
A Model Based Toolchain for the Cosimulation
of Cyber-Physical Systems with FMI

David Oudart1,2, Jérôme Cantenot1, Frédéric Boulanger3 and Sophie Chabridon2

1EDF R&D, Palaiseau, France
2SAMOVAR, CNRS, Télécom SudParis, Institut Polytechnique de Paris, France

3LRI, CNRS, CentraleSupélec, Université Paris-Saclay, France

Keywords:
Cosimulation, FMI, IT, MDE, smart grid, cyber-physical system

Abstract:
Smart Grids are cyber-physical systems that interface power grids with information and commu-
nication technologies in order to monitor them, automate decision making and balance production
and consumption. Cosimulation with the Functional Mock-up Interface standard allows the explo-
ration of the behavior of such complex systems by coordinating simulation units that correspond
to the grid part, the communication network and the information system. However, FMI has
limitations when it comes to cyber-physical system simulation, particularly because discrete-event
signals exchanged by cyber components are not well supported. In addition, industrial projects
involve several teams with different skills and methods that work in parallel to produce all the
models required by the simulation, which increases the risk of inconsistency between models. This
article presents a way to exchange discrete-event signals between FMI artifacts, which complies
with the current 2.0 version of the standard. We developed a DSL and a model-based toolchain
to generate the artifacts that are necessary to run the cosimulation of the whole system, and to
detect potential inconsistencies between models. The approach is illustrated by the use case of an
islanded grid implementing diesel and renewable sources, battery storage and intelligent control of
the production.

1 INTRODUCTION

Strong and fast evolutions of the electric land-
scape deeply impact the existing power grids.
Electric vehicles, decentralized and renewable
production as well as political considerations re-
quire the grid operators to continuously adapt
their operating strategy and the grid equipments.
Smart Grid is the name given to the oncoming
generation of power grids, augmented with infor-
mation and communication technologies. Such
systems aim to allow prevention, better reactivity
and improved response to electrical events such as
failures, but also ensure proper interoperability
between all the components of the grid. Because
they may impact a large amount of people, smart
grids are critical systems so they require thorough
verification and validation before their implemen-
tation. To this end, simulation is very valuable to
evaluate various behavioral assumptions (Palen-
sky et al., 2017).

As they involve many interdependent tech-
nical domains, namely electronics, software in-
formation processing and telecommunications,
smart grids are a typical example of Cyber-
Physical System (CPS), with the same challenges
to face when it comes to modeling and simu-
lation. Designing a CPS usually involves seve-
ral teams working simultaneously on modeling
multiple aspects of the system. Interconnecting
these models implies to deal with heterogeneous
models of computation, data consistency issues,
discrete and continuous variabilities, and various
time-steps (Muller et al., 2018). The lack of ma-
ture smart grid simulation tools lead Rohjans et
al (Rohjans et al., 2014) to establish a list of
requirements for an appropriate tool addressing
these challenges.

In addition, industrial companies are reluctant
to changes in their work methods and tools, and
prefer to rely on the existing skills and strengths
of their teams. Simulating CPS amounts to find



ways and tools to model and simulate interactions
between discrete and continuous models, taking
the most from the existing skills of the industrial
teams who are developing these systems.

Cosimulation approaches allow each one of the
teams involved in the modeling phase to use their
own language and tool of predilection, as well as
the most suited paradigm for their domain. There
are several standards for cosimulation, and the
Functional Mockup Interface (FMI)1, is particu-
larly suited to industrial projects.

Our main objective is to provide a toolchain to
help modeling teams to create interoperable mo-
dels. For that purpose, we developed a Domain
Specific Language (DSL) and we rely on MDE
practices to automatically generate wrappers, in-
terfaces and deployment scripts compliant with
the FMI standard, and handling the continuous-
discrete interconnections. This minimizes the ef-
fort required from the model developers to adapt
the models, and reduces the risk of errors and the
deployment cost of each iteration.

In the next section, we explain why we chose
FMI for the cosimulation of smart grids and the
limitations of this choice. In Section 3, we pro-
pose a way to deal with the limitations of FMI for
discrete signals. Section 4 presents our toolchain
to build the simulation of a CPS, dealing with
the industrial and FMI constraints. Section 5 il-
lustrates the approach on a use case. Section 6
presents scenarios to validate our approach.

2 STATE OF THE ART

In the electrical energy community, the chal-
lenge of simulating smart grids is not new (Li
et al., 2011,Nutaro, 2011,Yang et al., 2013). How-
ever, it usually consists in the interaction of two
domains via two dynamic models. The problem
of the synchronization of models and of their con-
sistency is not specifically addressed by these ap-
proaches, but is not really challenging when lim-
ited to two domains.

For the industrial simulation of complex sys-
tems and CPS, it is better to rely on stan-
dard technologies, as they address various needs
like scalability, modularity or reusability. The
Functional Mockup Interface (FMI) (Blochwitz
et al., 2011) and The High Level Architecture
(HLA) (Dahmann and Morse, 1998) are two in-
teroperability approaches allowing the intercon-

1https://fmi-standard.org

nection of several different simulators in an inte-
grated execution.

If both approaches have been declared as stan-
dard, FMI benefits from a stronger popularity
with more than 80 compatible tools2. Its abil-
ity to protect industrial property inside FMUs
makes it very attractive for industrial projects
and makes collaborative design easier (Gomes
et al., 2018b). FMI defines a simulation unit
format called Functional Mockup Unit (FMU),
which embeds a model and an execution engine
along a standard interface to control the execu-
tion of the simulation. FMI cosimulations are
driven by a master algorithm, which synchronizes
the execution of the FMUs and the exchange of
data at some communication points.

Because a time-step between two communica-
tion points can not be null, FMI is not particu-
larly adapted to reactive systems and discrete-
event modeling. Current works already propose
FMI extensions, such as zero-size steps (Guer-
mazi et al., 2015, Cremona et al., 2019), or ab-
sent values (Cremona et al., 2019) to handle
discrete-event signals. Optimized master algo-
rithms (Tavella et al., 2016, Van Acker et al.,
2015) can increase the precision of the simula-
tion while still being compliant with the standard,
by trying to locate the occurrence of an event
using the optional rollback FMI feature (revert-
ing the state of an FMU to a previous communi-
cation point), or by optimizing the choice of the
time step, which requires FMUs to be exported
as white boxes.

Moreover, connections between FMUs are de-
fined statically before execution, meaning that
every possible interaction between models has to
be defined during the modeling phase and the co-
simulation set up. This can lead to many revi-
sions and iterations on the models while trying
to interoperate them with the other models, and
potentially generate a lot of input/output ports
to cover all possible scenarios. Adaptation ap-
proaches (Gomes et al., 2018a) allow the reuse of
existing models or FMUs by wrapping them in a
simulation unit adapted to a particular cosimula-
tion.

This last issue is derived from the fact that
complex system design involves several view-
points from different technical domains, therefore
several heterogeneous models developed by dif-
ferent teams. Model driven approaches are used
in industry to interconnect these models and re-
present the consistency links between them (Zhao

2https://fmi-standard/tools/



et al., 2017,Suri et al., 2017,Andrén et al., 2017).
These approaches mainly aim to facilitate the fi-
nal system realisation, but only few of them in-
clude the simulation in the design process (Paris
et al., 2017).

FMI offers a technological means to simulate
a CPS such as a smart grid, but requires a sup-
portive method and/or tool to address the various
issues raised. The toolchain we developed sup-
ports model transformations and focuses on the
deployment of a correct cosimulation platform. It
complies with the FMI standard and relies on ex-
isting tools which implement it, but also supports
exchange of discrete-event signals, as smart grids
involve cyber components. It provides a domain
specific language to allow the modeling teams to
identify and characterize all signals exchanged be-
tween FMUs in a cosimulation. Finally, it auto-
mates the generation of simulation artifacts im-
plementing these interfaces, such as configuration
files, execution scripts and model adaptators.

3 HOW TO EXCHANGE
DISCRETE SIGNALS
BETWEEN MODELS VIA FMI

FMI is designed for the interconnection of sim-
ulators producing continuous signals. Therefore,
for simulations involving information processing
and communication networks, which rely on dis-
crete events, we need to encode such sporadic
events using continuous signals.

3.1 Problem and Definitions

We suppose the set V of all the values a signal
can take is one of the following sets: R, Z, S the
set of all string values, or B the set of all boolean
values {true, false}.

A discrete-event signal can then be repre-
sented as a function of time xDE : E → V where
E ⊂ R+ is the discrete set of the event-firing
points.

The problem is that signals in an FMI cosimu-
lation are only considered at some communica-
tion points chosen by the master. The set C of
the communication points being independent of
the set E , if we want to exchange a discrete event
as an FMI signal, we have a risk of undefined or
missed events:

• E ∩ C ⊂ C: at some communication point, the
value of the signal is not defined. (pb. 1)

• E∩C ⊂ E : some events are missed by the mas-
ter of the cosimulation and the other FMUs
(pb. 2)

The three possible cases are illustrated in Fi-
gure 1.

E C

missed OK undefined

Figure 1: Differents cases for discrete event signals

3.2 Proposed Solution

In order to be sure that the exchanged signal
is defined on every communication points and
avoid pb. 1, we need an FMU to produce a
time-continuous signal defined on R+ (at least
bounded by the start and stop times of the cosi-
mulation).

We propose an encoding component to
transform a discrete signal into two time-
continuous signals which can be exchanged over
FMI. The first time-continuous signal keeps the
value of the last event emitted until a new event
is emitted. But we need a second coupled signal
to express that an event actually has been emit-
ted, in order to detect sequences of events having
the same value. Indeed, each time the value of
our first signal changes we know that an event
has occurred, but while it is constant we cannot
detect if there has been an event with the same
value or no event.

Following these principles, we also provide
a decoding component to perform the re-
verse operation and obtain the discrete-event si-
gnal from the FMI discretization of the time-
continuous signals.

3.2.1 Encoding Component

Input: xDE a discrete-event signal. Output: x
and xs two time-continuous signals.

We consider E = {te1, te2, . . . } as ordered.

∀t ∈ R∗, t ≥ te1

{
x(t) = xDE(tent

)

xs(t) = nt

where nt = max{i | tei ≤ t} is the index of the
last event that occurred before or at time t.

When t < te1, no event has been emitted yet,
and xs(t) = 0. x(t) can have any value, which



will be ignored by the decoding component. We
suggest to choose an initial value corresponding
to the last event which could have occurred be-
fore the start of the simulation. When it is not
possible or does not make sense, a default value
in the V set (0, an empty string or false) is a
valid choice too.

3.2.2 Decoding Component

Input: y and ys two time-continuous signals
sampled over C. Output: yDE a discrete-event
signal.
C = {tc0, tc1, tc2, . . . } is the set of the com-

munication points. We assume the previous de-
finition of the set E , and the fact that y and ys
are the x and xs signals discretized by the FMI
cosimulation master on C.

We define the discrete set F ⊂ R+ as the set of
the time points of the ys’s “rising edges”. These
time points are all synchronized with a commu-
nication point so we have:

F =

{
tci ∈ C

∣∣∣∣ i > 1 , ys(tci) > ys(tci−1)
i = 0 , ys(tc0) 6= 0

}
Then the output of our component is:

yDE : F → V

∀i , tci ∈ F ⊂ C yDE(tci) = y(tci) = xDE(tentci
)

where ntci and tentci
∈ E are defined as before as

the index of the last event occurring before or at
time tci, and the time of this event.

3.3 Discussion

We are aware that several challenges still need to
be addressed in order to allow discrete-event si-
gnal exchanges over FMI. The dates of the events
are almost always approximated from the global
cosimulation perspective. It prevents a rigorous
handling of concurrent events for instance. For
this issue, we are limited by the definition of time
in the FMI standard (Broman et al., 2015). Our
goal is to allow a better support of the discrete-
event signals with a minimal adaptation effort.

Using our two components to encode and de-
code a discrete-event signal between two FMUs,
and using the same notation as previously, an
event received at tci has been emitted at tentci

.
We know that tentci

is the latest time point of E
such as tci−1 < tentci

≤ tci. So our solution ad-
dresses pb. 2 by ensuring that if an event is not
synchronized with a communication point, it can
still be detected, but delayed by tci− tentci

. This

te1 te2 te3 te4

tci−1 tci

=

tentci

missed occurrence

Figure 2: Missing events that are too close

is an inherent limitation of the current version 2.0
of FMI.

However, pb. 2 is not completely addressed,
as events emitted between tci−1 and tentci

are
still missed as shown in Figure 2. We can only
express at most one event at each communication
point. It is an arbitrary choice by only consider-
ing the last emitted one in the time-step inter-
val. Nonetheless, the difference between ys(tci)
and ys(tci−1) still reveals the number of events
emitted since the last communication point. A
smart-enough cosimulation master might decide
to cancel the last step and replay it with a smaller
step in order to catch the missed events. This re-
quires the optional rollback functionality of the
FMI standard.

Finally, the use of these components in the
FMU models requires potentially heavy changes
to the original models, as well as the addition of
FMI connections dedicated to the synchroniza-
tion of FMUs. This kind of knowledge is specific
to the cosimulation process and does not need to
be the concern of the modeling teams.

The toolchain presented in Section 4 provides
methods and tools to generate these components
for the modeling teams, and to automate the de-
ployment and the possible iterations of the smart
grid cosimulation model.

4 TOOLCHAIN
PRESENTATION

4.1 An Approach Based on Model
Refinement

One of the main advantages of using a cosimula-
tion environment is to allow the different experts
to develop their own model in autonomy, with
a minimal interference and in parallel with the
others (Gomes et al., 2018b). The choice of the
FMI standard ensures the technological compat-
ibility of each simulation unit, or FMU, with the



cosimulation environment, without having to de-
velop a specific connector. However it does not
ensure structural compatibility. All FMUs pro-
duced by the different teams must provide in-
teroperable data structures, namely each input
should match an output, in type and meaning.

An example of a cosimulation approach for
smart grids (Oudart et al., 2019) identified se-
veral steps and actors involved in such a process.
The first step is to define all the connections be-
tween the simulation models in order to define the
interface of the models for each modeling team.
But the compliance verification of the models and
the creation of the cosimulation artifacts (FMUs,
configuration files) are done by hand, which make
each iteration time-consuming and error-prone.

The use of a global, architectural model to
represent the structural interfaces of the various
simulation units and the coupling constraints be-
tween them, allows the use of syntactic tools to
automatically check some validation rules. It also
creates a unique authoritative artifact to coordi-
nate the work of the various collaborators, and
from which more detailed models can be derived.

Following this approach, we developed a
toolchain to automate the actions needed to run
a cosimulation starting from a global model. It is
based on model transformations from a platform-
independent model toward simulation artifacts.
This toolchain relies on a domain specific lan-
guage (DSL), named Cosimulation Modeling Lan-
guage (CosiML), to specify the structural inter-
faces of the simulation units and the configuration
of the cosimulation.

Our choice to develop our own language for
this purpose, instead of choosing an existing one,
such as UML, comes from various reasons :

• in an industrial context, general-purpose lan-
guages like UML are not well mastered outside
the computer science field,

• such languages contain many concepts, but we
only needed a few of them,

• in our approach, adapting UML to model spe-
cific concepts would lead to refining generic
concepts through profiles.

It appeared more efficient to define only what we
needed than to restrict and specialize UML to fit
our needs.

4.2 CosiML, a DSL for
Cosimulation

We implemented CosiML inside the Eclipse Mod-
eling Framework (EMF) using the Ecore meta-
modeling language. Figure 3 shows a simplified
metamodel of CosiML, with the classical elements
of every cosimulation.

Figure 3: CosiML simplified metamodel

CosimulationModel is the root element of
the model, it stores the parameters of the cosi-
mulation (start time, stop time, time step, etc.)
and contains all the simulation units and their
interconnections.

SimulationUnit represents a simulation unit
involved in the cosimulation. It contains the Port
elements representing the structural interface of
the unit.

Input & Output (Port) represents a port
of the simulation unit. It has a type, an optional
default value and a variability, which is the name
used by FMI to characterize the discrete or con-
tinuous nature of signals.

Link represents a connection between an out-
put and an input port. A model can be checked
to verify that any two connected ports have the
same variability, and that they are not contained
in the same simulation unit.

There are several kinds of SimulationUnits, as
shown in Figure 4:

ProvidedSimulationUnit is a simulation
unit which is completely provided by the user.
Such a simulation unit is directly usable in the
cosimulation without further action. In our case
of FMI cosimulation, a ProvidedSimulationUnit
is provided as an FMU resource and we only have
to know the path to the artifact.

GeneratedSimulationUnit is a simulation
unit which will be generated by the toolchain
from a domain model. The attribute modelPath
stores the path to the domain model. The format



Figure 4: SimulationUnit detailed specializations

of the model and the generator to use for the gene-
ration of the simulation unit are specific to the
tool attribute’s value. The tool is what is used
to build the model, for instance a Java or C++
compiler, or a more complex modeling tool such
as OMNeT for communication networks. The
generator is part of our toolchain, and will gene-
rate the corresponding FMU, which includes the
generation of adapters for discrete event signals.
The generator relies on naming conventions to ac-
cess the elements of the model and adapt them
to the structure of the FMU. For instance, a Java
with a continuous input signal named X should
implement a setX(double value) method. In
order to refer to the model in the generated
FMU, the generator uses two generic attributes:
importText defines how to import the model in-
side the adapter, and usageText tells how to use
the model. Finally, the attribute dependencies
stores the list of all the resource paths required
by the model (libraries, data files, binaries) that
should be packaged inside the generated simula-
tion unit. Our goal is to stay generic enough to
avoid metamodel modifications when we want to
support a new tool and add a new generator to
the toolchain. For instance, a Java model-based
generator would require:
importText = import package.Classname;

and
usageText = Classname,

whereas a C++ model-based generator would re-
quire:
importText = #include "filename.h"

and
usageText = ObjectName.

Scenario a simulation unit generated by the

toolchain from a data file. It only has output
ports and will be used as an independent source
of timed data. The attribute dataPath stores the
path to the data file. We are considering that fu-
ture versions of CosiML and the toolchain may
support several format, but for now we only sup-
port CSV files to be used as Scenario units.

CSVScenario a particular Scenario element
which refers to a CSV data file. Attributes
separator and decimal defines the charac-
ters used respectively as separator and decimal
marker for the CSV content.

4.3 Generation Tools for FMI
Cosimulation

We chose the DACCOSIM NG3 software to ex-
ecute our FMI cosimulation. It implements a
master algorithm that is fully compliant with
the standard, with advanced discontinuity detec-
tion features, and intelligent time step strate-
gies (Tavella et al., 2016). More importantly,
it provides a scripting language allowing the au-
tomation of the build and execution of cosimu-
lations. Finally it is designed for distributed
executions, which is very useful for industrial
use cases potentially involving a large number of
FMUs (Évora Gómez et al., 2019).

With our CosiML metamodel defined in EMF
Ecore, we can use the Sample Reflective Ecore
Model Editor to instantiate a CosiML model
and serialize it in the XMI format. Then, we
can use model transformations to implement our
toolchain. We developed an Acceleo plugin to ge-

3https://bitbucket.org/simulage/daccosim



nerate all the files needed to build the FMI cosi-
mulation from the CosiML model. The Figure 5
shows the generation process of these files from
a CosiML model. The generators are configu-
red with property files, used to specify platform
dependent information, such as library and tool
paths.

The toolchain is currently composed of the fol-
lowing generators :

1. Java-tool generator: generates all the files
needed to build an FMU from a Java mo-
del. It is applied to the GeneratedSimulatio-
nUnit instances with the right tool property.
It generates a Java file defining a class adap-
ting the user model to the JavaFMI library4,
along with a MANIFEST.MF file defining the
proper classpath. It also generates a script to
build the corresponding FMU.

2. CSV scenario generator: generates the
files needed to build an FMU from a CSV file.
It is applied to the CSVScenario instances. It
generates a Java file defining a class loading
the CSV file, and implementing the JavaFMI
library, along with the MANIFEST.MF file
and the building script, just as with the Java-
tool generator.

3. Cosimulation scripts generator: genera-
tes the DACCOSIM cosimulation model in its
specific scripting language DNG. It also gene-
rates an execution script, which automates the
build of all the FMU not yet generated, and
the launch of the DACCOSIM simulation.

CosiML allows the distinction between dis-
crete and continuous data exchanges, so that the
provided generators can automatically implement
the encoding and decoding components in the
generated wrappers, and adapt the FMU inputs
and outputs accordingly (each CosiML Port with
a discrete variability causes the creation of two
FMI ports). Our toolchain is meant to be ex-
tended with other generators to support more
domain specific tools and to be used for cyber-
physical systems other than smart grids. The
next section presents an industrial use case of
smart grid cosimulation, and shows the integra-
tion of the current toolchain with the usual mod-
eling tools of the different teams.

4bitbucket.org/siani/javafmi/, a set of component
to work with FMI. It especially provides a builder
component generating an FMU from Java code

4.4 Download

Our toolchain is shared on a github repository
at:

https://github.com/davidoudart-pro/SGridSF

The sources of the CosiML language and gene-
ration plugins are available, as well as the neces-
sary files to replay the cosimulation of the use
case presented in this article.

5 USE-CASE COSIMULATION

5.1 The Use-Case of an Islanded
Smart Grid

We chose a real use case from the French power
utility to illustrate our contribution, and validate
our toolchain. The system is an island with a
power grid that is independent from the main-
land grid, with its own production equipments. A
diesel power plant is the main energy producer,
and is complemented by a photovoltaic farm. The
main issue in the configuration is that the renewa-
ble energy supply is intermittent. Indeed, as the
photovoltaic source relies on sunlight and needs a
clear sky for its production, it makes it as varia-
ble and unpredictable as the weather. In order to
balance the production with the consumption, it
has to be sometimes prevented from producing as
much as it could, which causes economic loss and
carbon footprint degradation. Therefore, a cho-
sen solution is to add a battery storage to damp
the variability of the production, with the pur-
pose of minimizing the limitations of the photo-
voltaic farm. It could even allow the operator to
shut down the diesel plant for some period and
rely only on the battery and photovoltaic pro-
duction.

To maximize the efficiency of the system, we
need an Energy Management System (EMS) cou-
pled with a Supervisory Control And Data Acqui-
sition (SCADA) in order to implement an intelli-
gent control of the production. The EMS moni-
tors the state of the power grid (value of the volt-
age at various control points, state of switches),
and drives some of its equipments (giving volt-
age setpoints, limiting the injection of power by a
source) through the SCADA. The EMS can col-
lect other information such as weather and con-
sumption forecasts from external information sys-
tems, as well as user preferences, in order to op-
timize the operation of the grid.



Figure 5: Generation process of the cosimulation artifacts, from a CosiML model

Before telling how the EMS controls the equip-
ments on the grid, we have to explain how the
power flow is established on a power grid. Kno-
wing the power needed by the consumers, we
can set power production setpoints to the various
sources of the grid in order to balance the con-
sumption. However, losses on transmission lines
can never be known, so we need at least one
equipment not power constrained, capable of pro-
ducing the loss or absorb the unpredictable ex-
cess. This equipment is generally the one having
the highest size generator. In our case it is the
diesel plant when it is connected to the grid, the
battery and its converter when it is not.

The EMS sends control signals to the various
equipment of the grid:

• photovoltaic farm: the EMS decides if the pro-
duction needs to be limited and how much;

• battery : there are two cases for this equip-
ment. When the diesel plant is coupled to the
grid and balances the power on the grid, the
EMS controls the power absorbed or injected
by the battery. When the diesel plant is shut
down, the EMS does not control the battery
and lets its power converter balance the power
on the grid.

• diesel plant : the EMS decides if it is cou-

pled to the grid (and produces power) or not.
When it is coupled to the grid, it cannot pro-
duce less than a minimum power, so it can
happen that the photovoltaic farm has its pro-
duction limited. To avoid it, the diesel is
turned off when the battery and the photo-
voltaic production are able to cover the con-
sumption needs.

Because of all the different modes in which
the grid can be, depending on the weather, on
the management of the charge of the battery and
on the variability of the consumption, simulation
is very useful to test and validate a design of the
solution, before any deployment on the field and
expensive investments.

5.2 Cosimulation Scenario

The simulation of the islanded smart grid is a
good example of a cyber-physical system invol-
ving several knowledge fields, and several teams
with different modeling tools. We used Modelica5

with the Dymola software to model the grid power
flow because they are well-known tools among
electrical engineers, and they fully support the

5https://www.modelica.org/, component-oriented
modeling language based on equations set declaration



FMI standard and the export to FMU (Elsheikh
et al., 2013). The simulation unit continuously
evaluates the electrical power state of the grid
according to production and consumption cons-
traints. Figure 6 shows the simplified model of
the power flow and its inputs.

Figure 6: Simplified Modelica model of the islanded
grid

Some of these constraints are computed and
decided by the algorithm of the EMS. The EMS
produces discrete event signals, reacting to the
evolution of the state of the grid. There is no
conventional tool supporting the modeling of re-
active systems and also handling FMI. Complex
algorithms are usually modeled with textual pro-
cedural languages such as C or Java. There are
tools supporting the export of such models to-
ward FMU, but they require additional efforts
and specific code refactoring and writing. Our
toolchain supports the automatic transformation
of a Java model into an FMU, with the genera-
tion of a wrapper code implementing the JavaFMI
Framework library, and the use of the JavaFMI
builder tool. We developed a first, simple Java al-
gorithm of the EMS which takes the current state
of the grid as input and does not use forecasts. It
computes controls every 15 minutes, but continu-
ously monitors the current state of the grid equip-
ments in case emergency controls are required.
The Figure 7 shows an activity diagram, illus-
trating this process. This simple model can give
reference simulation results, as a base of compar-
ison with more complex and complete algorithms
provided by various vendors.

These components need to be tested on mul-
tiple scenarios. We have access to some data sets
describing the consumption of the island and the
weather conditions over time at various times of

Figure 7: EMS monitoring process, with periodic and
emergency controls

the year. The toolchain also supports the auto-
matic transformation of a timed-CSV file into an
FMU, so we can use these data sets in our cosimu-
lation (via the CosiML CSVScenario element).

Eventually, our CosiML cosimulation model
involves three simulation units:

• GridFmu which computes the electrical state
of the system

• EmsFmu which computes the controls to
send to the grid components

• CurvesFmu which plays the consumption
and sunlight intensity evolution from the
given data sets.

The CosiML model of this cosimulation
instantiates GridFmu as a ProvidedSimulation-
Unit, because it is provided as an export from
Dymola. EmsFmu is instantiated as a Generat-
edSimulationUnit because the model is provided
as java source code, and our toolchain will gene-
rate the FMU. Finally CurvesFmu is instantiated
as a CSVScenario, because we are provided with
a CSV file that will be used to generate an FMU
that plays the data contained in the file.

As we said previously, the CosiML model has
been edited with the EMF’s Sample Reflective
Ecore Model Editor, and stored in the XMI for-
mat. Figure 8 illustrates the XMI CosiML mo-
del’s content by expliciting the connections be-
tween the three FMUs and their variability (solid
lines for continuous signals, dotted lines for dis-
crete events).

5.3 Simulation and Decisions

The use case presents two main concerns: 1) how
to optimize the battery characteristics in order



Figure 8: Connections between the FMUs of the use
case

to implement an efficient management of the pro-
duction and keep investment as low as possible?
And 2) how to test the efficiency of the chosen
EMS algorithm?

From the CosiML model, the toolchain ge-
nerates the necessary wrapper files to build the
EmsFmu and CurvesFmu FMUs, as well as the
DACCOSIM model of the cosimulation. In ad-
dition, a script is generated to create automati-
cally the missing FMUs, and to launch the DAC-
COSIM cosimulation.

In our case, the cosimulation evaluates the
behavior of the grid on a full day (24 hours).
Figure 9 shows the average and cumulated per-
hour production (over the x-axis) and consump-
tion (below the x-axis) of each equipment on the
day, for particular load and photovoltaic maximal
production curves (and initial conditions).

Figure 9: Consumption and production of electricity
over a full day

The energy balance has been ensured all day
(no black-outs) meaning our design solution is ef-
fective on this particular scenario. However, be-

tween 11am and 2pm, the photovoltaic produc-
tion has been limited (see hatched bars). Loo-
king at the results (not shown in the figure), we
see that the charge of the battery was already
maximal and could not absorb the extra produc-
tion. There is consequently a potential for opti-
mization of our solution. Increasing the capacity
of the battery, or improving the algorithm of the
EMS are two possible iterations. Once the models
are updated, the execution of the toolchain au-
tomatically updates the simulation artifacts and
executes the cosimulation again.

6 OBSERVATIONS

The key motivation behind our work is to re-
duce the cost of iterations in the design of sys-
tems by automating the cosimulation of the mo-
dels using a model-driven approach. To be useful
in an industrial context, we need to fulfill the fol-
lowing requirements: each iterative step of the
process must provide a quick feedback; the up-
front modeling cost must be recovered in the fol-
lowing phases of analysis, maintenance, etc.; busi-
ness experts must concentrate on their core skills.

We presented in this paper a toolchain based
on a cosimulation DSL to reference simulation
models and characterize some coupling cons-
traints between them. The various generators
allow the generation of simulation units and de-
ployment scripts from this cosimulation model.
Hence, this automated process provides the pos-
sibility to make changes to the cosimulation sce-
nario with minimal efforts. We illustrate this
through the following industrial scenarios.

In a first scenario, a functional architect has
to compare components from various vendors, for
example to find the best EMS solution (EMS-
Grid in our previous use case). To guarantee
the correct integration of the simulation model
provided by the vendor, the tender documents
include requirements deduced from the CosiML
model. The selection of the right component is
simplified because:

• Using the tool chain, the architect can quickly
build a test environment, by providing input
data inside a CSV file, automatically gener-
ating a new FMU and a cosimulation model,
then testing multiple configurations easily.

• To select the components to be used in the
cosimulation, only the pathFMU attribute of
the ProvidedSimulationUnit must be modified



and the new cosimulation set up can be gen-
erated.

In a second scenario, we want to involve elec-
trotechnical engineers to build a load flow mo-
del of the power grid (GridFMI in our previ-
ous use case). This is possible without an in-
tensive training because they can use their own
specific tools to build the simulation model (Dy-
mola, PowerFactory, etc.), and there are only few
basic concepts (input, output, discrete or contin-
uous variability) to be explained in order to build
the CosiML model. Once they develop a model
conforming to the CosiML metamodel, they can
then use an iterative approach to improve the mo-
del without involving other collaborators, thanks
to our toolchain, which automatically integrates
their work to the cosimulation platform.

Finally, in a third scenario, we consider the
case of a modification of one simulation mo-
del inducing a modification of the CosiML mo-
del, and especially among the coupling cons-
traints between models (e.g. adding or renam-
ing several ports).Firstly, the validation rules of
our toolchain guarantee the consistency of the
CosiML model. Secondly, the automated execu-
tion process of the cosimulation will raise errors
until each impacted simulation model makes the
necessary adjustments. Thirdly and finally, the
implementation of the adjustments might be par-
tially done by the generators of the toolchain.

7 CONCLUSION AND
PERSPECTIVES

By automating some verifications and the
generation of cosimulation artifacts, model driven
approaches allow shorter, less costly and less er-
ror prone iterations on a solution design. Our
toolchain relies on an abstract CosiML model of
the system to check the consistency of the dif-
ferent simulation units, to generate adapters for
discrete event signals that cannot be used as is in
an FMI simulation, and to generate FMUs from
models developed with different tools. It uses the
FMI standard and benefits from its many advan-
tages regarding CPS simulation in industry. It
can also integrate FMUs exported by some mod-
eling tools in the cosimulation, allowing models
from different system domains to be developed
with the relevant tools, by experimented teams,
while protecting industrial property inside FMUs.

The CosiML language and its generators have
been used on a real industrial case, which involves

both continuous and discrete signal exchanges.
We recently managed to integrate an FMU built
from an OMNeT model of a communication net-
work in a cosimulation, which will allow us to run
finer simulations of a smart grid that take into
account the performance and limitations of the
communication network. CosiML and our tool
chain have been designed to support new model-
ing tools and new generators, and the integration
of models from OMNeT in the tool chain will be
an opportunity to check this. The modular na-
ture of the different transformations also helps to
adapt the generated artifacts to different versions
of FMI. For instance, the support for a more pre-
cise detection of discontinuities in FMI v2.1 may
lead to a new adapter for discrete event signals,
while keeping the current one for cosimulations
using older versions of FMI.

Finally, we want to bring a better integra-
tion with the design process of a system using
simulation. Indeed, we are aware that develop-
ing a CosiML model implies a previous analysis
phase, to identify which kind of simulation mo-
dels need to be developed, and for which purpose.
We propose to use another language to represent
the system functions to simulate, independently
of their implementation models, and to build a
model transformation toward CosiML.

REFERENCES

Andrén, F., Strasser, T., and Kastner, W. (2017).
Engineering Smart Grids: Applying Model-
Driven Development from Use Case Design
to Deployment. Energies, 10(3):374.

Blochwitz, T., Otter, M., Arnold, M., Bausch,
C., Elmqvist, H., et al. (2011). The func-
tional mockup interface for tool independent
exchange of simulation models. In Proceed-
ings of the 8th International Modelica Con-
ference, pages 105–114.

Broman, D., Greenberg, L., Lee, E. A., Masin,
M., Tripakis, S., and Wetter, M. (2015). Re-
quirements for Hybrid Cosimulation Stan-
dards. In Proceedings of the 18th Interna-
tional Conference on Hybrid Systems: Com-
putation and Control, HSCC ’15, pages 179–
188. ACM.

Cremona, F., Lohstroh, M., Broman, D., Lee,
E. A., Masin, M., and Tripakis, S. (2019).
Hybrid co-simulation: it’s about time. Soft-
ware and System Modeling, 18(3):1655–1679.



Dahmann, J. S. and Morse, K. L. (1998). High
Level Architecture for simulation: An up-
date. In Proceedings. 2nd International
Workshop on Distributed Interactive Sim-
ulation and Real-Time Applications (Cat.
No.98EX191), pages 32–40.

Elsheikh, A., Awais, M. U., Widl, E., and Palen-
sky, P. (2013). Modelica-enabled rapid proto-
typing of cyber-physical energy systems via
the functional mockup interface. pages 1–6.
IEEE.

Évora Gómez, J., Hernández Cabrera, J. J.,
Tavella, J.-P., Vialle, S., Kremers, E., and
Frayssinet, L. (2019). Daccosim NG: Co-
simulation made simpler and faster. In
The 13th International Modelica Conference,
pages 785–794.

Gomes, C., Meyers, B., Denil, J., Thule, C., Laus-
dahl, K., Vangheluwe, H., and De Meule-
naere, P. (2018a). Semantic adaptation for
FMI co-simulation with hierarchical simula-
tors. SIMULATION.

Gomes, C., Thule, C., Larsen, P. G., and
Vangheluwe, H. (2018b). Co-Simulation:
A Survey. ACM Computing Surveys,
51(3):49:1–49:33.

Guermazi, S., Tatibouet, J., Cuccuru, A.,
Dhouib, S., Gérard, S., and Seidewitz, E.
(2015). Executable modeling with fUML and
alf in papyrus: Tooling and experiments. In
EXE@MoDELS.

Li, W., Monti, A., Luo, M., and Dougal, R. A.
(2011). VPNET: A co-simulation framework
for analyzing communication channel effects
on power systems. In 2011 IEEE Electric
Ship Technologies Symposium, pages 143–
149.

Muller, S. C., Georg, H., Nutaro, J. J., Widl,
E., Deng, Y., Palensky, P., Awais, M. U.,
and al. (2018). Interfacing Power System
and ICT Simulators: Challenges, State-of-
the-Art, and Case Studies. IEEE Trans.
Smart Grid, 9(1):14–24.

Nutaro, J. (2011). Designing power system
simulators for the smart grid: Combin-
ing controls, communications, and electro-
mechanical dynamics. In 2011 IEEE Power
and Energy Society General Meeting, pages
1–5.

Oudart, D., Cantenot, J., Boulanger, F., and
Chabridon, S. (2019). An Approach to
Design Smart Grids and Their IT System
by Cosimulation:. In MODELSWARD 19,

pages 370–377. SCITEPRESS - Science and
Technology Publications.

Palensky, P., Van Der Meer, A. A., Lopez, C. D.,
Joseph, A., and Pan, K. (2017). Cosimu-
lation of Intelligent Power Systems: Fun-
damentals, Software Architecture, Numerics,
and Coupling. IEEE Industrial Electronics
Magazine, 11(1):34–50.

Paris, T., Ciarletta, L., and Chevrier, V. (2017).
Designing co-simulation with multi-agent
tools: a case study with NetLogo. In
Francesco Belardinelli, E. A., editor, 15th
European Conference on Multi-Agent Sys-
tems (EUMAS 2017), volume 10767 of Multi-
Agent Systems and Agreement Technologies,
pages 253–267, Évry, France. Springer.

Rohjans, S., Lehnhoff, S., Schütte, S., Andrén,
F., and Strasser, T. (2014). Requirements for
Smart Grid simulation tools. In 2014 IEEE
23rd International Symposium on Industrial
Electronics (ISIE), pages 1730–1736.

Suri, K., Cuccuru, A., Cadavid, J., Gerard, S.,
Gaaloul, W., and Tata, S. (2017). Model-
based Development of Modular Complex
Systems for Accomplishing System Integra-
tion for Industry 4.0. In Proceedings of
the 5th International Conference on Model-
Driven Engineering and Software Develop-
ment - Volume 1: MODELSWARD,, pages
487–495. ScitePress.

Tavella, J.-P., Caujolle, M., Vialle, S., and al.
(2016). Toward an Accurate and Fast Hybrid
Multi-Simulation with the FMI-CS Stan-
dard. In Emerging Technologies and Factory
Automation (ETFA-2016), Berlin, Germany.

Van Acker, B., Denil, J., Vangheluwe, H., and
De Meulenaere, P. (2015). Generation of
an optimised master algorithm for fmi co-
simulation. In DEVS Integrative M&S Sym-
posium, DEVS ’15. Society for Computer
Simulation International.

Yang, C.-H., Zhabelova, G., Yang, C.-W., and
Vyatkin, V. (2013). Cosimulation Environ-
ment for Event-Driven Distributed Controls
of Smart Grid. IEEE Trans. Industrial In-
formatics, 9(3):1423–1435.

Zhao, H., Apvrille, L., and Mallet, F. (2017).
Multi-View Design for Cyber-Physical Sys-
tems. In PhD Symposium at 13th Inter-
national Conference on ICT in Education,
Research, and Industrial Applications, pages
22–28, Kiev, Ukraine.


