
Issues of Hierarchical Heterogeneous Modeling in Component Reusability

Mokhoo Mbobi
Mokhoo.Mbobi@supelec.fr

Frédéric Boulanger
Frederic.Boulanger@supelec.fr

Supélec - Computer Science Department
Plateau de Moulon, 3 rue Joliot-Curie
91192 Gif-sur-Yvette cedex, France

Mohamed Feredj
Mohamed.Feredj@supelec.fr

Abstract

Heterogeneous systems are systems that obey different
functioning laws. For instance, during the design of embed-
ded systems, it is generally necessary to study both the con-
troller and the environment that it controls, these two sub-
systems being clearly different in nature. Moreover, data
processing applications are also increasingly heteroge-
neous, mixing different technical domains such as telecom-
munications, man-machine interface, analog and digital
electronic, signal processing algorithms. To combine these
different technology domains, modeling languages and plat-
forms generally use a hierarchical approach.

This paper highlights how the hierarchy of the model and
the changes of model of computation are coupled and why
this coupling forbids the use of components that have inputs
or outputs that obey different models of computation. In
addition, this paper shows that what happens when data
crosses the boundary between two domains depends on the
modeling environment and it gives some means of managing
component in the same level of the hierarchy.

1 Introduction

1.1 Economic and scientific modularity stakes

The latest studies [19] [2] had highlighted the increase
and segmentation of embedded systems market, and the re-
lated mentioned reasons are durable. So, new kinds of em-
bedded systems will appear, existing systems will change,
the services around them will develop and the number of
familiar objects containing an embedded processor will in-
crease in a continuous way in the future.

To master this unceasingly growing market with a short
increasingly time-to-market, researchers and equipment
suppliers are required to respectively deal with technical
and economic constraints.

According to the economic constraints, economic
choices must be judiciously made in order to maintain the
balance between the average price of the embedded com-
ponents that is increasingly weak and their performances
that increase exponentially. For example, today, a cellular
telephone able to modify its ringing by downloading a poly-
phonic musical sequence, to check the schedule of plane, to
film video sequences and to send them by electronic mail
costs less than one tenth of the price of its ancestor in the
first GSM generation whose the functioning was limited to
the simple communication. Therefore, the great economic
challenge for equipment suppliers will remain the mastery
of the ambivalence ”increase in performance and drop in
prices”.

On looking at both the economic constraints and the mar-
ket trends of embedded systems the ”design-development-
production” cycle of components must be shortened. That
imposes a major change towards the distributed and indus-
trial production modes, promoting more and more modular
applications containing reusable components and that are
easily maintainable. Thus, in [20], the author affirms that
the development of embedded systems follows a process
shared by several actors, implementing a co-operation be-
tween equipment suppliers and manufacturers and that the
concept of components reuse is a strong argument to reduce
the study and factory costs. Bringing another economic ar-
gument, in [12], the author confirms that the use of modular
methodology involves an investment that is amortized only
on the long term, after reuse.

According to the technical constraints, they are intrin-
sic with the embedded system and are taken into account
in its different design phases. These constraints are at the
functional and operational level and are closely related to
the essence of the embedded system. Their taking into ac-
count allows the embedded system to guarantee its opera-
tional functioning in continuous reactivity with its immedi-
ate environment in a sure and safe made way. Such as the
pacemaker whose electrodes are well introduce inside a hu-
man heart with that it interacts to control its beats in contin-

uous reactivity and in a sure and safe made way. The design
of such a systems requires a multidisciplinary of scientific
knowledge, from where the need of several specialists in
different domains. Moreover, since the cycle of life of some
systems is very long compared to the components used for
their manufacturing, the impact of degradations and obso-
lescence in these systems must be limited. Finally, this dou-
ble statement implies to take into account the solutions that
use modular architectural techniques. According to the hi-
erarchical heterogeneous approach, it couples the change of
hierarchical level with the changes of model of computation
on the modeling. This corrupts the modularity, reduce the
reusability of the components and reduce also the maintain-
ability of the system.

1.2 Modularity, Reusability, Maintainability

Systems must be designed in a modular way. They must
be elementary or composite components assembled accord-
ing to a well-defined communication diagram that imple-
ments a communication and interfaces syntheses. In [5],
the author supports this concept by specifying that currently,
the multi partner character of industrial projects requires the
modular development capacities, in particularly to be able
to separately and independently compile each application
component in the form of executable processes, software
or hardware, then to integrate them within a final architec-
ture. In the same way, in [3], the author specifies that the
reuse is intrinsically a phenomenon arising at the construc-
tion phase. It implies the modification of data and algo-
rithms structures that are in the components, and that re-
main fixed during the execution. Relaying the above ideas,
in his development presented in [11], the author shows that
the models as their building blocks must be reusable and
as autonomous as possible . Then, it specifies that an ap-
proach must not only allow expressing the essential proper-
ties of a system, but must also guarantee an easy maintain-
ability of the models. Moreover, the evolution of the models
must follow that of the embedded systems without calling in
question all of what already exists. Consequently, a design
approach must provide effective mechanisms of reusabil-
ity that allows to add, to remove or to specify the model
elements without calling into question all the description
of the system. Whether the stakes are economic or scien-
tist, the modularity in the embedded systems supports the
reusability and improves the maintainability. Moreover the
increase of the reusability of the components implies that
of the productivity of the designer. This is why, modular-
ity and reusability are currently perceived like a strong ar-
guments in the design of the components. So, embedded
system must be designed in a modular way. It consist of
the interconnection of several different modules where arise
embedded systems that contain other embedded systems.

2. Heterogeneous Modeling

In [4], modeling is defined as a formal representation of
a given concept, system or subset whereas the design gener-
ally implies the implementation of several successive mod-
els, each one being a refinement of the precedent. The first
model can be seen as the formal system specification, and
the last model can be seen as its implementation. So, the
goal of the modeling is the exploration of the models for a
final design when the goal of the design remains the imple-
mentation [18]. Design and modeling are obviously closely
interdependent.

On an abstract level, a model of a system can be regarded
as a combination of different technical domains that have
different methods of modeling and design. These differ-
ent domains have different methods of modeling and de-
sign that consider their components and their relationship
in different ways. Consequently, in each domain, the inter-
actions between components are governed by a specific set
of physical law called ”Model of Computation-(MoC)”. A
comparative and detailed study of models of computation is
presented in [13].

Currently, the modeling and design of complex systems
calls naturally for the use of several models of computation
that correspond to the different technical implementations.
To illustrate this heterogeneity, we consider the simple ex-
ample of a third generation multi-media cellular telephone
shown in the figure 1. It uses several technical domains of
that algorithms of image and signal processing, software,
physical interfaces, micro-waves and radio features, opto-
electronic, electronic and electricity techniques, networks,
etc. . .

Figure 1. An example of heterogeneity

The organization of such a system and the interactions
between its different subsystems imply a connection of the
subsystems that are not already using the same model of
computation. Such a system that uses different models of
computation is called ”Heterogeneous System”.

Heterogeneous modeling is simply a modeling by using
a number of MoCs. Since most systems are heterogeneous
in nature, heterogeneous modeling provides more natural
and more complete models. For instance, being able to use
both state machines and synchronous data-flows allows to
describing explicitly the control in the model of a digital
signal processing system. If we were limited to the syn-
chronous data flow MoC, control and data processing would
have to be coded together and the model would be less ex-
pressive and much more difficult to maintain [6].

Current heterogeneous modeling tools allow to take into
account and to structure diversity of applications domains.
In order to mix different MoCs, each of existing modeling
tools can use either an amorphous or a hierarchical hetero-
geneity approach.

Although being largely used, the hierarchical approach
presents some disadvantages we present in this paper.

3. Heterogeneous Modeling Approaches

3.1 Amorphous Approach

Many modeling and design environments support het-
erogeneous modeling, but they generally focus on a fixed
set of MoCs that are generally continuous and discrete sig-
nals for electrical engineering or state machines and dif-
ferential equations for hybrid systems. Since they use few
MoCs that are known beforehand, they can define the union
of these MoCs, and the total knowledge of the interactions
between these MoCs allows to compute the behavior of a
heterogeneous model. This approach is called ”Amorphous
Approach”. A digital to analogical signal converter with
digital inputs and analog output is an example of this sys-
tem. SIMULINK and VHDL-AMS are the examples of this
modeling and design environments.

3.2 Hierarchical Approach

Modeling and design tools that support an open set of
MoCs cannot build the union of these MoCs because of
their high number that moreover are not known beforehand.
These tools require that each component obeys only one
MoC. Since components that are connected obey the same
MoC, all the components that are interconnected must obey
the same MoC. However, the hierarchical abstraction makes
it possible to use a MoC to model a component that is dif-
ferent from the outer MoC in which the component is used.
Therefore changes of MoC can only occur at the boundary
of a component: this leads to the ”hierarchical heteroge-
neous modeling” paradigm used by several modeling and
design environments such as el Greco [7], PTOLEMY II [4]
etc. . . .

This hierarchical approach is obviously an effi-
cient way of managing the complexity of a sys-
tem [14] [15] [10] [18] [6]. This complexity can come from
the structure or the behavior of the system; from where the
structural hierarchy called also architectural hierarchy and
the behavioral hierarchy [1].

Structural hierarchy is used to identify self-contained
sub-systems and to define their interface to the other sub-
systems [16]. This interface may consist of a set of signals.
At a higher abstraction level, it may consist of the commu-
nication channels that encapsulate more complex communi-
cation protocols. This hierarchy allows to design each part
of a system in a separate way once the interfaces have been
specified.

Behavioral hierarchy is a way of considering a complex
process as the result of sequential or concurrent simpler pro-
cesses. The composition of processes makes use of commu-
nication and synchronization primitives such as termination
detection, process activation or suspension, rendezvous or
exceptions. Exception handling may be considered as be-
havioral hierarchy since it can be seen as the termination of
a process and the activation of the exception handling pro-
cess [8]. There is also another type of hierarchy called “syn-
chronization hierarchy” that can be considered as a special
case of behavioral hierarchy.

The fundamental question is not this hierarchy in itself,
it is rather the impact of its coupling with the changes of
MoC on the modeling, the design and the maintenance of
the applications. This corrupts the modularity, reduce the
reusability of the components and reduce the maintainabil-
ity of the system. We rather think that the hierarchy in a
heterogeneous model should not depend on the modeling
tools. It should rather represent the compositional structure
of a system following its functional decomposability.

In the next section, we present the different issues of this
hierarchical approach.

4 Issues of hierarchical approach

Hierarchy manages the complexity of a system by hid-
ing internal details that are not pertinent at a given level of
modeling [16] [17] [6].

When you look inside a component, you may either see
a low level description of the behavior of the component
when the component is atomic or primitive, or you may see
a model of this component in the same modeling environ-
ment when the component is composite. In both cases, the
interface of the component hides its hierarchical level to the
internal details of its behavior. So the inner and the outer
MoCs can be different. It is still necessary to define how
the inner and the outer MoC interact and how data is trans-
formed when crossing a domain boundary [18] [6].

Currently, different modeling tools largely used the hi-
erarchical approach in order to make easier the interac-
tions between two heterogeneous components. But, this ap-
proach has some drawbacks which are in the root of the
issues that we present bellow:

• the hierarchy of the model is coupled with the changes
of MoC and may not reflect the effective structure of
the system;

• components that have inputs or outputs that obey dif-
ferent MoCs cannot be used;

• what happens when data crosses the boundary between
two domains depends on the modeling environment

4.1 First issue

From the coupling between the hierarchy and the change
of MoC arise ad hoc constructions at the boundary between
two models of computation. This issue can be solved either
by preserving the semantics properties or by changing the
semantic properties across models of computation.

4.1.1 Preserving semantic properties across MoCs

Here, only terminals that obey the same MoC can be con-
nected, but a component may obey several models of com-
putation. This way preserves the semantic properties along
connection between terminals.

D1 D1 D2 D2

}

A CB

Preserving sematic properties

Change of semantic properties
 - Conversion of protocol
 - Formatting data

Figure 2. Component obey several MoCs

Since component can obey several models of computa-
tion, we can use a third component dedicated to the change
of semantics between two heterogeneous components in the
same hierarchical level as shown in figure 2. These com-
ponents are called ”Heterogeneous Interface Components,
(HIC)”. Then, the heterogeneous behavior of the system can
occur inside those components as part of their behavior and
is therefore an explicit part of the model of the system.

4.1.2 Change of semantic properties across MoCs

Here, components obey only one MoC, but we can make
connections between terminals across MoCs as shown in
figure 3.

D1 D2 D2 D3

}

A CB

Change of semantic properties
 - Conversion of protocol
 - Formatting data

Figure 3. Component obey only one MoC

To achieve this way, the change of semantic properties
mechanism between MoCs must be implement either in the
core or in the ends of the connection. But to implement
change of semantic properties mechanism between MoCs
in the core of the connection requires from this connection
to become active, so that it must be able to provide both the
conversion of communication protocol and the data format-
ting mechanisms as shown in figure 3.

The challenge is how to do so that from one model of
computation to another, the connection is able to achieve
the three conditions below, presented in [21] :

1. to translate the common semantic property

2. to ignore the semantic properties in the first MoC that
are not present in the target MoC

3. to create the semantic properties in the target MoC that
are not present in the first MoC

In the same way, to implement change of semantic prop-
erties mechanism between MoCs in the end of the connec-
tion requires from this terminal to become active.

To achieve this, some approaches use the mechanism of
Remote Procedure Call (RPC) in that a component can call
a communication primitive of a connection by reading from
or by writing on the interface port. As shown in figure 4, the

Fa

Fc

Fb

SYSTEM

Component1 Component2

P11

P12

P13

Connections

P21

P22

P23

Communication

Protocols

Protocol Library

Component 2 writes on the port 21
and read from the port 22

Componet 1 invokes a
connectionprimitive

C
ho

os
e

of
 p

ro
to

co
l

 primitives supply

communication

Protocol

Port

Interface

C2

C1

Figure 4. Using RPCs

component M1 choices the communication protocol in the
protocols library. Since it can have several implementations

in this library, the synthesis process choices the appropriate
protocol to the MoC used by the components M1 and M2
and provides the necessary primitive for the connection.

In object-oriented philosophy, this concept of protocols
library is often replaced by the power of the polymorphism
technique. Note that in PTOLEMY II for instance, this con-
cept is replaced by the dual concept of polymorphism and
hierarchical abstraction but on different hierarchical levels.

4.2 Second issue

The second issue of this approach forbids the use of com-
ponents that have terminals that obey different MoCs in the
same hierarchical level. For instance, an analogical to digi-
tal converter could be modeled in a continuous time domain,
the digital outputs being considered as continuous signals
with sharp changes. If such a model is close to the real-
ity, it is not at the right abstraction level when you want to
consider the outputs as discrete sequences of values. On
the contrary, the analogical to digital converter could be
modeled using a discrete domain where the continuous in-
puts would be considered as sequences of discrete samples,
turning the device into a resampler or a no-op. To solve
this problem, a Heterogeneous Interface Component must
be used.

4.3 Third issue

The third issue hides the transformations that occur at
the boundary of two domains inside the edge of the compo-
nents. These transformations depend on the modeling tool
and are therefore not explicitly stated in the model of a sys-
tem. And the designer of the system has neither the clear
comprehensibility nor the complete control of what happens
when data crosses the boundary between two domains. So,
he has not the complete control of the heterogeneous be-
havior of its system. To solve this problem, two approaches
may be used :

• The first approach advocates to allow the designer to
edit the edge of the components to specify how data is
transformed when it goes through it. If the heteroge-
neous mode is in the same level of the hierarchy, these
edge looks like to the “HIC” presented in section 4.1.1

• The second approach advocates to move these transfor-
mations from the edge to the core of the components.
This makes the internal specification of the component
depend on the domain in that it is used, what impairs
modularity and reusability.

4.4 Example

Consider the simple example given in [6]Mbobi4 and
shown in figure 5. A signal rectifier illustrates the issue of

the hierarchical heterogeneous models. The top level uses
flows of data samples, and the behavior of the detector is
modeled using discrete events. When the flow of samples
enters the detector, it is converted to a sequence of valued
events. When an event is produced at the output, its value
is used to build a data sample in the outer domain. This is
only an example of what may happen at the boundary of a
component, and the important point is that these transfor-
mations depend on the modeling tool and are not specified
in the model of the system. Since the data flow MoC in
that the detector is used requires that a sample of data be
produced on the output each time a sample is consumed on
the input, the discrete event behavior of the detector must
respect this condition. So even if the input signal does not
change its sign and no event has to be produced, the detector
must produce something on its output to obey the seman-
tics of the outer domain. Here, we have put a sampler that
uses the value of the last emitted event to produce an output
each time an input sample is consumed. We have to put this
sampler in the internal model of the detector because of the
semantics of the external MoC, so the implementation of
the detector depends on the context in that it is used, what
impairs modularity and reuse.

discretes events

floow of samples

Detector

di
sc

re
te

s
ev

en
ts

Top Level

Figure 5. Example of implicit transformation

5. Conclusion

To support heterogeneity arising from the use of differ-
ent technical domains, modeling hierarchically tools nest
different models of computation that characterize these dif-
ferent technical domains.

In this paper, we have discussed the issues that we iden-
tify in hierarchical heterogeneous approach . These ap-
proach lead to the coupling between hierarchy of the model
and the changes of model of computation. So that the com-
ponents that have inputs or outputs that obey different mod-
els of computation cannot be used and what happens when
data crosses the boundary between two domains cannot be
explicitly specified. In addition, we gave some strategies of
managing component in the same level of the hierarchy.

References

[1] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F.
Ivancic, V. Kumar, I. Lee, P. Mishra, G. Pappas, and
O. Sokolsky, “Hierarchical Hybrid Modeling of Em-
bedded Systems”, University of Pennsylvania, Avail-
able online at http://www.seas.upenn.edu/hybrid/

[2] M. Auguin, “Systèmes sur Puce : vers l’exploration
en milieu complexe”, Ecole Thématique sur les
Systèmes Enfouis, I3S, Université de Nice Sophia
Antipolis, CNRS, INRIA, novembre 2003

[3] P.G. Basset, “The theory of practice of adaptive
reusse”, In SSR, page 2-9, 1997.

[4] S.S. Bhattacharyya et al, “Heterogeneous Concur-
rent Modeling and Design in java, Volume I to III”,
Memorandum UCB/ERL M01/12 eecs, University
of California at Berkeley, March, 2001

[5] F. Boniol, “Une approche synchrone multi-
formalismes pour la conception de systèmes
temps-réel distribués”, Technique et science in-
formatiques, Hermès, volume 17, n9/1998, pages
1099-1128.

[6] F. Boulanger, M. Mbobi and M. Feredj, “Flat Het-
erogeneous Modeling”, Proceedings of the confer-
ence of Internet Processing Systems Interdisciplinar-
ies, Venice, Italy, November 10 to 15, 2004

[7] J. Buck and R. Vaidyanathan. “Heterogenous mod-
eling and simulation of embedded systems in el
Greco”, Proceedings of the 8th international work-
shop on Hardware/software codesign, San Diego,
California, USA, Pages: 142-146, 2000, ISBN:1-
58113-268-9.

[8] J.M. Daveau, “Spécification système et synthèse
de la communication pour le Co-Design Logi-
ciel/Matériel”, Ph.D. Thesis INPG, TIMA Labora-
tory, Decembre, 1997

[9] F. Vahid and D. Gajski, ”Specification Partitioning
For System Design”, Proceedings of the IEEE De-
sign Automation Conf., pages 219-224, June, 1992.

[10] A. Girault, B. Lee, and E. A. Lee, Fellow, IEEE,
“Hierarchical Finite State Machines with Multiple
Concurrency Models”, Proceedings of the DATE99
conference, pp.382-383, March99.

[11] R. Hamouche, “Modélisation des systèmes em-
barqués base de composants et d’aspects”, Ph.D.
Thesis, Laboratoire des Méthodes Informatiques,
Université d’Evry Val d’essone, Juin, 2004.

[12] L. Lagadec, “Abstraction, modélisation et outils de
CAO pour les architectures réconfigurables”, Ph.D.
Thesis, Université Renne 1, Décembre 2000.

[13] E.A. Lee and A. Sangiovanni-Vincentelli, “A
Framework for Comparing Models of Computa-
tion”, IEEE Transactions on computer-aided design
of integrated circuits and systems, Vol. 17, no. 12,
December 1998.

[14] B. Lee and E.A. Lee, “Hierarchical Concurrent Fi-
nite State Machines in Ptolemy”, University of Cali-
fornia at Berkeley, Proceeding of International Con-
ference on Application of Concurrency to System
Design, p. 34-40, Fukushima, Japan, March 1998.

[15] B. Lee and E. A. Lee, “Interaction of Finite State
Machines and Concurrency Models”, University of
California at Berkeley, Proceeding of Thirty Second
Annual Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, California, Novem-
ber 1998.

[16] M. Mbobi, F. Boulanger and M. Feredj, “Non-
hierarchical heterogeneity”, International CCCT,
IEEE Computer Society July-August, 2003, Or-
lando, FlorideUSA,. International IIS, Volume III,
ISBN 980-6560-05-01, pp. 430-435.

[17] M. Mbobi, F. Boulanger and M. Feredj, “Execution
Model for Non-Hierarchical Heterogeneous Model-
ing”, Proceedings of The 2004 IEEE International
Conference on Information Reuse and Integration,
November 8-10, 2004, Las Vegas, USA, IEEE,
ISBN 2004113902, pages 139 144

[18] M. Mbobi, “Modélisation Hétérogène Non-
Hiérarchique”, Ph.D. Thesis, Supélec, Université
Paris XI (Orsay), Décembre, 2004.

[19] RNTL, Rapport du groupe de travail ”système em-
barqué et temps réel, co-développement”, 2001,
Availlale on line at http://www.telecom.gouv.fr/rtnl

[20] F. Simonot-Lion, J.P. Elloy, Y. Trinquet.
“AIL Transport : Un langage de description
d’architecture électronique embarquée dans
l’automobile”, Veille Technologique, 45, juin, 2002,
p. 34-36.

[21] W-T. Chang, S. Ha, and E.A. Lee, “Heteroge-
nous simulation - mixing discrete-event models with
dataflow”, Journal of VLSI Signal Processing 15,
127-144, Kluwer Academic Publishers, 1997.

