

regul on

regul off

brakes pushed

brakes released

speed ok

speed nok
set target

start reg

stop reg

Controller << Esterel >>

brakes
brakes pushed

brakes released

BrakesCheck << Internal >>

current speed
speed ok

speed nok

SpeedCheck << Internal >>

current speed
set target

target speed

SpeedMem << Internal >>

target speed

current speed

regulated cmd

Regulator << Simulink >>

Figure 1. Component-based cruise control described in ADLV.

and code generation tools. Internal components serve
as adaptors between components of heterogeneous na-
ture. For example, the internal component BrakesCheck
has a boolean data-flow brakes input, and produces an
event each time the value of brakes changes. It pro-
ducesbrakes pushed when brakes goes from false to
true, and brakes released for the other transition. This
leads to the following definition for BrakesCheck in
ADLV concrete syntax:
internal component BrakesCheck {

sink BrakesOn brakes_on;

publishes BrakesPushed brakes_pushed {
when brakes_on;

}
publishes BrakesReleased brakes_released {

when ! brakes_on;
}

};

Likewise, SpeedCheck emits a speed ok event when
current speed enters the range of admissible values for
regulation (40..130 km/h), and emits a speed nok event
when it exits this range. Hence the following definition:
internal component SpeedCheck {

sink CurrentSpeed current_speed;

publishes SpeedCorrect speed_correct {
when current_speed >= 40

&& current_speed <= 130;
}
publishes SpeedIncorrect speed_incorrect {

when current_speed < 40
|| current_speed > 130;

}
};

There is only one control component per applica-
tion (here, the Controller component, which is written

is Esterel) which is considered as black box which con-
sumes and produces events.

The behavior of the cruise control is as follows: the
Simulink component calculates a “regulated command”
for the throttle. At startup, the accelerator pedal is con-
nected to the throttle. If the current speed is in the range
of admissible values, and the driver presses a “regu-
lation on” button, the output of the Regulator compo-
nent is connected to the throttle. As soon as the driver
brakes, the throttle is connected back to the accelera-
tor. To re-enable the cruise control, the driver must both
stop braking and press the “regulation on” button.There
is therefore a dynamic connection between the throttle
and either the “regulated command” from the Regulator
component or the accelerator input. It is depicted as a
“switch” on figure 1.

ADLV descriptions can be used to generate the ac-
tual implementation of the system. We will not describe
these capabilities here, but rather focus on the checking
of safety formulae.

3.2. Safety Formulae

3.2.1. Canonical Safety Formulae

Temporal logic is often used to express properties of
reactive systems. In particular, Linear Temporal Logic
(LTL) is widespread and well understood, especially for
the verification of programs [11].

It is often critical to check that some property is “al-
ways true” or “never true”. In LTL, for some property
f , “ f is always true” is denoted by� f , “ f is never true”
is denoted by �¬ f . If we restrict f to the class of past
formulae, � f is a canonical safety formula [12]. Such

formulae offer a good expressive power [13], are simple
to use [14, 15] and easy to translate into synchronous
reactive languages such as Esterel or Lustre.

In our framework, past formulae are built from clas-
sical propositional operators (∨, ∧,→, ¬), past temporal
operators (S [since], B [back to], �· [always], ♦·
[once], � [previous]), and predicates. The predicates
that system designers can use are given in table 1.

Type Meaning
s true when event s is present

s op k true when data flow s satisfies a com-
parison to constant k. op is a compar-
ison operator among {<,≤,=,≥,>}

(in)active(c) true when component c is (in)active

ci.p j� ck.p` true when port p` of component ck is
connected to port p j of component ci

true, false boolean litterals

Table 1. List of predicates for safety formulae.

All the predicates can be negated, with nat-
ural meaning. For instance, ¬(s < k) = s ≥ k,
¬(active(c)) = inactive(c), etc. These transforma-
tions are purely syntactic rewrite rules; there is no mean-
ing associated with comparison operators, and signals or
values are merely uninterpreted character strings. The
signals used in the predicates can belong to at the inter-
face of the application, or be internal signals. Safety for-
mulae are part of the ADLV descriptions, alongside the
description of processing components and connections.

3.2.2. Example

Let us consider the following property, that must al-
ways be satisfied: when the driver brakes, the regulator
is not connected until the driver presses the “regulation
on” button and he/she releases the brakes.

The problem with this specification is that it uses a
future operator: until. However, it can easily be rewrit-
ten in the past tense: since the brakes were pushed, if
the driver has not both pressed the “on” button and re-
leased the brakes, then the regulator is not connected.
This gives the following ADLV statement (a << b
means “output port b is connected to input port a”):
always {
(!(regul_on && !brakes_on)) since brakes_on =>

!(throttle << regulator.regulated_cmd);
} /* Statement S1 */

A statement can use only propositional operators:
never {

set_target &&
(current_speed < 40 || current_speed > 140);

} /* Statement S2 */

The statements S1 and S2 will be used as exam-
ples in the remainder of this paper. never and always
statements being equivalent, we will only consider never
statements from this point on, without loss of generality.

3.3. Checking the Controller against Safety
Formulae

For each safety formula, we must generate an equiv-
alent observer in order to use it to check the controller.
However the safety formula can reference signals that
are not directly connected to the controller. By analyz-
ing the structure of the application and by looking into
the internal blocks, we are able to build an equivalent
temporal formula that only references some of the con-
troller events. This method is described in section 4.

We are then able (see section 5) to translate this for-
mula (called an intermediate formula) into one or two
observers. These are modules written in the same lan-
guage as the controller (for instance, Esterel or Lustre).
One can then use language-specific checking tools in or-
der to prove that the safety properties are satisfied by the
controller.

The steps towards the generation of the observer are
summarized on figure 2.

The properties are checked on the synchronous im-
plementation of the controller, which is destined to drive
the application at run time, thanks to observers directly
generated from the application description itself. As
stated above, the WYPIWYE is effectively applied in
two respects.

4. Interpretation of Temporal Formulae

4.1. Overview

For each formulae in a never statements, the general
idea is to compute a signal in the synchronous language,
which is emitted at each instant when the formula is sat-
isfied. A special signal failure is emitted when the top-
level formula of a never statement is satisfied. Model-
checking tools will either prove that failure can never be
emitted, or exhibit a counterexample.

Application
Description

(ADLV)

Safety
Formula
(ADLV)

Intermediate
formula(e) Observer

Diagnosis

Figure 2. Overview of property verification.

The problem is stated as follows: Given f a tem-
poral logic formula involving application signals, build
a corresponding signal s, based uniquely on the con-
troller’s input and output events, using constructs of the
controller implementation language.We can decompose
this problem into two sub-problems:

1. transform predicates involving application signals
into predicates involving controller events only.
This section studies this sub-problem, which rep-
resents the major part of our work,

2. generate an observer in the target language, from a
temporal logic formula. This has been proved to be
relatively easy [14, 15]. More details regarding our
own framework are given in section 5.

The first issue boils down to translating predicates:

• event predicates must be transformed into con-
troller event predicates, what can be achieved by
following the connections,

• comparisons involving data flow values. The data
flows are generally inputs of internal components
that emit events when the comparison becomes true
or false. Such a predicate is therefore true between
the occurrences of a “start”and a “stop” event,

• activations and connections are either performed
at startup, or modified at runtime by internal com-
ponents. Once again, we can identify “start” and
“stop” events for the validity of the predicate.

To define truth values that are true between the oc-
currences of two events, we introduce interval predi-
cates, denoted by [u,v[. [u,v[is true if u has occurred,
but v has not occurred yet. Note that the truth value of
an event predicate s is that of the interval predicate [s, s̄[.
This way, solving sub-problem #1 amounts to replacing
any predicate in the original formula with interval predi-
cates involving controller events only. This yields a new
temporal logic formula which is called an intermediate
formula. Both types of formulae share the same propo-
sitional and temporal operators; they differ by the types
of acceptable predicates: those of table 1 for original
formulae, intervals for intermediate formulae.

However, it is not always possible to find an inter-
mediate formula that is strictly equivalent to the origi-
nal formula. Nevertheless, it is sometimes possible to
approximate the original formula by two intermediate
formulae, one too strict, one too loose, as will be seen
in section 4.3. More precisely, when a formula can-
not be translated into an interval, but can be “bracketed”
by two intervals, the analysis algorithm creates a proto-
interval that consists of the pair of bracketing intervals.

As a result, the most general algorithm doesn’t directly
produce intermediate formulae built from intervals, but
rather formulae built from proto-intervals, that are called
proto-intermediate formulae.

In cases where it is possible to produce an interme-
diate formula equivalent to the original formula, proto-
intermediate formulae are simply equal to the interme-
diate formulae. Otherwise, proto-intermediate formu-
lae are the best approximations for the original formula.
More details are given in section 4.4, including an algo-
rithm to produce one or two intermediate formulae from
a proto-intermediate formula. In this case, we call these
approximate intermediate formulae, in contrast to oth-
erwise exact intermediate formulae. Table 2 gives the
definitions for interval and proto-interval predicates.

Type Meaning
[si,s j[true when event si has occurred, but event s j

has not yet occurred

(AI ,AO) approximation of the truth value of a for-
mula by too strict an interval (AI , inner) and
too loose an interval (AO, outer)

Table 2. Predicates for internal use.

4.2. Building Proto-Intermediate Formulae

The algorithm for translating an original formula to
a proto-intermediate formula is based on the following
pif (“proto-intermediate formula”) function. pif(f):

1. if f is of type (in)active(c), look for activation
conditions of component c. These conditions are
events produced by the controller and processed by
an internal component. Return an interval, whose
bounds are the controller events that activate and
deactivate component c.

2. if f a connection predicate, proceed as above: look
for controller events that are processed by internal
components to connect ports, and return an interval
whose bounds are the controller events that cause
the connection and disconnection.

3. if f is of type signal (s), s may either be one of the
controller ports (let p = s), or s may be connected
to such a port p. If p is found, return [p, p̄[.

4. then, look for f and ¬ f in the when clause of a pub-
lishes ... when ... statement1 of an internal compo-
nent. If the corresponding internal ports are con-
nected to the controller, let p f and p¬ f be the con-
troller’s ports. Then, return [p f , p¬ f [. If only an

1Identification of formulae can be achieved by using a canonical
form, derived from a normal form.

approximate result is found, store it in the approx
variable, and proceed to the next step.

5. if f is of type a?b where ? is a binary operator, let
a′ = pif(a) and b′ = pif(b). If a′ and b′ are de-
fined and are exact intermediate formulae for a and
b, return a′ ? b′. Else, if approx is defined, return
approx. If approx is not defined, return a′ ?b′.

6. if f is of type ? a where ? is a unary operator, let
a′ = pif(a). As above, return ?a′ or approx.

7. if nothing has been returned so far, pif fails.

Remark 1 Proto-intermediate formulae only appear
when looking for f in when clauses (step 4). If this hap-
pens, we do not return the intermediate formula right
away, but rather try to privilege an exact formula possi-
bly found by decomposing f (steps 5 and 6). We return
an approximate solution only as a last resort.

Remark 2 In steps 5 and 6, formulae are decomposed
following the tree structure resulting from the way they
were written by the user. We do not consider reorga-
nizing the formulae because: 1) it limits the complexity
of the algorithm, 2) it takes advantage of the common
patterns in safety formulae and when clauses which are
written by the same person2.

Example The predicates of statement S1 can be found
directly in when clauses, and translated into intervals:

• a look at the textual description of component
BrakesCheck shows that brakes on corresponds
to [brakes pushed,brakes released[,

• regul on is directly a controller input event, so it
corresponds to [regul on, regul on[,

• throttle << regulator.regulated cmd
corresponds to [start reg,stop reg[(the dynamic
connection on the right of figure 1 is treated as an
internal component).

This yields IF1, an exact intermediate form:

¬{(¬([regul on, regul on[∧[brakes released,brakes pushed[))
S [brakes pushed,brakes released[}⇒ ¬[start reg,stop reg[)

2This is similar to what is done in Global Common Subexpression
Elimination (GCSE) in compiler theory [16, 17]: subexpressions are
identified, but the structure is not reorganized.

I+
s1 �

s2 �

s3

�

s4

�
s5

�
�

s6�
s7

�

s8

�
s9

�

S+
IS+

O

Figure 3. Hasse diagram, with sets S+
I & S+

O .

s+
O s−O

s+
I s−I I−I+

Figure 4. “Bracketing” of I.

4.3. General Case: Dealing With when Clauses

This section deals with the matching of an original
formula f in when clauses. The match may be exact as
in the example above, but this section gives details about
how approximate matches are found.

Let f be an original formula, and let us suppose that
there are a number of publishes... when... statements,
of the form publishes si when ai. The goal is to find
an interval I equivalent to f , i.e. a start signal, after
which f becomes true, and a stop signal, at which f
becomes false. To determine the start signal, we look
for signals si in when statements where ai = f , ai⇒ f ,
or f ⇒ ai

3. The same applies to the stop signal, with f
being replaced with ¬ f . From now on, we only consider
the start signal; finding the stop signal is similar.

Each formula ai is associated to a signal si (which
is emitted when ai becomes true). Let’s call I+ and I−

the start and stop signals of f (I = [I+, I−[).
There is a partial order relation (· ⇐ ·) on the set

of formulae, and an associated equivalence relation (·=
·). By structure morphism, these relations respectively
induce a partial order relation · � · and an equivalence
relation · ↔ · on the set of signals. a⇐ b means that
a must be satisfied for b to be satisfied (b⇒ a). This
means that the event sb associated to b cannot happen
before sa the event associated to a. Therefore, sb must
happen after sa. The � relation is therefore a temporal
order on the occurrence of signals. sa � sb means that sa
is always emitted before sb. Likewise, ↔ corresponds
to the simultaneity of signals. As a consequence, it is
possible to build a Hasse diagram involving I+ and the
signals si that compare to I+ (see figure 3).

3Determining the implication relationships is straightforward using
the aforementioned canonical forms.

Among the signals that happen “before” I+, only
the maximum ones, the “closest to I+” matter. On the
example, these are s1 and s4. These signals provide the
best possible approximation of I+, while preceding it.
Let S+

O be the set of these signals. Formally, it is de-
fined as: S+

O = {s ∈ S|s� I+∧¬(∃s′ ∈ S,s� s′ � I+)}.
Likewise, let S+

I be the set of minimum elements located
after I+, S−I the set of maximum elements located before
I−, and S−O the set of minimum elements located after I−.
S+

I , S+
O , S−I and S−O are depicted on figure 3.

Let us define s+
O ∈ S+

O , s+
I ∈ S+

I , s−I ∈ S−I and s−O ∈
S−O . Relative positions of this signals is shown on fig-
ure 4. This provides us with a “bracketing” of I: an
outer approximate, [s+

O ,s−O [, and an inner approximate,
[s+

I ,s−I [. This “bracketing” is valid whatever the signals
s+

O , s+
I , s−I and s−O :{

s+
O � I+ � s+

I
s−I � I− � s−O

We wish to define the best possible approximation
for I+ and I−. Hence, within leftmost members, we
consider the last signal to occurr, and within rightmost
members, we consider the first signal to occur. This en-
ables us to define intervals AI (best inner approximation)
and AO (best outer approximation):

[first(S+
I), last(S−I)[︸ ︷︷ ︸

AI

⊂ I ⊂ [last(S+
O),first(S−O)[︸ ︷︷ ︸

AO

This finishes the complete description of the step #4
in the algorithm of section 4.2:

• if there exist signals s+ and s− such that s+ ↔ I+

and s−↔ I−, then return the interval [s+,s−[,

• else, try to define intervals AI and/or AO. Return
the pair (AI ,AO), which is called a proto-interval,

• else, go to step #5.

4.4. Proto-Intermediate Formulae

4.4.1. Definitions

A proto-interval is a pair (AI ,AO) of intervals that
constitutes a “bracketing” of the interval I correspond-
ing to a formula f . If AI = AO, it means that I = AI = AO
and this is an exact match (the set of intervals is trivially
embedded into the set of proto-intervals). From now on
we will assume that AI 6= AO. A proto-intermediate for-
mula is a formula whose predicates are proto-intervals.

f ¬ f f

f ′I ¬ f ′I f ′I
f ′O ¬ f ′O f ′O

Figure 5. Structure of the intermediate formu-
lae for proto-intermediate formula g′ = ¬ f ′.

Example In statement S2, the expression
e = current speed < 40 || current speed > 140

cannot be found exactly. However, if we examine the
when clauses of component SpeedCheck, we see that:
1) I+

e ⇒ speed incorrect, and 2) speed correct⇒ I−e .
The interval [speed incorrect,speed correct[is thus

an outer interval for e. There is no inner interval for e,
so the proto-intermediate formula for S2 is
PIF2 = set target∧ (/0, [speed incorrect,speed correct[)

.Intermediate formulae can easily be translated into
observers (see section 5). A proto-interval, as a pair of
intervals, is thus a pair of intermediate formulae and can
therefore be translated into two observers: one too loose,
one too strict. However, a non-trivial proto-intermediate
formula cannot directly be used as such and needs to be
rewritten into a pair of intermediate formulae.

4.4.2. Transforming Proto-Intermediate Formulae
into Pairs of Intermediate Formulae

A proto-intermediate formula f ′ is rewritten as
(f ′I , f ′O), where f ′I is an inner (“strict”) intermediate for-
mula, and f ′O is an outer (“loose”) intermediate formula.
We denote this by f ′ (f ′I , f ′O). Thus for a proto-
interval, we have the trivial rule: (AI ,AO) (AI ,AO).

Methodology used for the proofs Suppose that an
original formula f has a proto-intermediate formula f ′

which is rewritten as (f ′I , f ′O). Then the order relations
on the start and stop events give:{

f ′O ⇐ f ⇐ f ′I (start event)
¬ f ′I ⇐ ¬ f ⇐ ¬ f ′O (stop event)

Both relations are equivalent, so we can retain only
the first one. Conversely, let f be an original formula.
If there are intermediate formulae g and h such that
g⇐ f ⇐ h, then g and h are respectively inner and outer
intermediate formulae for f . In short, f ′ (g,h).

Negation Let f ′ be a proto-intermediate formula, as-
sociated to an original formula f , with f ′ (f ′I , f ′O). Let
g′ = ¬ f ′. The situation is depicted on figure 5.

Formally, one can write f ′I ⇐ f ⇐ f ′O. By taking
the contraposition: ¬ f ′O ⇐ ¬ f ⇐ ¬ f ′I . Hence the con-
clusion, that shows that the negation inverts the inner
and outer formulae:

if f ′ (f ′I , f ′O) then ¬ f ′ (¬ f ′O,¬ f ′I)

Conjunction, disjunction and implication Let f ′

and g′ be two proto-intermediate formulae, respectively
associated with original formulae f and g. Let us sup-
pose that f ′ (f ′I , f ′O) et g′ (g′I ,g

′
O).

We have: f ′I ⇐ f ⇐ f ′O and g′I⇐ g⇐ g′O. The rela-
tion⇐ is compatible with logical and4, thus we have:

f ′I ∧g′I ⇐ f ∧g⇐ f ′O∧g′O

Finally: f ′ ∧ g′ (f ′I ∧ g′I , f ′O ∧ g′O). Likewise, ⇐
is compatible with ∨, thus f ′∨g′ (f ′I ∨g′I , f ′O∨g′O).

Implication is dealt with by rewriting f ′ → g′ as
¬ f ′∨g′. By applying rules seen above:

f ′→ g′ (f ′O→ g′I , f ′I → g′O)

Temporal operators We still are under the assump-
tion that f ′I ⇐ f ⇐ f ′O and g′I ⇐ g⇐ g′O.

Let Ψ be a unary temporal operator. Manna et
al [18] state that temporal operators are monotonic,
hence the relation: Ψ(f ′I)⇐ Ψ(f)⇐ Ψ(f ′O). We thus
conclude: Ψ(f ′) (Ψ(f ′I),Ψ(f ′O)).

The same applies to binary temporal operators. If
Ψ is a binary temporal operator, we have likewise:
Ψ(f ′,g′) (Ψ(f ′I ,g

′
I),Ψ(f ′O,g′O)).

Conclusion Apart from negation and implication, al-
most all operators permit a “natural” transformation of
proto-intermediate formulae into pairs of intermediate
formulae. When doing so, there are two cases:

1. the proto-intermediate formula contains exact
proto-intervals only. In this case, we finally get
only one intermediate formula, which is exact too,

2. the proto-intermediate formula contains at least an
approximate proto-interval. In this case, we finally
get one inner and/or one outer intermediate for-
mula(e).

Example The proto-intermediate formula PIF2 is nat-
urally rewritten as only an outer intermediate formula
IF2 = set target∧ [speed incorrect,speed correct[.

4The formula [(a→ b)∧ (c→ d)]→ [(a∧ c)→ (b∧d)] is a tau-
tology, which can easily be verified.

5. From Intermediate Formulae
to Observers

5.1. Observers and Use Thereof

As stated above, an intermediate formula is a logic
formula that must never be true. Therefore, we have to
translate it into an observer in the target language. The
observer emits an error signal in the states where the
formula is true. One can then use a verification tool ei-
ther to prove that the error signal is never emitted (and
hence that the safety properties are satisfied), or con-
versely, to exhibit a counterexample. The verification
tool is generally provided with the target development
environment; examples include checkblif for Esterel and
lesar for Lustre.

When the analysis of safety formulae produces ex-
act observers, the results of the checking tools directly
correspond to the satisfaction or non-satisfaction of the
formulae. However, when the analysis produces approx-
imate observers, the results are subject to interpretation,
and the analysis tool must state it clearly.

Indeed, an observer based on an inner intermediate
formula can miss some failure cases because it is too
loose. However, if the checking tool finds a counterex-
ample, it really corresponds to a case of non-satisfaction
of the safety formulae. The checking toolchain thus per-
forms an under-verification of the system.

Conversely, an observer based on an outer interme-
diate formula doesn’t miss any real failure case, but it
is prone to detecting false positives, because it is too
strict. The checking toolchain thus performs an over-
verification of the system.

Example An observer based on IF2 is too strict com-
pared to the statement S2. This statement ensures that
the event set target never occurs when the speed
is below 40 or above 140 km/h. However, an observer
based on IF2 will ensure that set target never occurs
when the speed is below 40 or above 130 km/h. Thus it
may detect “counterexamples” for speeds in the interval
130-140 km/h that are not contradictory with the safety
property S2.

5.2. Esterel Observers

Esterel is a synchronous reactive language with a
significant user base in the industry, especially for de-
signing safety-critical systems.

It is quite straightforward to associate an Esterel
module to every sub-formula f of an intermediate for-
mula. This module emits a signal S f whenever f is
true. Let us see a few examples of such modules.

A simple interval I = [s1,s2[can be translated as
follows as a module which maintains an output signal
SI between the occurrences of signals s1 and s2:
every immediate s1 do

abort
sustain S_I

when s2
end every

The implementation for more complex intervals involv-
ing first and last operators is slightly more complicated.

For a propositional operator, say e = a∧b, we first
generate the modules corresponding to a and b, respec-
tively C_a (output signal Sa) and C_b (output signal
Sb). Then the module for the and operator is straight-
forwardly:
run C_a || run C_b ||
[

every immediate [S_a and S_b] do
emit S_e

end every
]

Modules for temporal operators are implemented
in the same way. Examples can be found in other pa-
pers [15]. For instance, e = a S b is translated as:
run C_a || run C_b ||
[

every immediate S_b do
do

sustain S_e
watching immediate [not S_a]

end every
]

There is also a top-level module, responsible for
collecting the signals associated with every individual
intermediate formula, and generating the failure signal
when necessary.

The program containing the observers is compiled
alongside the controller code, and then Esterel’s stan-
dard checkblif tool is used to perform the verification.

5.3. Lustre Observers

Regarding its expressive power and use, Lustre is
close to Esterel. However, while Esterel is based on
modules, Lustre is based on nodes which can be thought
of as reusable functions.

A very practical option is to build a library of nodes,
corresponding to each of the propositional and temporal
operators [19]. For instance, the following nodes calcu-
lates b S a:
node since(B, A: bool) returns (B_since_A: bool);
let
B_since_A =

if A then B
else if B then true
else (true -> pre(B_since_A));

tel

It is thus possible to build Lustre expressions di-
rectly corresponding to intermediate formulae. For in-
stance, the intermediate formula IF1 is translated to:

never_3 = not(
implies(since(not(

interval(regul_on, not(regul_on))
and
interval(brakes_released, brakes_pushed)

), interval(brakes_pushed, brakes_released)),
not(interval(start_reg, stop_reg))));

A top-level node emits an output signal ok to indi-
cate whether or not all formulae are satisfied. This is
used by the standard Lustre verifier called lesar.

6. Conclusions and Perspectives

The analysis method presented here allows the de-
signer to express properties on a system in a natural way,
using temporal logic to specify relations among internal
or external signals. These properties can then be auto-
matically translated into temporal logic properties on the
controller events. From this, observers can be generated
in the language used for specifying the controller, and
used to prove the properties by model-checking.

In cases in which specified properties do not exactly
match controller events, approximate observers can be
generated. Although their results are subject to inter-
pretation, they can help system designers detect certain
defects and validate part of the behavior of their systems.

We have implemented the analysis tool in Java.
This tool reads a textual ADLV description of an appli-
cation, analyses the safety formulae and the behavior of
the internal components, and builds proto-intermediate
formulae and intermediate formulae. It can then produce
observers for the controller in various languages thanks
to a modular structure which requires the definition of
just one class for each supported language. This class
implements a visitor pattern [20] that traverses interme-
diate formulae and generates programs in the target lan-
guage. We provide visitors for Esterel and Lustre, but
support for other languages can be added very easily.
The tool is available at http://wwwdi.supelec.
fr/logiciels/adlv/.

Perspectives include handling a wider range of sys-
tem descriptions. For instance, the current method can-
not deal with the cases in which connections between
processing components and the controller change at run-
time. This extension makes the analysis more complex
since the mapping between formulae and controller sig-
nals becomes dynamical.

References

[1] B. Kuipers, “Qualitative Simulation,” Artificial In-
telligence, vol. 29, no. 3, pp. 289–338, 1986.

[2] A. Tiwari and G. Khanna, “Series of abstractions
for hybrid automata,” in Hybrid Systems: Compu-
tation and Control HSCC (C. J. Tomlin and M. R.
Greenstreet, eds.), vol. 2289 of LNCS, pp. 465–
478, Springer, Mar. 2002.

[3] A. Tiwari, N. Shankar, and J. Rushby, “Invisible
formal methods for embedded control systems,”
Proceedings of the IEEE, vol. 91, pp. 29–39, Jan.
2003.

[4] M. Branicky, V. Borkar, and S. Mitter, “A Unified
Framework for Hybrid Control: Model and Opti-
mal Control Theory,” IEEE Transactions on Auto-
matic Control, vol. 43, no. 1, p. 31, 1998.

[5] G. Berry and G. Gonthier, “The ESTEREL syn-
chronous programming language: design, seman-
tics, implementation,” Sci. Comput. Program.,
vol. 19, no. 2, pp. 87–152, 1992.

[6] N. Halbwachs, P. Caspi, P. Raymond, and D. Pi-
laud, “The synchronous dataflow programming
langage Lustre,” Proceedings of the IEEE, vol. 79,
no. 9, pp. 1305–1320, 1991.

[7] P. LeGuernic, T. Gautier, M. Le Borgne, and
C. Le Maire, “Programming real-time applications
with SIGNAL,” Proceedings of the IEEE, vol. 79,
no. 9, pp. 1321–1336, 1991.

[8] C. Andre, “SyncCharts: A visual representation of
reactive behaviors,” Tech. Rep. TR95-52, Univer-
sité de Nice-Sophia Antipolis, 1995.

[9] R. David, “Grafcet: a powerful tool for specifi-
cation of logic controllers,” IEEE Transactions on
Control Systems Technology, vol. 3, no. 3, pp. 253–
268, 1995.

[10] N. Halbwachs and P. Raymond, “Validation of
Synchronous Reactive Systems: From Formal Ver-
ification to Automatic Testing,” in Proceedings
of the 5th Asian Computing Science Conference
on Advances in Computing Science, pp. 1–12,
Springer-Verlag London, UK, 1999.

[11] E. Emerson, “Temporal and modal logic,” Hand-
book of Theoretical Computer Science, vol. 8,
pp. 995–1072, 1990.

[12] E. Y. Chang, Z. Manna, and A. Pnueli, “Char-
acterization of Temporal Property Classes,” in
ICALP ’92: Proceedings of the 19th International
Colloquium on Automata, Languages and Pro-
gramming, (London, UK), pp. 474–486, Springer-
Verlag, 1992.

[13] F. Laroussinie and P. Schnoebelen, “A hierarchy
of temporal logics with past,” Theor. Comput. Sci.,
vol. 148, no. 2, pp. 303–324, 1995.

[14] N. Halbwachs, F. Lagnier, and C. Ratel, “Pro-
gramming and Verifying Real-Time Systems by
Means of the Synchronous Data-Flow Language
LUSTRE,” IEEE Trans. Softw. Eng., vol. 18, no. 9,
pp. 785–793, 1992.

[15] L. J. Jagadeesan, C. Puchol, and J. V. Olnhausen,
“Safety Property Verification of Esterel Pro-
grams and Applications to Telecommunications
Software,” in Proceedings of the 7th Interna-
tional Conference on Computer Aided Verification,
pp. 127–140, Springer-Verlag London, UK, 1995.

[16] J. Cocke, “Global common subexpression elimi-
nation,” Proceedings of a symposium on Compiler
optimization (SIGPLAN), pp. 20–24, 1970.

[17] A. V. Aho, R. Sethi, and J. D. Ullman, “Machine-
Independent Optimizations,” in Compilers: Prin-
ciples, Techniques, and Tools, ch. 9, Addison-
Wesley, 2006.

[18] Z. Manna and A. Pnueli, “Basic Properties of the
Temporal Operators — Monotonicity,” in The Tem-
poral Logic of Reactive and Concurrent Systems
Specification, ch. 3, pp. 202–203, Springer-Verlag,
1992.

[19] N. Halbwachs, J. Fernandez, and A. Bouajjanni,
“An executable temporal logic to express safety
properties and its connection with the language
Lustre,” in Sixth International Symposium on Lu-
cid and Intensional Programming, 1993.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

